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ABSTRACT 

This present work follows our earlier research efforts on 

fault diagnosis and prognosis solutions considering 

statistical and physics based approaches. In-service 

performance analysis and detection of any malfunctioning in 

an operating small sized gas turbine engine using artificial 

neural network approach is the central theme of this work. 

The measured engine operating and performance parameters 

are used to train two neural network models, namely back 

propagation and generalized regression. Following the 

training and validation of the neural network model, 

simulation results for test data corresponding to various 

engine usage stages are found to be close by two models. 

The analysis identifies an anamoly in the simulated and 

measured data collected 17 months after the engine 

overhauling which may be attributed to deliberate 

adjustments in the operating parameters. A threshold for 

anomaly detection in terms of the probability levels for 

variation of the rated power capacity of the engine is also 

studied. 

1. INTRODUCTION 

Gas turbine (GT) configurations typically include single or 

multi-shafts, closed loop, simple or combined cycle, 

combined heat and power etc. and is typically used to 

generate electrical power. In spite of wide variations in the 

design, complexity, applications, operating conditions etc. 

the failure mechanisms are generally experienced to be 

identical. The GT life limiting issues of concern are low 

cycle fatigue (LCF), high cycle fatigue (HCF), creep, 

oxidation, corrosion, foreign object damage, etc. For 

effective and efficient engine health monitoring (EHM), a 

host of parameters are usually monitored in modern GT that 

include speed, power, gas inlet pressure and temperature, 

exhaust and operating pressure and temperature, gearbox, 

journal and thrust bearing vibration and temperature 

(Clifton, 2006; Hoeft et. al., 2003). 

On-line condition based monitoring of plant operation is 

extremely important for plant safety, reliability and 

availability and maximization of the power output and 

lowering life cycle costs. In recent years, with the rapid 

development of condition monitoring and forecasting, 

information processing, fault detection and artificial 

intelligence technology, it has been possible and feasible to 

monitor and forecast equipment condition and assess its 

health in real-time. It is well recognized that optimized 

maintenance practices within an industrial setting require 

the correct blend of condition based maintenance (CBM) 

strategies. (Hoeft et. al, 2003; Sobanska & Szczepaniak, 

2006, Fast, 2010).  

With usage, the health of the GT components deteriorates 

and affects the performance of the engine. The continuous 

degradation in performance and its rate plays a crucial role 

in establishing the time intervals between major overhaul 

(Clifton, 2006; Fast, 2010; Fast & Palme, 2010). The 

sophisticated technologies being incorporated into new gas 

turbines allow operations at higher pressures and 

temperatures with higher efficiencies. The trend of 

preventive maintenance at regular intervals is being replaced 

by CBM techniques to further reduce the maintenance costs. 

This makes intelligent and robust engine health and 

performance monitoring techniques that are sensitive to 

changes in the engine condition important for higher safety, 

reliability and availability of the units (Angeli & 

Chatzinikolaou, 2004). The capability to detect impending 

faults from the current engine conditions and issue early 

warning with minimum false positive is also desirable. 

_____________________ 
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The malfunctioning in a GT can occur from component 

physical damage, changes in operational control and 

settings, faults in data monitoring devices, calibration etc. 

Some of the faults will unavoidably occur in an engine due 

to wear and/or malfunction of some components affecting 

system performance, as well as their combinations. Some of 

the malfunctioning can be rectified by taking appropriate 

corrective actions and requires fault diagnosis solution. Due 

to the associated complexity, evolutionary Artificial 

Intelligence techniques (Russel & Norvig, 1995) are being 

increasingly applied for diagnosis in GT.  

Our current research attempts to investigate the feasibility of 

developing performance based GT-EHM system using 

operating data driven artificial neural network (ANN) 

modeling and techniques. The ANN models are developed 

such that it can represent the basic working of a freshly 

rebuilt GT and predict the critical performance metrics like 

the output power or the driven unit load. Anomaly detection 

is performed by comparing the predicted behavior of the 

freshly rebuilt GT obtained through trained ANN, with the 

actual measurements during the operation. The work related 

to the ANN as reported here follows our earlier research 

activities on diagnostic and prognostics solutions using 

statistical and physics based approach (Saxena, et.al., 2011; 

Kumar et.al., 2011). This work using ANN approach is our 

first attempt to look for an alternative solution for anomaly 

detection. 

2. ANN FOR ANOMALY DETECTION 

Anomaly detection methods are traditionally based on limit 

value checking of key measurable parameters without 

simulating the human reasoning activity. Numerous 

methods of anomaly detection leading to fault diagnostics 

have been developed and applied effectively to identify the 

machine/engine faults at an early stage using different 

performance parameters such as current, voltage, speed, 

temperature, and vibrations (Russel & Norvig, 1995; Zhu, 

2009; Kumara et.al., 2012). A brief discussion is made in 

this section on ANN approach for anomaly detection. In the 

case of very complex time-varying and non-linear systems, 

where reliable measurements are very complicated and valid 

mathematical models do not exist, a number of different 

methods have been proposed by researchers. These methods 

come from the area of Artificial Intelligence and allow the 

development of new approaches to anomaly detection in 

dynamic systems like the GT. 

Briefly, artificial neural networks (ANN) are massively 

parallel-interconnected networks that have the ability to 

perform pattern recognition, classification and prediction. A 

wide variety of engineering problems can be solved using 

ANN which is especially useful in situations where the data 

volumes are large and the relationships among variables are 

unclear or hidden. The network is trained to learn from the 

examples and forms an internal representation of the 

problem (Russel & Norvig, 1995). For anomaly detection, it 

is needed to relate the measurement data to the ideal 

performance, and distinguish between normal and abnormal 

states. Input vectors are introduced to the network and the 

weights of the connections are adjusted to achieve specific 

goals. An adaptive algorithm automatically adjusts the 

inputs weightage to minimize the mean square of the error 

between the actual output value and the desired target value. 

A significant feature of neural networks is that an 

approximate model may be adequate to internally map the 

functional relations that represent the process. A recent 

work classified between normal and abnormal vibration data 

for a large turbine (210 MW) in a power plant using 

artificial neural networks (ANN). Self-organization map is 

trained with the normal data and simulated with abnormal 

condition data from a test rig (Patel & Prajapati, 2011; 

Samhouri et. al., 2009). Different unbalanced conditions are 

introduced on test rig at laboratory and vibration data is 

collected to simulate the network.  

The choice of network architecture is dependent on the 

problem. Classification, linear or non-linear problems, with 

or without underlying system dynamics guides the choices 

of network composition and the topology. A single 

feedforward network describes a simple mapping network 

that can be used in classification or for mapping of simple 

input output functionality. It is defined through a single 

layer of neurons (Fast, 2010; Russel & Norvig, 1995). 

Hence, the knowledge storage capacity is restricted and only 

simple logic relations can be mapped. An extension of this 

is the multi-layer feedforward network, also found as multi-

layer perceptron (MLP). This network architecture is 

defined through a minimum of one hidden layer of neurons. 

The number of hidden layers can be increased depending on 

the problem. However, a MLP with three hidden layers is 

sufficient to map every continuous function by adding a 

certain number of neurons to meet required complexity 

(Riad et.al, 2010; Sprecht, 1991; Kaminski, 2010). 

2.1. Model Selection 

Back propagation (BP) algorithm is a steepest descent 

algorithm, in which the performance index is the mean 

square error (Russel & Norvig, 1995; Fast & Palme, 2010). 

It can be used to train multilayer neural networks. Based on 

the previous experience, a three-layer BP network, with tan-

sigmoid activation function in the hidden layer and linear 

activation function in the output layer has been considered 

in this work. The training and simulation work is performed 

using MATLABTM and utilizing its NN toolbox functions. 

As observed by many researchers, the BP model can 

approximate virtually any function to any degree of 

accuracy, provided sufficient hidden units and training sets 

are available. The learning rate and the momentum are two 

important parameters for training the network successfully. 

Levenberg-Marquardt (LM) algorithm has been used for 

network training, validation and testing as it finds the best 
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weights by minimizing the function. The ANN model 

consists of three layers of units: a layer of inputs is 

connected to a layer of hidden units, which is connected to a 

layer of output units. The activity of the input units 

represents the raw information that is fed into the network. 

The activity of each hidden unit is determined by the 

activities of the input units and the behavior of the output 

units depends on the activity of the hidden units and the 

weights between the hidden and output units. Due to the 

availability of a large number of training data, the number of 

neurons in the hidden layer is considered as 20 and 10 and 

validation of the model is done with 20 percent of the input 

data. In order to check the consistency of results, a 

generalized regression neural network (GRNN) modeling is 

also implemented. However, the input-output variables are 

kept the same as with the back propagation neural network 

(BPNN).  

For most engineering problems, it is difficult to know 

beforehand how large and complex a neural network should 

be for a specific application. Besides the input-output 

variables, the optimum number of hidden units depends on 

several other factors, like number of training cases, noise in 

the targets, complexity of the function or classification, 

network architecture, type of activation function, training 

algorithm, and regularization. A decent performance of a 

ANN model may be obtained by setting the number of 

hidden layers equals one as more hidden layers are generally 

harder to train. Secondly, the thumb rules available only 

relate the number of neurons (N) in hidden layer with size of 

inputs and output variables, ignoring other factors. (Berry & 

Linoff, 1997, Boger & Guterman, 1997).  These rules are 

generic and provide only a starting guide. Ultimately, the 

selection of architecture for neural network analysis will 

come down to trial and error. Furthermore, a rough 

approximation can also be obtained by the geometric 

pyramid rule. For the simple three layer network as 

considered in our work, the number of neurons in hidden 

layer was first set at square root of m x n with n input and m 

output neurons, then increasing the number of nodes to 

achieve best fit. Most of the engineering analysis suffers 

from limited available data for analysis, thus restricting to 

small number of neurons in the hidden layer as offered by 

thumb rules and pyramidal rule. The risk of over-fitting 

tends to be more in such situations. Over fitting makes the 

network learn well from training data set, but performs 

poorly for test data set. In the present work, number of 

nodes in hidden layers is chosen by trial and error starting 

from the small number of 5. Under fitting occurs when there 

are too few neurons in the hidden layers to adequately detect 

the signals in a complicated data set. Considering all these 

aspects and availability of large 459 training data set in our 

work, several trials found the optimum node size to be 20 in 

the hidden layer with minimum error. This decision is also 

supported by the default neuron number of 20 adopted in 

MatlabTM NN toolbox functions, namely nntool and nftool. 

Larger numbers of neurons adopted here than estimated by 

thumb rule in the hidden layer give the network more 

flexibility because the network has more parameters it can 

optimize. Besides, 10 neurons in a few cases were also 

considered for comparison of results. A few recent works 

considered similar number of nodes for vibration based 

ANN analysis while training was implemented using Matlab 

toolbox (Samhouri et. al, 2009; Massad, 2009). 

2.2. Variable Selection and Data Acquisition 

Variable selection and data acquisition are the two key 

elements for successful modeling of systems behavior and 

analysis. In ANN approach, the training data is crucial for 

creating a good generalization of network covering a broad 

range of the systems behavior. Maintenance and operational 

data from a small size GT engine was collected over three 

years for a large number of operating and maintenance 

parameters. However, for the current work, eight of these 

parameters are used for training and validation of the ANN 

model as well as testing and simulations. The selections of 

the input and output variables of the ANN have been made 

based on the physical significance, working and 

thermodynamic principles of the gas turbine operation. Four 

input variables selected are the gas pressure, two fuel 

control valve angles and air inlet temperature, while the four 

output variables selected are the speed, load, exhaust and 

operating temperatures. This  approach has been based on 

performance monitoring guidelines prescribed by a typical 

turbine OEM (Hoeft et. al., 2003). Figures 1 and 2 show the 

typical data profile for the four input and output variables 

for the GT, respectively. The measured data has been scaled 

with respect to their mean value as shown in the figures. 

3. MODEL TRAINING AND VALIDATION 

As mentioned earlier, LM algorithm is used for the back 

propagation neural network (BPNN) training and model 

validation and results are displayed in Figures 3 and 4 for a 

four input-one output and four input-four output BPNN 

model, respectively. The training data was selected from 

measurements from the freshly rebuilt turbine operation 

immediately after a major overhaul and over the duration of 

the first three months of steady state operation. In the 

absence of any system model and reference data, it is 

assumed that this performance data would represent the 

healthy state of the turbine. In Figure 3, it is observed that 

the four input-one output BPNN model training yields very 

consistent and converging results. The output considered for 

this plot is the power or the driven unit load.  

When compared with Figure 4, it is evident that the number 

of epochs required to reach the goal during training for the 

four input-four output BPNN model is much higher than 

that required for the four inputs-one output BPNN. It is 

possibly because of the numerically redundant input 

parameter of VGV angle (Figure 1) and the output speed 



Annual Conference of Prognostics and Health Management Society 2012 

 

4 

 

Figure 1: Typical data profile of four Input parameters, Air 

inlet temperature, FV Angle, Gas pressure and VGV Angle 

(data scaled) 

 

Figure 2: Typical data profile of four Output parameters, 

namely load, speed, exhaust and operating temperatures 

(data scaled) 

 (Figure 2), that are usually very consistent for industrial gas 

turbines working under steady state conditions. This 

suggests that the four input-four output model is not suitable 

for the current set of training data and model selection. 

3.1. Generalized Regression Model 

The present work is extended to general regression neural 

network (GRNN) model in view of its fast learning and 

optimal regression convergence abilities avoiding iterative 

procedures. The BPNN model needs a large number of 

iterations to converge to the desired solution. GRNN is 

similar to probabilistic neural network (PNN) is an 

 

Figure 3: Training of the four input - one output (unit load) 

BPNN with Levenberg-Marquardt algorithm 

 

Figure 4: Training of the four input - four output BPNN 

with Levenberg-Marquardt algorithm 

alternative solution when adequate training data are not 

available in real-time situations. This makes GRNN a very 

useful tool to perform predictions and comparisons of 

system performance in practice. It can be used for 

prediction, modeling, mapping, and interpolating or as a 

controller (Sprecht, 1991; Russel & Norvig, 1995; 

Kaminski, 2010).  

Figure 5 shows the comparison of the measured data (target) 

and simulation results (output) obtained using the GRNN 

during its training with a four input-one output model while 

predicting the used data set. The figure suggests that the 

GRNN model may not be predicting like the BPNN model. 

This can be attributed to the choice of the NN model 

architecture and the values of the input and output 

parameters. The figure shows good correlation between the 

target and output suggesting the effective training of the 

GRNN model with the unit load output. 
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Figure 5: Comparison of measured data and simulation 

results using GRNN model using training data set with four 

inputs and one output model 

4. SIMULATION 

The simulation of the engine performance parameters was 

done using the trained four input-one output BPNN as well 

as GRNN models. The different data sets used for the 

simulation are given below: •••• begin: This corresponds to a group of 100 data points 

collected at the 3rd month since overhauling at the 

beginning of the operation period and represents a freshly 

rebuilt engine state as the data is close to the training set. •••• intermediate: This corresponds to a group of 154 data 

points collected between the 17th-18th month of steady 

operation of the turbine and represents the 'intermediate' 

engine state as the data corresponds to the half-way to the 

end of the operation period.  •••• end: This corresponds to a group of 179 data points 

collected between 35-36th months of steady state 

operation and represents the 'used' engine state as the data 

is close to the end of the turbine design life cycle 

prescribed by the OEM.  

The training data, as discussed earlier corresponds to the 

operating data during the first three months of operation and 

represents the performance of a freshly rebuilt system. The 

aim of the simulation study was to predict the engine 

performance for a freshly rebuilt engine, and compare it 

with the measured data to detect any anomaly and 

inconsistent behavior of the engine performance. The 

simulation output and the observed target data using BPNN 

and GRNN models are compared as displayed in Figures 6 

and 7, respectively. 

In Figure 6, it can be observed that the scatter in the plots 

(for the 'begin' and 'end' data sets) increases with usage. This 

is due to the fact that the trained BPNN model predicts the 

unit load for a freshly rebuilt engine. With usage the 

performance of the engine degrades, and the measured 

performance index in terms of the unit load starts deviating 

from this bench line level simulated by the trained BPNN. 

However the maximum spread is observed for the 

‘intermediate’ data which may suggest potential anomaly.  

 

Figure 6: Comparison of the simulated and measured load 

(scaled) data for different data sets using BPNN model 

In Figure 7, a similar trend is observed in the means of the 

simulated load for different test data sets using the GRNN 

model. This suggests the possible applicability of both 

BPNN and GRNN models for engine performance. Also, 

reducing the number of hidden neurons to 10 does not 

change the test data mean significantly. Consistently, the 

simulation results for the 10 neuron hidden layer exhibits a 

marginally lower value than those obtained with 20 neurons. 

The mean of the intermediate data is observed to be much 

lower than the other data sets and will be discussed later. In 

Figure 8, the comparison of the simulated and simulated 

data points using the trained BPNN for the 'end' data set is 

shown. The low correlation reiterates the observation that 

the deviation between the simulated and measured unit load 

is high for the 'end' data set. 

Under idealistic situations, the simulated and target data 

points, respectively A and T, and so the linear fit and A=T 

line should all lie very close. However, for realistic 

situations, analysis shows that the data points in all cases fit 

linearly with high correlation coefficients (over 0.90) as 

typically shown in Figs. 5 and 8. This confirms the 

modeling - simulation output (A) is consistent with target 

data (T) as desired. Mismatch between the linear fit and 

A=T line are also observed and can be explained by the 

difference in the scattering nature of A and T data. Fig. 8 

shows the simulation results have restricted and suppressed 

scatter band (0.95 to 1.05) when the scaled target load varies 

over 0.78 to 1.14. In other words, the simulation results 

seem to be somewhat conservative as compared to target 

data and tend to lie closely around the mean. This point 

needs to be examined further at a later stage with more trials 

and errors with network structure. 
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Figure 7: Simulation results for load demonstrating the 

variations for mean values for different data set using 

GRNN model 

 
Figure 8: Network simulation output and target data (both 

scaled) for the 'end' data set with four inputs and load output 

BPNN model 

5. RESULTS AND DISCUSSION 

Discussion on the qualitative and quantitative analysis of 

results is made here in the light of engine performance 

based anomaly detection in the gas turbine using BPNN and 

GRNN models. The training of the four input-one output 

BPNN model with 459 data points, resulted in fast and 

adequate numerical convergence, as shown in Figure 3. 

However, attempts to train the four input–four output BPNN 

model using the same training data set did not yield similar 

satisfactory training performance (Figure 4). When tested 

after training, two of the four output parameters, namely 

load and EGT yielded better result compared to the speed 

and operating temperature. Hence, a four input-one output 

GRNN model was trained to predict the unit load for further 

testing and simulation. 

The unit load was simulated using the trained BPNN and 

GRNN models for different test cases represented by 

‘begin’, ‘intermediate’ and ‘end’ engine condition, as 

displayed in Figure 6 and 7, respectively. The Figure 5 

shows that the scatter between the simulated and measured 

data points is increasing steadily with the usage. This is 

because the trained BPNN models are simulated the engine 

performance of a freshly rebuilt system whereas the 

performance continuously deteriorates with usage. The low 

correlation of the simulation and measured data for the 

‘'end'’ data case highlights this deviation in Figure 7. Figure 

7 reiterates the observations made in Figure 6 and suggests 

that the GRNN can also be used for the engine performance 

analysis. The effect of a 10 neuron hidden layer was also 

found to be insignificant. 

Figures 6 and 7 throw meaningful lights on the turbine 

performance when the simulated load data is compared with 

the measured value for three data sets, namely ‘begin’, 

‘intermediate’ and ‘end’ data sets collected after 3, 17 and 

35 months of operating after a major overhaul. Ideally, the 

data points should scatter around one for healthy and normal 

state as simulated by the ANN models. The simulated 

results for different test data sets formed clusters that can be 

further analyzed for anomaly detection. Interestingly, the 

predictions are fairly close around one for all cases except 

‘intermediate’ group (17-18 months data). These data points 

can be seen as widely scattered and seems to represent an 

anomaly and potentially indicating an unhealthy state. This 

can be explained by the fact the seasonal variation in the 

energy requirement and lower gas pressure generates lower 

unit load during this time period. This is confirmed by the 

Figure 9 where it is evident that the gas pressure and unit 

load for this data set are well lower than that used for 

training the models. Hence the ANN models trained at peak 

performance may not be able to predict the consistently for 

lower  performance.  

An alternative way to reassess the simulation results is by 

estimating means as shown in Figure 7. These means are 

based on at least 15 iterations and may be seen to be fairly 

consistent except the intermediate case. The deviation of 

means is around 15 to 25 percent lower than the expected 

values. Figure 7 also includes a few data points that come 

from GRNN model with 10 neurons at the hidden layer. No 

significant effect on the mean output is evident as compared 

to 20 neurons results. 

In order to study the feasibility of anomaly detection using 

the deviation between the measured and simulated unit load, 

a threshold is introduced based on the measured load 

variation. A probabilistic level for the measured load will 

provide the chance of detecting the fault based on the usage 

state of the engine. The probability for the load yielding 

variations of 10, 20 and 30 percent of the measured power 
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Figure 9: Comparison of the measured input gas pressure 

and output unit load data (both scaled) for the training and 

intermediate data set 

of the gas turbine is estimated. Table 1 gives the results of 

the probabilistic analysis supporting our qualitative 

anomaly/no anomaly observations for predictions with 

quantitative (probabilistic) measure of load variations. As 

for example, setting the criterion at 20 percent load 

variation, the intermediate stage will have around 36 percent 

probability for anomaly detection. The two usages namely 

begin and end stages should have almost no chance for 

anomaly detection. Intermediate test data significantly 

contributes to the probability of variation dues to its lower 

magnitude compared to the other data sets and confirm the 

anomaly and under utilization of the GT capabilities even if 

it is deliberate.spacing between paragraphs. All papers 

should use Times Roman 10-point font throughout. 

Load 

variation begin intermediate end training 

10 % 6.0 % 68.5 % 3.9 % 4.8 % 

20 % 0 % 36.5 % 0.83 %  0.33 % 

30 % 0 % 17.5 % 0 % 0 % 

Table 1: Computed probability level for the measured load 

6. CONCLUSION 

Artificial neural network models have been used for the 

performance based anomaly detection of a small sized gas 

turbine. Four independent input variables and output 

variables were selected from the operating and performance 

data. The health monitoring data was collected over the 

entire operational time between two major overhauls and  

used for ANN model training, validation and testing. 

However, the output power was considered as the major 

performance index for this study, as the four output models 

were not effectively trained for the selected data sets. Back 

propagation (BPNN) and generalized regression (GRNN) 

neural network models were implemented with 

MATLAB
TM

 programming for this work. Both the models 

appear to well capture the behavior if the output unit loads. 

The comparison of the test data set collected 17 months 

after engine overhauling and its ANN based simulation 

represent an anomalous situation. The difference in the 

output unit load may be due to the deliberate lower gas 

pressure adjustments made to accommodate seasonal 

variation in the power requirement. Otherwise, the scatter 

between the simulated and measured unit load increases 

with usage suggesting that the trained ANN representing the 

performance of a freshly rebuilt system can be used for 

anomaly detection. A high probability level over 36 percent 

is estimated for variation of the rated power capacity of the 

GT engine. However, samples collected towards the end of 

the entire operation cycle indicate no unhealthy signs. 
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