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ABSTRACT 

A health grade system against mechanical faults of power 

transformers has been little investigated compared to those 

for chemical and electrical faults. This paper thus presents a 

statistical health grade system against mechanical faults in 

power transformers used in nuclear power plant sites where 

the mechanical joints and/or parts are the ones used for 

constraining transformer cores. Two health metrics—root 

mean square (RMS) and root mean square deviation (RMSD) 

of spectral responses at harmonic frequencies—are first 

defined using vibration signals acquired via in-site sensors 

on fifty-four power transformers in several nuclear power 

plants in sixteen months. We then investigate a novel 

multivariate statistical model, namely copula, to statistically 

model the populated data of the health metrics. The 

preliminary study shows that the proposed health metrics 

and statistical health grade system are feasible to monitor 

and predict the health condition of the mechanical faults in 

the power transformers. 

1. INTRODUCTION 

Power transformer is one of the most critical power 

elements in nuclear power plants and an unexpected 

transformer breakdown could cause a complete plant shut-

down with substantial societal expenses. It is very important 

to ensure high reliability and maintainability of the 

transformer during its operation. Investigations of the fault 

causes have revealed that mechanical and electric faults are 

primarily responsible for unexpected breakdowns of the 

transformers (Lee et al., 2005). In total, 32 breakdowns of 

main power transformers in Korean nuclear power plants 

have been reported since 1978. Table 1 classifies these 

breakdown causes into three groups (electrical, chemical, 

and mechanical problems) and ways to manage them. 

Preventive health management for power transformers has 

been developed and implemented mainly for chemical and 

electrical faults. Although mechanical failures are 

responsible for about 40% of the transformer breakdowns, 

the non-existence of generic health metrics or a health grade 

system makes it difficult to perform preventive maintenance 

actions for mechanical faults in a timely manner and only 

corrective maintenance has been employed.  

In the literature, substantial research has been carried out for 

the health monitoring and diagnosis of power transformers. 

An extensive review of health monitoring and diagnosis 

methods of power transformers was provided in (Wang et 

al., 2002) with a focus on all types of transformer failure 

causes, and in (Pradhan, 2006; Saha, 2003) with a focus on 

Insulation deterioration. Techniques commonly used for 

health monitoring of power transformers can be summarized 

as: (1) online partial discharge (PD) analysis (McArthur et 

al., 2004), (2) dissolved gas analysis (DGA) (IEEE std., 

2008), (3) frequency response analysis (FRA) (Dick & 

Erven, 1978), (4) moisture-in-oil analysis (Garcia et al., 

2005), (5) oil temperature analysis (Lee et al., 2005; Tang et 

al., 2004), (6) winding temperature analysis (Picanço et al., 

2010), (7) load current and voltage analysis (Muhamad & 

_____________________ 

* Corresponding author. 
† Chao Hu et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 



Annual Conference of Prognostics and Health Management Society 2012 

 

2 

Ali, 2006), and (8) online power factor analysis (Gong et al., 

2007). We note that the usage of the vibration signals in 

monitoring the transformer health has been quite limited. 

The transformer vibration generated by the core and 

windings propagates through the transformer oil to the 

transformer walls where vibration sensors can be placed for 

vibration measurements. Bartoletti et al. (2004) transformed 

measured acoustic and vibration signals into a frequency 

domain and suggested a few metrics that could represent the 

health status of transformers. Ji et al. (2006) acquired the 

fundamental frequency component of the core vibration 

signal as essential features to monitor and assess the 

transformer health condition. García et al. (2006) proposed a 

tank vibration model to detect the winding deformations in 

power transformers and conducted the experimental 

verification of the proposed model under different operating 

conditions and in the presence of winding deformation .  

Once sensory data are acquired through the health 

monitoring, the data must be carefully analyzed for health 

diagnosis in order to identify and classify failures modes. 

Artificial intelligence (AI) techniques for pattern 

recognition have been prevailing for this purpose. Among a 

wide variety of AI techniques, ANNs have been most 

widely used in the research dealing with transformer health 

diagnosis (Huang, 2003; Hao & Cai-xin, 2007). Despite the 

good accuracy reported in the literature, the use of ANNs is 

limited by the intrinsic shortcomings including the danger of 

over-fitting, the need for a large quantity of training data 

and the numerical instability. In addition to ANNs, the fuzzy 

logic (Hong-Tzer & Chiung-Cho, 1999; Su et al., 2000) and 

expert systems (Purkait & Chakravorti, 2002; Saha & 

Purkait, 2004) were also developed for transformer health 

diagnosis. These two approaches take advantage of human 

expertise to enhance the reliability and effectiveness of 

health diagnosis systems. Recently, the support vector 

machine (SVM) has been receiving growing attention with 

remarkable diagnosis results (Fei et al., 2009; Fei & Zhang, 

2009). The SVM, which employs the structural risk 

minimization principle, achieves better generalization 

performance than ANNs employing the traditional empirical 

risk minimization principle, especially in cases of a small 

quantity of training data (Shin & Cho, 2006). 

The status of research on prognostics and health 

management (PHM) of a power transformer can be 

summarized as:  

(1) Most health monitoring works for power transformers 

are focused on chemical and electrical failures, but very 

little on mechanical failures; 

(2) Power transformer oil, gas and temperatures have been 

widely used for health monitoring and diagnosis of 

power transformers. In contrast, the vibration signal has 

seldom been used for PHM in power transformer 

applications; 

(3) The PHM studies for power transformers currently stay 

at the level of monitoring and diagnosis only, with few 

works on the health prognostics and remaining useful 

life (RUL) prediction. 

This summary suggests the need to construct a health 

management database, to formulate a health grade system 

against mechanical faults, and to investigate the health 

prognostics for power transformers. To this end, this study 

presents a copula-based statistical health grade system 

against mechanical faults of power transformers. The rest of 

this paper is organized as follows: Section 2 introduces the 

collection and pre-processing of the vibration data for power 

transformer health monitoring; Section 3 presents the 

developed copula based statistical health grade system for 

power transformer health monitoring and prognostics 

against mechanical faults followed by the conclusion in 

Section 4. 

2. DATA ACQUISITION AND PRE-PROCESSING 

Failures of mechanical joints and/or other parts of power 

transformers can be detected by analyzing mechanical 

vibration properly. This section discusses the fundamentals 

of transformer vibration, measurement procedures, and data 

pre-processing. 

 Details (Occurrence) Occurrence 
Health 

Analysis 

Electrical 

failures  

- Natural disasters (1) 

- Winding burnouts (2) 

- Operator mistakes (2) 

- Accidents in electric 

power transmission (1) 
- Mal-operation (4) 

- Product defects (1) 

- Manufacturing defect (1) 

- Product aging (1)  

13  Insulation 

Diagnosis 
Test 

Chemical 

failures  

- Oil burnouts (1) 

- Impurities in winding (1) 

- Product defects (1) 

- Increase of combustible gas 

(3)  

6  Insulating 

Oil Analysis  

Mechanical 

failures  

- Design defect (1) 

- Manufacturing defect (1) 

- Part corrosion (3) 

- Joint failure (3) 

- Crack, wear failure (5)  

13  N.A.  

Table 1. Breakdown Classification of Main Power 

Transformers in Korean Nuclear Power Plants from 1978 to 

2002 
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2.1. Fundamentals of Transformer Vibration 

Power transformer vibrations are primarily generated by the 

magnetostriction and electrodynamic forces acting on the 

core and windings during the operation. The vibration of the 

core and windings propagates through the transformer oil to 

the transformer walls where vibration sensors can be placed 

for vibration measurements. The sensors cannot be placed 

onto the joints because of the transformer oil and magnetic 

and electric fields that can distort sensory signals. This 

subsection gives a brief review of the fundamental physics 

explaining vibrations in the transformer. Various vibration 

sources exist inside a transformer, contributing to the tank 

vibration. The transformer vibration mainly consists of the 

core vibration originating from magnetostriction and the 

winding vibration caused by electrodynamic forces resulting 

from the interaction of the current in a winding with leakage 

flux (García et al., 2006). Other vibration sources include 

the characteristic acoustic wave produced by the tap changer 

and periodic vibrations generated by the elements of the 

cooling system (i.e., oil pumps and fans).   

Alternating current (AC) with a constant frequency in power 

transformers forms a magnetic field in the transformer core. 

The magnetic field changes the shape of ferromagnetic 

materials and produces mechanical vibration in the 

transformer. This phenomenon is called “magnetostriction.” 

As shown in Fig. 1, one cycle of the AC yields two peaks in 

the magnetic field. Assume that an AC source with the 

amplitude U0 and frequency f is applied to the drive and that 

the amplitude is less than or just sufficient to saturate the 

core. Then, the core vibration acceleration caused by 

magnetostriction can be expressed as (Ji et al., 2006) 

 
2 2

0 cos 4Ca U ft
 

(1) 

We can observe from the above equation that the magnitude 

of core vibration exhibits a linear relationship with the 

square of the AC amplitude. Furthermore, the fundamental 

frequency of the core vibration is twice that of the AC 

frequency, as we can also observe in Fig. 1. 

Winding vibrations are caused by electrodynamic forces 

resulting from the interaction of the current in a winding 

with leakage flux (Ji et al., 2006). These forces FW are 

proportional to the square of the load current I, expressed as 

 
2

WF I
 

(2) 

Since the electromagnetic forces FW are proportional to the 

vibration acceleration aW of the windings we then conclude 

that (García et al., 2006) 

 
2

Wa I
 

(3) 

Thus, similar to the case of core vibration, the fundamental 

frequency of winding vibrations is also twice the AC 

frequency. The difference between these two types of 

vibrations is that the magnitude of core vibration relies on 

the voltage applied to the primary windings and is not 

affected by the load current, while the magnitude of winding 

vibrations is proportional to the square of the loading 

current. In addition to the variables (voltage and current) 

causing transformer vibration, the other factors (i.e., 

temperature, power factor) also have an influence on 

vibration (Bartoletti et al., 2004), but due to the relatively 

small influence, these factors are not considered in this 

study. In fact, since power transformers in nuclear power 

plants always operate at 100% full power, the variables 

(voltage and current) and the power factor generally exhibit 

very small variations over time. And since cooling systems 

can effectively keep transformers cores and windings at 

suitably low temperatures, the temperature factor also has 

very small fluctuation.  

2.2. Vibration Signal Acquisition 

In this study, fifty-four in-service power transformers in 

four nuclear power plants were employed for acquiring 

vibration signals. Among these transformers, three are 

triple-phase transformers and the others are single-phase 

transformers (see Table A in Appendix). These fifty-four 

transformers have a wide range of ages, from less than one 

year to about twenty-two years. This study employed B&K 

4381 and PCB 357B33 accelerometers, which are charge 

types with charge amplifiers (RION UV-06A).  Depending 

on the transformer size, 36 to162 accelerometers were used 

to acquire the vibration signals from the transformers. The 

sensors were evenly positioned within 1m on the single-

phase and triple-phase main transformers, as respectively 

shown in Figs. 2(a) and (b). Measurements were conducted 

along two directions (X and Y) on the surface of the 

transformer frame and one perpendicular direction (Z) to the 

surface. The accelerometers were installed on the flat 

surface with a magnet base in order for easy measurement.  

 
Figure 1. Magnetostriction in the transformer 
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All measurements were obtained in the form of time-domain 

signals in a full-power operation state of the power 

transformers. In the state, all other subsidiary units affecting 

vibration under normal operating conditions, such as forced 

cooling systems and hydraulic pumps, were turned on. The 

subsidiary units were supplied with 480 V AC power. In 

most cases, the transformers convert primary electrical 

values, i.e. voltages 22 kV and currents about 32 kA, to 

proportional secondary values, i.e. voltages 345 kV and 

current about 2 kA. The measurement system was powered 

by an independent battery power system. Vibration velocity 

[mm/sec] was measured at every 1.25 Hz in the frequency 

range of 0-2000 Hz. The rated voltage always has a 

frequency of 60 Hz. It is desirable to avoid taking the 

measurement immediately after turning the transformer on 

because the initial operation state of the transformer causes 

transient vibration signals. It is certainly important to 

acquire better sensory data and thus improve the 

performance of power transformer health diagnostic by 

optimizing the number of measure points and the allocation 

of the sensors. For the study regarding the sensor network 

optimization, readers are advised to the reference (Wang et 

al., 2010). 

2.3. Data Pre-Processing 

Given the fundamentals of the transformer vibration (see 

Section 2.1), the use of the spectral response is strongly 

recommended for health metrics against the mechanical 

faults in the transformers. The vibration signals are thus 

processed using a fast Fourier transform (FFT). Fig. 3 

displays a spectral response of a vibration signal, which has 

harmonic frequencies at every 120 Hz. The amplitudes at 

these harmonic frequencies are significantly higher (more 

than ten times) than those at the other frequencies. As 

introduced in Section 2.1, the fundamental frequencies of 

both core and winding vibrations are twice the AC 

frequency (60Hz), which is quite consistent with our 

observation in Fig. 3. Since the harmonic frequencies 

remain constant at every 120 Hz, the amplitudes at the 

harmonic frequencies could imply a degree of health state 

against the mechanical faults in the power transformers. 

The spectral response amplitudes of the vibration velocities 

at 120 Hz were obtained from the fifty-four transformers. 

We computed the mean and maximum amplitudes of the 

vibration velocities measured by all sensors installed on 

each transformer and plotted these two quantities for all 

fifty-four transformers in Fig. 4 and Fig. 5, respectively. 

  
(a) Single-phase main transformer (b) Triple-phase main transformer 

Figure 2. Sensor locations (marked by red circles with 

numbers) on the main transformers 

 

Figure 3. Frequency spectral signal of a vibration velocity 

(YK) 

 
Figure 4. Mean amplitudes of spectral responses at 120 Hz 

for fifty-four transformers 

 
Figure 5. Maximum amplitudes of spectral responses at 120 

Hz for fifty-four transformers 
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Two observations can be made from the two figures. Firstly, 

both quantities exhibit large variations among different 

transformers. Specifically, the mean amplitudes of the 

vibration velocities have a wide range of variation from 1.43 

mm/sec to 18.87 mm/sec and the maximum amplitudes from 

5.8 mm/sec to 136.43 mm/sec. It is believed that the aging 

effect of the transformers and local resonance of the 

transformer frame primarily causes the variation in the mean 

and maximum amplitudes. Secondly, the maximum velocity 

amplitude of each transformer is in general far greater than 

the mean velocity amplitude of that transformer. This 

observation can be attributed to the fact that, among more 

than forty measurement points selected for each transformer, 

two or three points at the upper part (closer to the top) of the 

transformer wall typically gave much larger velocities than 

the others. 

3. HEALTH METRICS AND GRADE SYSTEM 

This section presents the copula-based statistical health 

grade system against mechanical faults of power 

transformers. 

3.1. Health Metrics 

The frequency spectral signals from multiple sensors are 

employed to monitor the health condition of the power 

transformers. Two scalar health metrics are proposed in this 

study: (1) root mean square (RMS) and (2) root mean square 

deviation (RMSD). Their definitions and physical meanings 

are given as follows: 

RMS – The RMS is the quadratic measure of the vibration 

mean velocities measured at every 2.5 Hz in the frequency 

range of 2.5-2000 Hz. The RMS metric can be defined as 

 

1 2
2000Hz

2

2.5Hz

, 1, ,54i f

f

RMS i


 
  
 
  (4) 

where f is the mean of the vibration velocity measured 

from all sensors at a frequency f. It is generally known that 

measured vibration velocities in the transformers become 

greater as their health state degrades over years. This metric 

is thus a useful health metric for transformer health 

monitoring. However, the magnitudes of the mean velocity 

also vary depending on the operating condition, the 

transformer capacity and manufacturer. The RMS metric 

may fail to classify a health condition of different 

transformers experiencing mechanical degradation. This 

underscores the need of another health monitoring metric. 

RMSD – The RMSD is the quadratic measure of the 

vibration deviation velocities measured at every 2.5 Hz in 

the frequency range of 2.5-2000 Hz. The RMSD metric can 

be defined as 

 

1 2
2000Hz

2

2.5Hz

, 1, ,54i f

f

RMSD i


 
  
 
  (5) 

where f is the standard deviation of the vibration velocity 

measured from all sensors at a frequency f. The same mean 

velocities could indicate different health conditions if the 

vibration measurements come from different transformers 

under random operating conditions. The undesirable 

situation above can be avoided by using both the RMS and 

RMSD since the randomness in operating conditions and the 

difference in transformers could affect the deviation of the 

vibration velocity.  

In cases where we have mechanical defects (for example, 

winding deformations or loosened clamps in the core), the 

magnitudes of winding or core vibration typically increase 

because, as aged, electrodynamic forces (for winding) 

generally grow; mechanical constraints (for core) loosen, 

and structural strength becomes weaker. Moreover, the 

winding or core vibration typically becomes more stochastic 

and, to some degree, has variation over different transformer 

samples. For the very reason, the magnitude (mean) and 

randomness (standard deviation) of tank vibration amplitude 

increase. The RMS and RMSD measures are capable of 

capturing the transformer health degradation and its 

variation. For the power transformers we investigated (i.e., 

step-up transformers used in power plants), the mean and 

deviation of the vibration velocity at 120 Hz was generally 

observed to become higher as transformers get older. 

The vibration signals measured from the fifty-four 

transformers in June 2006, February 2007, and August 2007 

were processed to acquire a populated RMS and RMSD 

dataset as shown in Fig. 6 (see Table B in Appendix). Since 

older transformers generally have larger RMS and RMSD 

values than newer ones, the two health metrics are highly 

correlated in a positive sense (see Fig. 6) with a Pearson’s 

 
Figure 6. Scatter plot and histograms of RMS and RMSD 

data (from fifty-four transformers in October 2006, February 

2007, and August 2007).  
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linear correlation coefficient ρ being 0.9161. The 

transformers with a relatively good health condition are 

located at the lower left corner and the others at the upper 

right corner. 

3.2. Copula-Based Statistical Health Grade System 

As shown in Fig. 6, a strong statistical correlation exists 

between the proposed health metrics, RMS and RMSD. In 

what follows, we intend to exploit this correlation using a 

joint statistical model, copulas. We start with a brief 

introduction on copulas. Next, we present three popular 

types of copulas. Finally, we detail the procedures to 

construct an appropriate copula for dependence modeling 

based on available data. 

3.2.1. Introduction of Copulas 

In statistics, a copula is defined by Roser (1999) as “a 

function that joins or couples multivariate joint distribution 

functions to their one-dimensional marginal distribution 

functions”, or “multivariate distribution functions whose 

one-dimensional margins are uniform on the interval [0,1]”. 

In other words, a copula formulates a joint cumulative 

distribution function (CDF) based on marginal CDFs and a 

dependence structure. In the following description, we will 

see that copulas allow one to decouple the univariate 

marginal distribution modeling from multivariate 

dependence modeling.  

Let x = (x1, x2,…, xN) be an N-dimensional random vector 

with real-valued random variables, F be an N-dimensional 

CDF of x with continuous marginal CDFs F1, F2,…, FN. 

Then according to Sklar’s theorem, there exists a unique N-

copula C such that 

 
        1 2 1 1 2 2, ,..., , ,...,N N NF x x x C F x F x F x  (6) 

It then becomes clear that a copula formulates a joint CDF 

with the support of separate marginal CDFs and a 

dependence structure. This decoupling between marginal 

distribution modeling and dependence modeling is an 

attractive property of copulas, since it leads to the 

possibility of building a wide variety of multivariate 

densities. In real applications, this possibility can be enabled 

by employing different types of marginal CDFs or 

dependence structures. Based on Eq. (6) and under the 

assumption of differentiability, we can derive the joint 

probability density function (PDF) of the random vector x, 

expressed as  

 

        

 

1 2 1 1 2 2

1

, ,..., , ,...,N N N

N

i

i

f x x x c F x F x F x

f x


 


 (7) 

where c is the joint PDF of the copula C. The above 

equation suggests that a joint PDF of x can be constructed as 

the product of its marginal PDFs and a copula PDF. The 

PDF formulation in Eq. (7) is useful in formulating a 

likelihood function and estimating the parameters of 

marginal PDFs and a copula, as will be discussed later. 

3.2.2. Copula Types 

Various general types of dependence structures can be 

represented, corresponding to various copula families. In 

what follows, we will briefly introduce four popular copula 

types, that is, Gaussian, Clayton, Frank, and Gumbel. More 

detailed information on copula families can be found in 

(Roser, 1999). 

Let ui = Fi(xi), i = 1, 2,…, N, an N-dimensional  Gaussian 

copula with a linear correlation matrix Σ is defined as 

 

 
   

 

1 1

1 2

1 2 1

, ,
, , , |

, |
G N N

N

u u
C u u u

u

 



  
  

 
Σ

Σ
 (8) 

where Φ denotes the joint CDF of an N-dimensional 

standard normal distribution and Φ
−1

 denotes the inverse 

CDF of a one-dimensional standard normal distribution. It is 

noted that Σ is a symmetric matrix with diagonal elements 

ρii being ones, for i = 1, 2…, N, and off-diagonal elements 

ρij being the pair-wise correlations between the pseudo 

Gaussian random variables zi = Φ
−1

(ui) and zj = Φ
−1

(uj), for i, 

j = 1, 2…, N and i ≠ j. 

Another popular copula family is an N-dimensional 

Archimedean copula, defined as 

 

   1

1 2

1

, , , |
N

A N i

i

C u u u u  



 
   

 
  (9) 

where Ψα denotes a generator function with a correlation 

parameter α and satisfies the following conditions:  

 

   

   

0
2

2

1 0;   lim ;   

0;   0

u
u

d d
u u

du du

 

 


    

   
 (10) 
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Commonly used Archimedean copulas are Clayton, Frank 

and Gumbel copulas which are summarized in Table 2. To 

exemplify the diversity of copulas, we present the scatter 

plots of the above four copulas with Kendall’s tau (τ) 

coefficients being 0.70 in Fig. 7, where we can observe 

significant difference in dependence patterns modeled by 

different copulas.  

3.2.3. Fitting Copula Model 

In this section, we aim to determine the most appropriate 

copula model C with marginal CDFs F to model the 

dependence of a random vector x. Suppose that we have M 

independent random samples from a multivariate 

distribution, {xj = (x1j, x2j,…, xNj), j = 1, 2,…, M}. Let β be 

the vector of marginal distributional parameters and α be the 

vector of copula parameters. The procedure to fit a copula 

model is detailed as the following three steps:  

Step 1 (Parameter Estimation): The aim of this step is to 

estimate the parameters β and α. This can be done with the 

maximum likelihood method (MLE). According to Eq. (7), 

the log-likelihood function to be maximized is  

 
   
 

 

1 1 2 2

1 2

1

1 1

; , ; ,...,
, ,..., log

; ;

log ;

M
j j

N

j N Nj

N M

i ij

i j

F x F x
f x x x c

F x

f x



 

 
 
 
 







β β

β α

β
 

(11) 

Since we generally do not have closed form solutions to 

globally maximize the above likelihood function, the 

simultaneous estimation of the marginal distributional and 

copula parameters is computationally expensive. To 

alleviate the computational burden, we employ a two-stage 

estimation method called the inference functions for 

margins (IFM) method, proposed by Joe (1997). The IFM 

method decomposes the estimation of the parameters β and 

α into two steps. In the first step, it estimates the marginal 

distributional parameters β by maximizing the second log-

likelihood term in Eq. (11). With the estimated parameters β 

and thus known marginal distributions, the second step then 

estimates the copular parameters α by maximizing the first 

log-likelihood term in Eq. (11). 

Step 2 (Goodness-of-Fit Test): In this step, we intend to test 

whether a specific copula model with estimated parameters 

from Step 1 fits the samples with sufficient accuracy. For 

this purpose, we propose to employ the Kolmogorov-

Smirnov (K-S) distance (Chakravartiet al., 1967), expressed 

as  

 
KS e n nD F F dF   (12) 

where Fe denotes the empirical CDF derived from the 

random samples, and Fn denotes the hypothesized CDF. We 

note that, to reduce the influence of outliers on the K-S 

distance and reflect the overall fitting quality, we computed 

an average absolute difference instead of a maximum one. 

When we test the fit of a specific marginal distribution, both 

Fe and Fn are univaraite CDFs with the inputs being random 

variables xi, i = 1, 2,…, N. In contrast, when we test the fit 

of a specific copula, Fe and Fn respectively become an 

empirical joint CDF and a hypothesized copula both of 

which take vectors of marginal probabilities u as inputs.  

Family  
Generator  

Ψα(u) 
Bivariate copula CA(u1,u2|α) 

Parameter 

space 

Clayton    α > 0 

Frank   α > 0 

Gumbel   α > 0 

Table 2. Summary of three Archimedean copulas 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Scatter plots of various copulas with Kendall's tau 

(τ) coefficients being 0.70: (a) Gaussian; (b) Clayton; (c) 

Frank; and (d) Gumbel.  
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Step 3 (Goodness-of-Fit Retest): To decide whether the 

distance measure in Eq. (12) provides sufficient evidence on 

the good fit of the copula, we retest the good-of-fit of the 

copula model by generating random samples of the size M 

under the assumption that the null hypothesis of an accurate 

fit is true (Kole et al., 2007). We repeatedly execute the 

retesting process K times to generate K sets of random 

samples and, correspondingly, obtain K distance measures 

by executing the aforementioned Steps 1 and 2. For each 

retest, we generate random samples with two steps: (i) 

generate sample pairs (u1j, u2j) of [0, 1] uniformed 

distributed random variables u1j and u2 according to the 

copula model with the parameters α estimated in Step 1; and 

(ii) transform the sample pairs (u1j, u2j) to observation pairs 

(x1j, x2j) with the inverse marginal CDFs F1
−1

 and F2
−1

. 

Finally, we construct a probability distribution of the 

distance measure DKS and determine the p-value, or the 

probability of observing a distance measure at least as 

extreme as the value obtained in Step 2 under the 

assumption of an accurate copula fit. 

3.2.4. Building Copula-Based Statistical Health Grade 

System  

In this section, we apply the aforementioned copula model 

to representing the joint distribution of the RMS and RMSD 

metrics by modeling the dependence between these two. 

Upon the construction of the joint distribution, we then 

define a statistical health grade system based on the joint 

CDF of the two health metrics.  

a) Data Statistics and Marginal Distributions 

Table 3 presents summary statistics on the populated RMS 

and RMSD data as well as the types and parameters of fitted 

marginal distributions. Compared to the RMS, the RMSD 

yields a larger mean value and a much larger variance. 

Kurtosis values are very high for both metrics, indicating 

that a large portion of the variance is contributed to by 

infrequent extreme deviations. This can also be observed 

from the histograms of the two metrics in Fig. 8, where we 

observe a considerable amount of extreme data for any of 

the two metrics. Results from the K-S test suggest that the 

RMS and RMSD data be statistically modeled with the 

Weibull and gamma distributions, respectively. Parameters 

of the fitted marginal distributions are given in Table 3 and 

their plots are presented in Fig. 8. 

b) Copula Model 

We used the aforementioned procedure to identify an 

appropriate copula model from the four candidates, that is, 

Gaussian, Clayton, Frank and Gumbel copulas. Table 4 

summarizes the copula fitting results based on the populated 

RMS and RMSD data. Both the correlation estimate in 

Gaussian copula and α estimates in three Archimedean 

copulas indicate a strong correlation between the RMS and 

RMSD. Regarding the retest, we generated 10,000 sets (i.e., 

K = 10,000) of random samples under the null hypothesis of 

an accurate copula fit and ran each of the 10,000 sets 

through the aforementioned Step 1 (Parameter Estimation) 

and Step 2&3 (Goodness-of-Fit Test & Retest) to obtain 

10,000 distance measures. It can be observed that any of the 

four copulas cannot be rejected under the commonly used 

significance level 0.05. This can be partially attributed to the 

fact that we only have a relatively small number of data. We 

conjecture that, as we have more data, the p-values yielded 

by different copulas will become more distinctive and an 

appropriate copula model can be selected with more 

confidence. Out of the four copulas, Gaussian copula 

produced the smallest distance measure DKS and the largest 

p-value, which offers us a supporting evidence of the best fit 

provided by Gaussian copula. The histogram of DKS of 

Gaussian copula is plotted with the estimated DKS in Fig. 

9(a). To verify the accuracy of fit, we synthetically 

generated 1000 random samples from the fitted Gaussian 

copula model and plot these samples together with the raw 

Health 

metric 

Data statistics 

Mean Stda Skewness Kurtosis Minimum Maximum 

RMS 6.57 3.81 1.66 7.99 1.51 25.68 

RMSD 8.27 6.64 1.64 6.04 1.20 37.63 

Health 

metric 

Fitted marginal distribution   

Type Parametersb   

RMS Weibull 1 = 7.42, 2 = 1.84   

RMSD Gamma 3 = 1.78, 4 = 4.64   

a Standard deviation 
b  Scale and shape parameters for Weibull and gamma distributions 

Table 3. Summary of data statistics and fitted marginal 

distributions 
 

 
(a) 

 
(b) 

Figure 8. Histograms and fitted distributions of RMS (a) and 

RMSD (b). 
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data in Fig. 9(b). We can observe a generally accuracy 

representation of the raw data, especially in the lower-left 

region. The synthetic samples were generated by following 

the same steps we used to generate the 10,000 random sets 

for the retest: first drawing uniform samples from the copula 

and then transforming these samples back to the original 

Weibull and gamma samples using the inverse CDFs of 

these distributions. 

c) Health Grade System 

We quantify the health condition for a specific transformer 

unit (i.e., a specific RMS and RMSD pair) by the proportion 

of the population with larger RMS and RMSD values than 

that unit. Let x1 and x2 denote the health metrics RMS and 

RMSD, respectively. Let C(F1(x1), F2(x2)) denote the copula 

model we derived from the previous section with F1(x1) and 

F2(x2) being the marginal CDFs of of x1 and x2. 

Mathematically, the health condition h of an health metric 

pair (x1d,x2d) can be defined in terms of marginal CDFs and 

a joint CDF or copula, expressed as 

 
   1 2 1 1 2 2, Pr ,d d d dh x x x x x x  

 

(13) 

This can be further derived as a function of the marginal 

CDFs of x1 and x2 and the copula, expressed as  

      
     

    
        

1 2 1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 2 2 1 1 2 2

, Pr ,

Pr Pr

Pr ,

1 ,

  

   

  

   

d d d d

d d

d d

d d d d

h x x u F x u F x

u F x u F x

u F x u F x

F x F x C F x F x

 (14) 

It is noted that, in the above equation, we define the health 

condition of a transformer unit as the probability of a joint 

event rather than a union one. The aim of this definition is to 

achieve a certain level of conservativeness since the 

mechanical failure of a power transformer causes significant 

monetary and societal losses and is rather undesirable. 

Based on the health condition defined in Eq. (14), we 

further defined three health grades which, from the 

perspective of probability, can be mapped to three ranges in 

a zero-mean normal distribution, that is, below 1.0, 

between 1.0 and 2.0 and above 2.0, as shown in Table 5. 

Table 6 relates the three health grades to suggested 

maintenance actions. Experts’ experience and historic 

information on inspection and maintenance of the power 

transformers over years were employed to derive the 

relationship. Fig. 10 visualizes the three health grades in the 

RMS-RMSD map, where the boundaries were identified by 

equating the health condition in Eq. (14) to the two critical 

health conditions in Table 5 and deriving the corresponding 

Copula 

type  

Parameter estimationa   Test and retest 

Point 

estimate 

Standard 

error 

95% confidence 

intervalb  
DKS estimate p-valuec 

Gaussian 0.930 0.012 (0.906, 0.955)   0.0300 0.3684 

Clayton 6.035 0.688 (4.685,7.385) 
 

0.0330 0.3216 

Frank 15.095 1.384 (12.382,17.809) 
 

0.0324 0.2916 

Gumbel 3.484 0.194 (3.103,3.864)   0.0326 0.2642 
a Linear correlation coefficient for Gaussian, α in Table 2 for the rest  
b Point estimate ± 1.96standard error  
c With 10,000 simulations  

 

Table 4. Copula fitting results 

 
(a) 

 
(b) 

Figure 9. Histograms of DKS (a) and scatter plot (b) of 

Gaussian copula. 

 

Health Grade  A B C 

Health condition  h > 0.16 0.02 < h ≤ 0.16 h ≤ 0.02 

-level of standard 

normal distribution 
z < 1.0 1.0 ≤ z < 2.0 z ≥ 2.0 

Table 5. Definition of three health grades 
  

Health 

Grade 
Health Conditions and Suggested Maintenance Actions 

Grade A 
(Healthy) 

Excellent health condition – Health condition is excellent; 

transformer requires least frequent inspection and 

maintenance. 

Grade B 

(Warning) 

Transitional health condition – Health condition has partial 

degradation; transformer requires more frequent inspection 

(e.g., in-situ monitoring) to obtain health metric data that 
can be related to health condition; condition-based 

maintenance (CBM) should be considered on the basis of 

remaining useful life (RUL) prediction by health 
prognostics. 

Grade C 

(Faulty) 

Critical health condition – Health condition is close to 

failure due to mechanical faults in a component level; field 
engineers need to identify fault type, location, and severity; 

transformer requires an immediate replacement of faulty 

mechanical components to avoid entire transformer failure 
if they can be identified. 

Table 6. Maintenance actions on health grades 
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joint probability contours. The transformers that are 

classified into Grade A turned out to be relatively newer 

transformers (average life about 6 year-old), whereas those 

with Grades B and C were relatively older transformers 

(average life about 30 year-old). To verify the feasibility of 

the proposed health grade system, we looked at the oldest 

transformers (UJ1, YK1) more closely. The health grades of 

the transformers were identified with “Grade C” which 

indicates that inspection and maintenance actions must be 

executed immediately. It has been confirmed by the experts 

that the transformers’ health conditions were critical and 

they were recently replaced with new transformers. This 

indicates that the proposed grade system properly defines 

the health condition of the transformers against mechanical 

faults. Finally, we note that the boundaries (1.0σ and 2.0σ 

standard normal lines) adopted in this paper might not be 

directly applicable for all practical use cases and certain 

customizations need to be made to satisfy a particular need. 

It is noted, however, that the procedure to build a statistical 

health grade system is general in the sense that it is directly 

applicable to all use cases. Moreover, field experts will 

make a final decision on maintenance while using this 

classification as a reference. 

3.3. Feasibility Study of Health Prognostics 

Prognostics is the discipline of predicting the remaining 

useful lives (RULs) of engineered systems over the lifetime. 

To make the life prognostics useful, a significant amount of 

health condition (RMS and RMSD) data must be acquired 

from a set of homogeneous transformers. Given the limited 

available data sets obtained in June 2006, February 2007, 

and August 2008, this study is intended not to develop a 

rigorous life prognostics model but to conduct a feasibility 

study for the life prognostics. This feasibility study was 

performed with the data sets from the power transformers in 

the WS nuclear power plant. The copula model transformed 

the two-dimensional health metrics (RMS and RMSD) into 

the one-dimensional health condition using Eq. (14) which 

was then used for observing and predicting the health 

degradation in the lifetime of the transformers. The RMS 

and RMSD data from the transformers in the WS plant were 

plotted and sorted by the measured time, as shown in Fig. 

11(a). Note that an older transformer is plotted with a larger 

circle. The vibration measurements were taken from all 54 

transformers in June 2006, February 2007 and August 2007, 

providing totally 3x54 data samples. The health degradation 

of transformer core joints is demonstrated over time in 

Figure 11, in which six same-type (or homogeneous) 

transformers out of 54 are used and indeed shows a clear 

degradation trend. The variation in two health metrics is 

mainly due to different capacities of the transformers and 

randomness in the operation conditions. As the time passed 

from June 2006 to August 2007, the health condition 

metrics became higher. This indicates that the health 

condition degradation can be distinctively observed by 

monitoring the health condition metrics. Generally, the 

linear, exponential, power and logarithmic models are basic 

mathematical models that can be used to extrapolate the 

degradation measurements to the defined failure level in 

order to estimate the failure time. As shown in Fig. 10, the 

health degradation behaves exponentially, increasing slowly 

at the early life of the transformer but rapidly at the end of 

the life. Thus, we used the exponential model to capture the 

transition trend of the health condition and extrapolated the 

exponential model to a failure threshold (h = 0) to obtain the 

remaining useful life. The health prognostics results for the 

six transformer units are graphically shown in Fig. 11(b), 

where the predicted RULs range from below 5 years to 

above 20 years. 

4. CONCLUSIONS  

This paper presented a copula-based statistical health grade 

system against mechanical faults of power transformers in 

nuclear power plants. The vibration signal signatures 

acquired from the power transformers were used to define 

two health metrics (RMS and RMSD). The populated 

metrics data from fifty-four power transformers were used 

to identify an appropriate copula model, based on which a 

 

Figure 10. Statistical health grade map. 

 

 
(a) 

 
(b) 

Figure 11. Health degradation history (a) and predicted RULs 

(b) for power transformers (WS).  
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statistical health grade system is built with corresponding 

health conditions and suggested maintenance actions. The 

copula-based statistical health grade system can be useful 

for making maintenance decisions, while monitoring the 

health conditions of the power transformers. It is noted that 

uncertainties in manufacturing conditions, operation 

conditions and measurements further propagate to 

uncertainties in the two health metrics. Thus, a health grade 

system should not only be characterized by its diagnostic 

accuracy but also by its ability to perform the diagnostics in 

a statistical manner. In this light, the proposed statistical 

health grade system offer researchers and industrial 

practitioner a powerful tool to systematically capture the 

aforementioned uncertainties and build statistical power in 

defining health grades. To investigate the feasibility of the 

proposed statistical health grade system for health 

prognostics, we established an exponential model to capture 

the transition trend of the health condition and predicted the 

remaining useful life by extrapolation. Finally, we conclude 

that the copula model is capable of characterizing the 

statistical dependence between the two health metrics, and 

that the health condition defined based on this model is an 

attractive health measure suitable for health prognostics. 

APPENDIX 

Location Unit Type Manufacture 
Voltage 

(High/Low, kV) 

Capacity 

(MVA, at 

55oC) 

KORI 1 3 phase hyosung 362/22 750 

 
2 3 phase hyosung 362/22 790 

 
3 1 phase hyosung 362/22 385 * 3 

4 1 phase hyosung 362/22 385 * 3 

YK 

1 1 phase hyosung 362/22 403 * 3 

2 1 phase hyosung 362/22 403 * 3 

3 1 phase hyosung 345/20.9 353.3 * 3 

4 1 phase hyosung 345/20.9 353.3 * 3 

5 1 phase hyosung 345/20.9 353.3 * 3 

6 1 phase hyosung 345/20.9 353.3 * 3 

WS 

1 3 phase Hyundai 362/26 840 

2 1 phase Hyundai 345/22 277 * 3 

3 1 phase Hyundai 345/22 277 * 3 

4 1 phase Hyundai 345/22 277 * 3 

UJ 

1 1 phase hyosung 362/22 372.8 * 3 

2 1 phase hyosung 362/22 372.8 * 4 

3 1 phase hyosung 345/20.9 353.3 * 3 

4 1 phase hyosung 345/20.9 353.3 * 3 

5 1 phase hyosung 345/20.9 353.3 * 3 

6 1 phase hyosung 345/20.9 353.3 * 3 

Table A. Specifications for transformers in KORI, YK, UJ, 

and WS. 

Location Unit Phase 04/2006 02/2007 08/2007 
   RMS RMSD RMS RMSD RMS RMSD 

YK 1 A       

  B   3.4935 3.7586 4.4083 4.7433 

  C 10.8184 21.2638 9.6774 15.2434 11.9149 18.7117 

 2 A 6.1644 8.0906 5.8147 7.4488 7.2082 9.1807 

  B 8.2268 18.4866 6.2618 14.3723 7.7437 17.7022 

  C 7.0891 11.9838 5.8223 7.8991 7.2067 9.7351 

 3 A 3.5302 2.6278 2.9425 2.3837 3.7121 3.0416 

  B 8.7348 22.4859 4.4078 7.0695 5.4724 8.7757 

  C 6.2146 8.1801 5.7957 3.7542 7.4235 4.8832 

 4 A 7.0048 7.9036 6.3626 9.68 8.0392 12.0284 
  B 5.8535 5.2815 4.4444 3.4313 5.5571 4.295 

  C 4.5239 3.5049 3.3184 3.4511 4.1653 4.2948 

 5 A 8.0345 6.1175 3.3179 3.0496 4.2151 3.8115 
  B 6.4082 6.0413 3.8493 4.6327 4.8549 5.7959 

  C 10.2612 15.3348 4.6928 6.6165 5.7945 8.1362 

 6 A 6.2767 6.7398 5.002 6.2901 6.1577 7.7343 

  B 6.3487 8.3477 6.9783 7.6711 8.5739 9.4235 
  C 6.3093 6.2303 6.2191 6.3663 7.6363 7.8104 

UJ 1 A       

  B   25.683 37.6344   
  C 19.3516 28.7425 14.738 23.756 8.4941 14.8265 

 2 A 9.9755 19.0113 12.9438 23.0255 14.619 22.7439 

  B 11.0612 15.9743 8.6555 15.8371 11.9566 18.0058 

  C 14.3538 22.8637 9.2198 15.9236 7.2417 8.1277 

 3 A 6.1895 5.9806 10.0143 11.3763 6.5462 6.4366 

  B 11.4765 12.6484 13.4102 13.199 9.7375 10.0747 

  C 9.7347 17.1477 6.8758 9.2086 6.8016 6.0879 

 4 A 7.1267 12.411 6.1393 6.0104 7.8248 12.9405 
  B 4.6828 3.7881 6.0354 5.198 6.9082 6.2445 

  C 3.0354 3.976 6.1473 4.7841 6.8478 7.8904 

 5 A 6.8923 7.2407 5.1924 5.2341 6.7011 8.7737 
  B 11.0317 10.2376 9.4405 7.1195 10.4389 9.6835 

  C 5.7305 5.792 6.0117 6.5637 5.8994 5.8661 

 6 A 6.195 6.8874 7.1765 7.1809 7.5634 8.1893 
  B 6.1051 7.9166 5.114 4.7147 5.8188 10.0799 

  C 6.4567 6.1449 6.3587 6.4674 6.8919 7.2125 

WS 1        

 2 A 1.5119 1.2139   2.2402 1.702 
  B     2.8317 2.6835 

  C 1.9431 1.3812 2.1804 1.4858 2.3866 1.9573 

 3 A 2.0948 1.5776 2.0962 1.6223 2.3091 1.8932 

  B 1.8853 1.2124 1.8178 1.2107 2.1066 1.3798 
  C 1.7767 1.207 1.8101 1.3677 1.9125 1.3735 

 4 A 2.3797 2.9213 2.3555 2.0227 2.3555 2.0227 

  B 2.0295 2.0761 2.4585 2.2441 2.4585 2.2441 
  C 1.9772 1.5718 2.2301 1.7756 2.2301 1.7756 

Table B. RMS and RMSD for all transformers in YK, UJ, 

and WS. 
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