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ABSTRACT 

Comparing the performance parameters of a set of wind 

turbines in a single region will provide insights that prevent 

raising unnecessary alarm, while confirming actual faults. 

Wind turbines operating in a wind farm experience similar 

operating and environmental conditions that could indicate 

either normality for that group or failures that manifest in 

those conditions. These norms and failures are an 

orthogonal set of data rich in information that can be 

utilized in performance monitoring algorithms to supply 

better prediction accuracy and low false positives. In this 

paper, we describe the use of an associative model (AM) for 

fault detection in a population. An associative model maps 

system parameters to an identical set of virtual parameters.  

The AM-based approach can be used to capture the 

underlying correlation of an observable system, such as 

performance parameters of a set of wind turbines in a wind 

farm. The residuals between the model output and the input 

can then be used to detect anomalies and isolate faults.  

1. INTRODUCTION 

A modern wind farm can hold hundreds of wind turbines at 

a site, located as close as several hundreds of meters from 

each other. They are usually situated in remote locations and 

operate under severe environments atop 60-90 m towers. It 

is no surprise that operations and maintenance costs of wind 

turbines run high. One of the biggest drivers of maintenance 

cost is unscheduled maintenance due to unexpected failures. 

Continuous performance monitoring of wind turbine health 

for automated failure detection can reduce maintenance 

costs by detecting failure pre-cursors before they reach a 

catastrophic stage and by keeping turbines operating at 

higher efficiencies.  

Typical performance or health monitoring of a machine 

involves monitoring a few performance parameters over 

time to see changes with respect to its own history or 

manufacturer provided baseline. It has been successfully 

used in the process and aerospace industries [Bell & 

Foslien, 2005; Gorinevsky, Dittmar & Mylaraswamy, 2002; 

Kim & Mylaraswamy, 2006]. In the wind industry, fault 

detection methods include anomaly detection based on 

neural network models of normal operating modes [Zaher, 

McArthur, and Infield 2009]; power-curve-based 

performance monitoring analytic [Uluyol, Parthasarathy, 

Foslien & Kim, 2011]; data mining techniques based on 

wind speed and power output [Kusiak, 2011]; and 

classification methods of clustering and principal 

components analysis [Kim, Parthasarathy, Uluyol, Foslien, 

Sheng & Fleming, 2011].  

An alternative, complementary practice would be to monitor 

performance parameters with respect to similar machines in 

similar operating conditions. A wind farm offers such an 

opportunity. This opportunity converts the inherent 

complexity of monitoring a large number of wind turbines 

individually into an asset that increases the robustness of 

fault and performance monitoring systems for all wind 

turbines in a wind farm.  

A study by Ye et al. (2010) presented a method for detecting 

wind turbine anemometer failures based on the difference in 

measured wind speeds between a pair of closely situated 

wind turbines. However, in this study, the method is a 

comparison of only two wind turbines and operates on 

accumulated week‘s worth of data. The present work 

explores the use of an associative model (AM) to capture 

the relationship among several wind turbines on a farm to 

detect anomalous conditions. The AM is applied to high 

resolution time-series data from seven wind turbines.  

2. FAULT DETECTION USING ASSOCIATIVE MODELS 

An associative model maps system parameters to an 

identical set of virtual parameters.  The AM-based approach 

can be used to capture the underlying dynamics of an 

observable system, such as performance parameters of a set 

of wind turbines in a wind farm. The residuals between the 

model output and the input can then be used to detect 

anomalies and isolate faults. See [Uluyol 2001 and Uluyol 
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2003] for previous applications of this approach for in-range 

sensor fault detection, isolation and recovery. 

When applied to sensor data, AM captures analytical 

redundancy among sensors and maps the readings from a 

group of correlated sensors into an estimation set for an 

identical group. When an appreciable sensor fault is 

detected, the associated model estimate diverges from the 

actual sensor reading. Associative models in the form of an 

auto-associative neural network (AANN) [Kramer 1992] 

have also been applied for sensor validation in nuclear 

power plants, chemical process plants, and propulsion 

turbine engines.   

Our application differs from conventional use of neural 

networks in that we employ a neural network as a model of 

the system that maintains dependencies among parameters 

of interest. A fault in our approach is a break in this overall 

correlation rather than a deviation in an individual 

parameter. The iterative associative model approach for 

fault isolation has been demonstrated with actual flight data 

collected from sensors installed on multiple types of turbine 

engines for fixed wing aircraft and helicopters.  

3. WIND FARM APPLICATION 

When applied to a wind farm, AM captures the performance 

correlation among the modeled wind turbines (see Figure 1). 

In this application of AM for wind farms, we explore the 

use of wind turbine power produced as the performance 

parameter. Many factors affect wind turbine performance. In 

applying an associative model, the analysis should include 

careful filtering of the data, both in training the model and 

in deploying it.  

A wind turbine may exhibit anomalous behavior compared 

to its neighboring wind turbines for a number of reasons. It 

could be under repair or be subject to curtailment while 

others are operating normally. Or, the other turbines could 

be subject to curtailment while one is operating normally. 

These conditions can be obtained either through status 

parameters captured as part of SCADA (Supervisory 

Control And Data Acquisition) data or be detected using 

filters based on simple statistics on measured power.  

The factors that affect the dynamics of wind turbine 

performance, and hence present an opportunity for the use 

of the AM approach, include location effects, park-wide  

 

Figure 1. Wind turbine correlation mapping using AANN 

control effects, and slowly-progressing fault in one of the 

monitored wind turbines. In a wind farm, wind turbines can 

be situated as far as 100 m apart from each other facing the 

wind direction and as far as 500 m apart along the wind 

direction. In order for all wind turbines to be under the same 

wind regime, the wind direction should be stable for a 

period of time that is greater than the wind turbine response 

time. While the wind direction is stable, the wind turbines 

don‘t necessarily produce exactly the same amount of 

energy; however, but we can correlate production to their 

location in the wind farm and capture this correlation in the 

associative model. Similarly, wind turbines may respond 

differently but consistently for their locations when the wind 

farm operator applies park-wide controls. These correlations 

can also be captured in the associative models.  

After correlations among wind turbines for stable wind 

regimes and common control operation regimes are 

established, the associative model can be used to detect any 

deviation from the expected behavior. 

3.1. SCADA Data Description and Access 

We obtained archived wind turbine SCADA data from three 

wind parks. The large data set, maintained in a 

MatrikonOPC Desktop Historian, includes 16000+ tags, and 

spans a period of about 6 months.  

Before developing the algorithms, we identified the initial 

parameters of interest. The flat set of 16000+ tags was 

organized into a metadata list so we could parse the data 

appropriately. We also established a procedure for accessing 

the data with MATLAB®, which is our development 

environment. We used MathWorks® OPC Toolbox™ for 

this purpose. The tags were classified, and tags belonging to 

one wind farm and their data were exported to MATLAB®. 

The tags in this farm looked most meaningful for inclusion 

in a multi-turbine diagnostics algorithm for tag consistency 

(i.e., the same tags are available for most wind turbines in 

the park) and relevancy (i.e., the tags are useful for 

performance analysis). 

3.2. Data Pre-processing and Selection of Wind Turbines 

Our objective was to select a representative set of turbines 

for developing and demonstrating the multiple wind turbine 

fault diagnoses. The wind park IDs in the tag names of the 

data were first fixed to eliminate discrepancies and 

redundant tags. Based on the wind turbines associated with 

one particular meteorological tower (MET) (502 marked 

with a red star in Figure 2) and their representative location 

in the geography around the tower, we chose seven wind 

turbines for further data analysis. These turbines are 

numbered T075, T081, T098, T104, T115, T118 and T127. 

There are about 30-50 wind turbines installed for each 

MET. The area where the turbines are installed forms a 

trapezoid shape behind each MET. There were 49 turbines 
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Figure 2. Location of selected wind turbines on the wind 

farm 

installed in four rows within the trapezoid for MET #502. 

We selected two turbines from the first row, two from the 

second row, and three turbines from the third row for this 

analysis. The last row was omitted because of missing data.  

The data from these turbines show that the tags have 

different sampling rates, and recorded parameters are not 

synchronized with each other. For example, wind turbine 

power, wind speed, and temperature are recorded at 

different timestamps and have differing timestamp intervals. 

The data statistics of wind turbine power produced, wind 

speed and ambient temperature are shown in Table 1. Notice 

that while the turbine power and speed may be recorded 

every second and the ambient temperature every 2 seconds, 

the median interval varies a lot from 5 seconds for power to 

500 seconds for the ambient temperature. This results in 

having almost 300 times as many data points for power as 

the ambient temperature, and necessitates re-sampling for 

synchronizing data.  

We reviewed several tags for filtering data to create a 

baseline data set. These tags included Operating, Faulted, 

and State_fault, among others. To obtain set interval time-

synchronized data, each tag was re-sampled at a higher 

frequency using a proprietary technique (patent pending), 

and means were computed for the set interval (1-min, 5-min 

or 10-min) for periods common to the tags of interest.  

3.3. Analysis Using Power Curve Analytic 

To detect correlations and variations for the same periods, 

the synchronized data from the seven selected wind turbines 

were analyzed according to the power curve analytic 

(Uluyol, Parthasarathy, Foslien and Kim, 2011). The power 

curve for the wind turbines was obtained from the operator. 

For each of the wind turbines, we calculated residuals from 

the power curve, for all data, with a 30-day moving window 

 

Table 1. Data Statistics 

and 1-day interval or frequency of calculation. The residuals 

were further processed to obtain wind speed bin-based 

averages, standard deviations, skewness, and kurtosis. Our 

analysis reveals that a correlation exists amongst the 

turbines in terms of power production, and with a suitable 

multiple turbine algorithm, anomalous conditions and faults 

may be detected. The plots in Figure 3 and Figure 4 show 

the skewness and kurtosis statistics. The seven wind 

turbines are represented in rows, with the columns 

representing the dates 25 days apart.  

We observe that, in the time periods ending on Jan 9 and 

Feb 3, skewness and kurtosis for each wind turbine have 

shapes deviating from zero values across the wind speed 

bins. Since all wind turbines show this behavior for these 

time periods, and since the skewness is measured with 

respect to the population mean (rather than the nominal 

power curve), we speculate that this behavior could be 

found in normally operated wind turbines at this park. It is 

also possible that the number of samples in these time 

periods may have skewed the statistics.  

These plot sets in Figure 3 and Figure 4 are an important 

visualization tool for comparing wind turbines in terms of 

broad parameter values and spotting anomalies. They 

provide the means to explain any individual power curve 

analytic alarms that could have been raised in the vicinity of 

the dates in the first two columns, when there seems to have 

been controlled power curtailment.  

This part of the analysis leads us to conclude that wind 

turbine performance is strongly correlated across the wind 

farm. Additional automated analytics with the associative 

models approach, which models the correlation at a much 

finer timescale, could be beneficial. 

3.4. Wind Farm Data 

A set of normal operating data under nominal conditions is 

extracted to train an associative model. Normal operating 

data are the data from periods where no known fault is 

present in the records. The nominal conditions are defined 

based on power magnitude and variation, and wind direction 

variation. Figure 5 shows the power profile of the seven 

wind turbines during the six-month period between 

September 2009 and February 2010. Notice that the bulk of 

the data are recorded between the red vertical lines 

indicating the 250 kW and 1250 kW levels. The start-up and 

Power Windspeed Ambient 

temperature

Min interval (sec) 1 1 2

Median interval (sec) 5 20 500

Mode (sec) 5 5 100

Max interval (hr) 4.33 7.99 8

No of samples 2083426 424568 7331
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Figure 3: Skewness of power residuals in 30-day windows for 7 wind turbines (shown in rows) 

 
Figure 4: Kurtosis of power residuals in 30-day windows for 7 wind turbines (shown in rows) 
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the high power regions that fall outside of these limits 

contain highly non-linear operation periods and are 

excluded from the training set.  

Figure 6 shows the variation in power in terms of the 

standard deviation calculated for each sampling interval. 

Notice that it shows a normal distribution superimposed 

with samples having very little or no variation. The samples 

that show very little variation in the wind turbine group 

correspond to shutdown, full saturated power, or curtailed 

power level conditions. For the baseline training, we 

exclude these points. The samples at the other end of the 

distribution mark very high variation conditions, and are 

similarly excluded from the baseline training. We chose the 

region between 50kW and 300 kW standard deviation as the 

representative  region for a baseline  nominal  operation  and  

used it for the AM training. 

Figure 7 and Figure 8 show the wind direction and its 

variation. Wind direction is measured at the MET towers. 

Two sets of measurements were taken at different heights at 

each tower. Figure 7 shows Wind Direction 1 measurement 

at one of the towers (MET 2 in Park 2) for about a 2.5 week 

period as a function of time. Notice that while the wind 

direction is stable most of the time as indicated by small 

standard deviation values plotted in green in Figure 7, the 

wind direction varies greatly about 8 times during the period 

covered as indicated by the sharp rises in standard deviation. 

Figure 8 is a histogram of the standard deviation of the wind 

direction. For the training set, we excluded the high 

variation points and only included samples below 10 

degrees, indicated by the vertical red line. 

 

Figure 5: Power profile of 7 wind turbines during 6 months of 

operation 

 

Figure 6: Standard deviation in power among 7 turbines for 

each sampling instance 

 

Figure 7. Wind direction at MET2 

 

Figure 8. Variation in wind direction 

Power std (kW) 
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4. RESULTS AND DISCUSSION 

We first tested our approach using the complete data set to 

see how often the associative model approach would 

indicate an anomaly. This data set was filtered only for 

stable wind direction as measured by both Direction 1 and 

Direction 2 and included data from only those instances 

where the variation in wind direction was below a set 

threshold as shown in Figure 8. Although the ground truth 

was not available for each anomaly, an initial assessment for 

the efficacy of the approach can be made based on the 

distribution of the indicated anomalies.  

Figure 9 and Figure 10 show the associative model results 

for two select months from the period of September, 2009 to 

February, 2010. The green, yellow, and red circles in the 

figures indicate healthy, low-confidence and unconfirmed 

anomaly, and high-confidence and confirmed anomaly 

conditions, respectively. The input is made up of data 

sampled at 1-min intervals, and each sample has a 

corresponding output indicated by one of the three colored 

circles.  

The yellow indicator may appear in all turbines for each 

unconfirmed anomaly, while the red indicator is limited to 

only one turbine. The unconfirmed anomaly is triggered 

whenever a high residual occurs in any of the turbines, 

which indicates a mismatch between the associated model 

output and the measured input signal.  However, for an 

anomaly to be confirmed, a certain amount of persistency in 

the fault is expected. This confirmation is achieved by a 

counter implemented as a leaky-integrator. Once the fault 

persists for a set number of samples, then a hypothesis 

testing procedure iteratively isolates the fault to one 

particular wind turbine.  

As expected, the monthly data results show that turbines are 

operating without any indication of an anomaly most of the 

time. Moreover, when an unconfirmed fault is detected, it 

does not always persist long enough to trigger a confirmed 

fault. Notice that once the fault is confirmed, the isolation to 

a single turbine is sometimes achieved, as is the case on Sep 

4 data in Figure 9; or not achieved, as in the case of Jan 5 

data in Figure 10. The latter case shows that further tuning 

of the model may be necessary.  

4.1. No Fault Data Set  

Besides the faulty data cases, performance assessment of 

anomaly detection methods needs to include no-fault cases. 

Especially in a condition-based maintenance approach for 

remotely located wind turbine applications, the false alarm 

performance of anomaly detection algorithms is highly 

critical, as the wind farm operator would incur high cost for 

an unnecessary maintenance action.  

Figure 11 shows the associative model results for a data set 

made up of nominal power and wind speed. The data set 

spans six months from September, 2009 to February, 2010. 

Notice that the model detected a mismatch between the 

actual and expected output only two times in this data set, as 

indicated by two sets of yellow circles at 55 and 145 days 

from September 1, 2009. Neither of these indications 

persisted, and the associative model output quickly reverted 

back to healthy. This shows that the approach is very robust 

with respect to inherent variations in the data and does not 

produce false alarms.  

 

 

Figure 9. Associative model results for Sep 2009 data 

 

 

 

Figure 10. Associative model results for Jan 2010 data 
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4.2. Ice Condition Data 

The SCADA data set includes an aggregate ice condition 

indicator. This parameter shown in Figure 12 indicates the 

sum of wind turbines in which an ice condition is detected at 

any given time. An ice condition denotes the possibility of 

icing based on low temperature and high humidity—not 

actual icing. The number of turbines is presented in terms of 

the percentage of total number of wind turbines in this 

particular wind park.  

During the six-month period for which data is available, a 

high number of ice condition detections occurred on four 

occasions: Dec 7–8, 2009, Dec 29–30, 2009, Jan 7–8, 2010, 

and Jan 28–29, 2010. On these dates, more than 85 percent 

of the wind turbines out of 155 wind turbines in Park II 

experienced ice conditions.  

Figure 13 and Figure 14 show the anomaly detection results 

around the four periods of ice conditions. The semi-

transparent blue rectangles on the figures indicate the 

beginning and end of the periods of ice condition. The 

available SCADA data for the first three periods is very 

sparse; yet, the associative model was able detect many 

anomalies in all three cases. The Jan 28–29, 2010 case is 

preceded with continuous data and followed by no data for 

about a day. During this fourth ice condition period, all 

turbines are shown as producing power, and two of them 

(T104 and T115) are marked as anomalous. 

4.3.  “Faulted” Data Set 

The SCADA data set includes a tag called ―faulted,‖ which 

is a binary parameter recorded for each wind turbine in 

February, 2010. The data is not available for the earlier 

periods. When this information is available, it is the closest 

we have to the ground truth about the state of health of each 

wind turbine.  

One or more ―faulted‖ conditions are recorded in the 

SCADA data for four of the seven wind turbines (T075, 

T081, T104, and T127) between Feb 13 and Feb 22, 2010. 

These faulted cases are indicated by the vertical red lines 

drawn on the subplots for the wind turbines in Figure 15. As 

before, the red circles indicate the anomaly isolated to a 

wind turbine by the associative model.  

Notice that for T075 and T104, the red circles precede the 

red lines. The associative model is not only able to detect 

the developing anomaly, but it can do so up to two days in 

advance of the detection logic built into the SCADA system.  

T081 seems to have an intermittent failure, as indicated by 

multiple vertical lines spanning the six days between 

February 12 and 18. The associative model has two clusters 

of indications for this wind turbine. The first one is 

produced on February 15 —about three days after the first 

faulted signal. The second one is produced on February 

17—about one day before the last faulted signal. In other 

words, the associative model shows sensitivity to the 

intermitted failure and is able to detect it. 

T127 contains one faulted flag during this period. This case 

is not detected by the associative model. It is interesting to 

note that this fault occurs at exactly the same time as the last 

fault on T081. Further information about the nature of this 

fault could help explain why it is missed by the associative 

model.  

 

Figure 11. Associative model result for no fault data 

spanning 6 months 

 

Figure 12. Ice condition times in Park II 
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Finally, the associative model indicates a fault on T115 on 

February 20 at about the same time as it indicates a fault on 

T104. In this case, the anomaly is correctly detected; 

however, the associative model could only narrow it down 

to T104 or T115,  instead of firmly isolating it to T104. 

Overall, the results in this test case show that 3 out of 4 

anomalies were detected correctly; 2 out of 4 cases were 

detected in advance; 1 case was missed; and in one case the 

ambiguity set could only be reduced to 2 wind turbines. 

 

 
 

Figure 13. Associative model results for ice condition data in Dec 2009 

 

Figure 14. Associative model results for ice condition data in Jan 2010 
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Figure 15. Associative model output for the ―faulted‖ data 

5. CONCLUSION 

We analyzed data from several wind turbines on a wind 

farm and developed an automated fault detection approach 

using an associative model. The data analysis and 

visualization of the statistical features showed excellent 

cumulative correlation over large periods of time (several 

days) among different wind turbines. The associative model 

used correlations in a set of wind turbines on a much finer 

time scale, on the order of minutes, to detect anomalies. 

Several data filters were created to systematically segregate 

data for training and testing under different fault or no-fault 

conditions. The results show that the associative model is a 

promising approach for capturing correlated wind turbine 

behavior operating under similar conditions and for 

automated detection of anomalies when the correlation is 

broken.  

Although we don‘t have access to the root causes behind 

anomaly indications, a rich set of configurable data filters 

provided us with testing data. Testing with the clean data 

showed no false positives. Testing with the data containing 

the ‗Faulted‘ tag or large ice condition indicator (indicating 

possibility of wide-spread icing) showed that the AM is able 

to detect these conditions—sometimes in advance of the 

alarms. Further tuning with known fault data is needed to 

mature the approach. 
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