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ABSTRACT 

The work presented in this paper is focused on monitoring 
fatigue crack growth in metallic structures using acoustic 
emission (AE) technology.  Three different methods are 
proposed to utilize the information obtained from in-situ 
monitoring for structural health management. 

Fatigue crack growth tests with real-time acoustic emissions 
monitoring are conducted on CT specimens made of 7075 
aluminum. Proper filtration of the resulting AE signals 
reveals a log-linear relationship between fracture parameters 
( da dN⁄  and ΔK ) and select AE features; a flexible 
statistical model is developed to describe the relationship 
between these parameters.  

Bayesian inference is used to estimate the model parameters 
from experimental data. The model is then used to calculate 
two important quantities that can be used for structural 
health management: (a) an AE-based instantaneous damage 
severity index, and (b) an AE-based estimate of the crack 
size distribution at a given point in time, assuming a known 
initial crack size distribution. 

Finally, recursive Bayesian estimation is used for online 
integration of the structural health assessment information 
obtained from AE monitoring with crack size estimates 
obtained from empirical crack growth model. The evidence 
used in Bayesian updating includes observed crack sizes 
and/or crack growth rate observations.  

1. INTRODUCTION 

Acoustic emissions are elastic stress waves generated by a 
rapid release of energy from localized sources within a 
material under stress (Mix 2005). Acoustic emissions often 
originate from defect-related sources such as permanent 
microscopic deformation within the material and fatigue 
crack extension. 

Despite significant improvements in AE technology in 
recent years, quantitative interpretation of the AE signals 
and establishing a correlation between them and the source 
events remains a challenge and a topic for active research. 
In recent years, AE research has focused on two main areas; 
the first area has to do with characterizing the wave 
propagation through complex geometries which has proved 
to be an extremely difficult problem. The second area of 
research is concerned with processing the AE waveforms in 
an intelligent way (depending on the application) in order to 
extract useful information that can be traced back to the 
source event (Holford et al. 2009). The approach presented 
in this paper is in line with the second area. 

In the first part of this paper, the problem of monitoring 
fatigue crack growth using AE technique is investigated. A 
statistical model is developed that correlates important crack 
growth parameters, i.e., crack growth rate, 𝑑𝑎 𝑑𝑁⁄ , and 
stress intensity factor range, Δ𝐾𝐾 , with select AE features. 
Next, this model will be used to calculate two important 
quantities that can be used for structural health 
management: (a) an AE-based instantaneous damage 
severity index, and (b) an AE-based estimate of the crack 
size distribution at a given point in time, assuming a known 
initial crack size distribution. Finally, the outcome of the 
statistical model described above will be used as direct 
“evidence” in a recursive Bayesian estimation framework to 
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update the model parameters as well as the estimated crack 
size distribution.  

2. CRACK GROWTH MONITORING USING ACOUSTIC 
EMISSION 

Fatigue crack growth is a well-known source of acoustic 
emission inside materials. Several researchers have studied 
the connection between fatigue crack growth behavior and 
the resulting acoustic emissions (Hamel et al. 1981; Bassim 
et al. 1994). Certain features of acoustic emission signals are 
found to be stochastically correlated with key fatigue 
parameters, such as stress intensity factor range, Δ𝐾𝐾 , and 
crack growth rate, 𝑑𝑎 𝑑𝑁⁄ . Two of the most commonly used 
AE parameters in fatigue are the AE count 𝐼𝐼  and its 
derivative, count rate 𝑑𝐼𝐼 𝑑𝑁⁄ . For a given AE signal, 𝐼𝐼 is 
defined as the number of times that the signal amplitude 
exceeds a predefined threshold value. Accordingly, 𝑑𝐼𝐼 𝑑𝑁⁄  
is defined as the derivative of 𝐼𝐼  with respect to time 
(measured as elapsed fatigue cycles).  

The following form has been proposed by (Bassim et al. 
1994) for the relationship between 𝑑𝐼𝐼 𝑑𝑁⁄  and Δ𝐾𝐾: 

𝑑𝐼𝐼
𝑑𝑁

= 𝐴1(Δ𝐾𝐾)𝐴2  (1) 

where 𝐴1 and 𝐴2 are the model parameters. Our goal is to 
use the AE parameter as the predictor to estimate the fatigue 
parameter; therefore, Eq. (1) is solved for Δ𝐾𝐾 and linearized 
as follows (Rabiei et al. 2009): 

logΔ𝐾𝐾 = 𝛼1 log �
𝑑𝐼𝐼
𝑑𝑁

� + 𝛼2 (2) 

where 𝛼1 = 𝐴1
−1 𝐴2⁄  and 𝛼2 = 1 𝐴2⁄  are the new model 

constants to be estimated from data. 

The significance of Eq. (2) is that once the model 
parameters are determined experimentally, this equation can 
be used to estimate Δ𝐾𝐾  by monitoring the acoustic 
emissions and extracting the 𝑑𝐼𝐼 𝑑𝑁⁄  parameter from the 
observed signals—thus obviating the need for complex 
modeling and calculations used in fracture mechanics to 
calculate Δ𝐾𝐾. 

The second parameter that will be estimated via AE 
monitoring is the crack growth rate, 𝑑𝑎 𝑑𝑁⁄ . Based on the 
Paris equation (Paris & Erdogan 1963), 𝑑𝑎 𝑑𝑁⁄  is expected 
to have a log-linear relationship with Δ𝐾𝐾  while the crack 
growth is in the stable region. According to Eq. (2), Δ𝐾𝐾 
itself has a log-linear relationship with 𝑑𝐼𝐼 𝑑𝑁⁄ ,  which 
results in the following equation: 

log �
𝑑𝑎
𝑑𝑁

� = 𝛽1 log �
𝑑𝐼𝐼
𝑑𝑁

� + 𝛽2 (3) 

where 𝛽1 and 𝛽2 are the model parameters that describe the 
log-linear relationship between 𝑑𝑎 𝑑𝑁⁄  and 𝑑𝐼𝐼 𝑑𝑁⁄ . From a 
structural monitoring perspective, this relationship means 

that on average, the rate of crack growth can be estimated 
solely based on features extracted from AE signals. This is a 
significant outcome because by knowing the rate of the 
crack growth and the initial crack size, the size of the crack 
can be estimated at any given time without knowing the 
specific load history or complex Δ𝐾𝐾 calculations. This fact 
will be used to develop an AE-based crack growth model 
that can predict the crack size as a function of observed AE 
signals. 

2.1. Experimental test setup and procedure 

A series of experiments were designed to validate the 
proposed relationship in Eqs. (2) and (3) and to generate the 
experimental data required for fitting the statistical model 
that will be introduced in the next section. 

The experiments consisted of two separate parts that ran in 
parallel: the first part is a standard fatigue crack growth test 
in which a notched aluminum specimen undergoes cyclic 
loading, which causes a crack to initiate from the notch and 
grow until fracture; the second part is real-time AE 
monitoring—on the same specimen and while the crack is 
growing—to capture the AE signals resulting from the 
propagation of the crack inside the material. 

Fatigue tests were carried out on standard compact tension 
(CT) specimens (ASTM E647-08 2008) made of 7075 
aluminum alloy. The test setup is shown in Figure 1. The 
goal of the experiment was to record the AE signals 
generated by fatigue crack growth. To do so, we used a PCI-
2 AE monitoring system supplied by Physical Acoustic 
Corporations1

 

 to monitor the CT specimen during the crack 
growth test. The most crucial step in AE monitoring is to 
distinguish the AE signals originating from the source event 
of interest (e.g. crack tip) from extraneous noises. 

Figure 1: CT specimen instrumented with AE sensor and 
mounted on MTS machine 

                                                           
1 http://www.pacndt.com  
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Figure 2: Cumulative AE count rate versus crack size 

 
(a) 

 
(b) 

 Figure 3: The linear correlation observed between 𝑑𝐼𝐼 𝑑𝑁⁄  and 𝑑𝑎 𝑑𝑁⁄  (a) and Δ𝐾𝐾 (b) in a crack growth test

The source of the noise can be both internal (e.g., surface 
rubbing at loading pins, internal rubbing of crack surfaces) 
and external (e.g., noise from the hydraulic loading 
actuators). Various de-noising techniques were used to 
distinguish AE signals from the background noise. See 
(Rabiei 2011) for detailed information about the fatigue test 
setup, crack measurement technique and proper AE 
filtrations in crack growth monitoring. 

Once proper filtration has been applied to the signals, the 
correlation between AE and crack growth parameters can be 
seen. Figure 2 shows that the increasing trend in crack size 
has a linear relationship with the cumulative AE count rate 
(on a log scale) for cracks larger than 0.6 inches. This 
suggests that in theory, the crack size can be measured by 
monitoring the cumulative AE count rate, if the relationship 
between the two is fully characterized and modeled. 
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Figure 3 shows the correlation between the AE parameter, 
𝑑𝐼𝐼 𝑑𝑁⁄ , and the fatigue parameters 𝑑𝑎 𝑑𝑁⁄  (a) and Δ𝐾𝐾 (b) 
on a log-log scale. These are the same data shown in Figure 
2 but presented here in terms of derivatives. The linear 
correlation between fatigue and AE parameters is evident in 
this figure.  

The dataset collected using the experimental procedure 
described here will be used to build a statistical model that 
can be used for AE-based structural health management. 

2.2. Statistical model development 

It was shown that on average, a log-linear relationship can 
be assumed between fracture parameters (𝑑𝑎 𝑑𝑁⁄ or Δ𝐾𝐾 ) 
and AE parameter ( 𝑑𝐼𝐼 𝑑𝑁⁄ ). A statistical model is 
developed to describe the relationship between these 
parameters.  

Let 𝑋 denote 𝑑𝐼𝐼 𝑑𝑁⁄  as the independent variable in the 
regression analysis, and 𝑌  denote either 𝑑𝑎 𝑑𝑁⁄ or Δ𝐾𝐾  as 
the dependent variable that we are interested in estimating. 
Regression analysis estimates the conditional expectation of 
the dependent variable given the independent variable — 
that is, the average value of the dependent variable when the 
independent variable is fixed. Another way of looking at 
this problem is to partition the dependent variable 𝑌 into a 
deterministic component given by function 𝜙(∙)  of the 
independent variable 𝑋 , plus a zero-mean random 
component, 𝜖 , that follows a particular probability 
distribution. That is, 
𝑌 = 𝜙(𝑋;Θ) + 𝜖 (4) 

The addition of the random term makes the above 
relationship a statistical model, meaning that the functional 
relationship between the response variable 𝑌  and the 
predictor variable 𝑋 holds only in an average sense, not for 
every data point. Based on the experimental results in 
previous section, it seems reasonable to assume a linear 
form for the regression function 𝜙(∙)  where Θ = (𝛼1,𝛼2) 
when 𝑌  represents Δ𝐾𝐾  and Θ = (𝛽1,𝛽2)  when 𝑌  represents 
𝑑𝑎 𝑑𝑁⁄ . 

To complete the model, the error term 𝜖  must be fully 
specified as well. Here we adopt the classic regression 
assumption that the errors are independent and identically-
distributed (i.i.d.) random variables and follow a normal 
probability distribution: 

𝜖 ~ 𝑁(0,σ) (5) 

The mean of the error distribution is zero, and its standard 
deviation is the unknown parameter 𝜎 . Another classic 
assumption in regression analysis is that the error has a 
constant variance for all observations regardless of the value 
of independent variable 𝑋. In this application, however, it is 
reasonable to assume that a small crack is harder to 
measure, and as the crack becomes larger, the measurement 

of its length becomes more accurate. Accordingly, the 
𝑑𝑎 𝑑𝑁⁄  and Δ𝐾𝐾 values associated with data points coming 
from smaller cracks could be less accurate than those from 
larger cracks. 

One way to account for this effect is to release the constant 
variance assumption and allow 𝜎 to change as a function of 
the independent variable 𝑋 . This will result in a flexible 
model that can capture any change in the error distribution 
based on the available data. Here, we choose a flexible two-
parameter exponential relationship to capture the potential 
trend in 𝜎, 

𝜎 = 𝛾1exp (𝛾2𝑋) (6) 

This function can capture both increasing and decreasing 
trends of 𝜎  for positive and negative values of 𝛾2 , 
respectively. It also reduces to the standard constant 
variance case if 𝛾2 is equal to zero. It is important to note 
that it is not necessary to have any prior knowledge about 
the trend of 𝜎 ; 𝛾1 and 𝛾2  are in fact treated as additional 
unknown parameters and will be estimated using the 
observed data. 

2.3. Bayesian parameter estimation 

Numerous procedures have been developed for parameter 
estimation and inference in regression analysis. Here we 
adopt a Bayesian approach to parameter estimation often 
referred to as Bayesian regression.  

In Bayesian inference, the initial belief about the 
distribution of the parameters (a priori distribution) is 
systematically updated according to Bayes' theorem (Eq. 
(7)), based on some kind of evidence or available 
observations (Figure 4). 

𝑝(Θ|𝐷) =
𝑝(𝐷|Θ)𝑝(Θ)

𝑝(𝐷)
 (7) 

where Θ is the vector of model parameters to be estimated 
and 𝐷  denotes the set observations to be used in the 
updating process. 𝑝(Θ) is the a priori distribution of model 
parameters while 𝑝(Θ|𝐷) is the a posteriori probability of 
the model parameters once updated by the observations. 
The model that was developed in the previous section can 
be summarized in the following form: 
 

𝑌 = 𝛼1𝑋 + 𝛼2 + 𝜖 

where 

𝜖 ~𝑁(0,σ), 

𝜎 = 𝛾1exp (𝛾2𝑋) 

(8) 

The likelihood can be defined based on the distribution of 
the error term, 𝜖. To do so, the error 𝜖𝑖 = 𝑦𝑖 − (𝛼1𝑥𝑖 + 𝛼2) 
for every data point (𝑥𝑖 ,𝑦𝑖) is calculated.  
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Figure 4: Bayesian Inference Framework  

Next, the likelihood of each data point can be defined 
according to 𝜖𝑖  ~ 𝑁(0, 𝛾1exp (𝛾2𝑥𝑖)). This can be written 
explicitly as, 
𝑝(𝐷|𝛼1,𝛼2, 𝛾1, 𝛾2)

= �
1

√2𝜋𝜎
exp�−1

2
�
𝑦𝑖 − (𝛼1𝑥𝑖 + 𝛼2)
𝛾1 exp(𝛾2𝑥𝑖)

�
2

�
𝑛

𝑖=1

 (9) 

The likelihood in Eq. (9) is based on the assumption that the 
data points are independent and therefore the likelihood for 
dataset 𝐷  is simply the multiplication of the likelihood 
function for every data point. 

This study began with no past experience, and therefore 
non-informative (uniform) prior distributions for all 
parameters 𝛼1,𝛼2, 𝛾1 and 𝛾2 were chosen. 

The denominator in Bayes' theorem acts as a normalization 
factor and can be written as, 

𝑝(𝐷) = �𝑝(𝐷|Θ)𝑝(Θ)𝑑Θ (10) 

In practice, numerical approaches such as Monte Carlo-
based methods are used to calculate the multidimensional 
integral in Eq. (10). Here we used WinBUGS (Cowles 
2004) to obtain the posterior distributions; WinBUGS is a 
software package for Bayesian analysis of complex 
statistical models using Markov chain Monte Carlo 
(MCMC) methods. Interested readers can refer to 
(Ntzoufras 2009) for a good reference on Bayesian 
modeling using WinBUGS. For further reading on MCMC 
methods in general, see (Gelman et al. 2003; Gamerman & 
Lopes 2006).  

Once the posterior distribution 𝑝(Θ|𝐷)  is calculated, the 
inference process is complete. The next step is to use the 
developed model for prediction using unobserved data. In 
other words, the model (with posterior parameters) will be 
used to calculate the distribution of dependent variable 𝑌 for 
a given input 𝑋. 

The posterior predictive distribution is the distribution of 
unobserved observations (prediction) conditional on the 
observed data. Let 𝐷 be the observed data, Θ be the vector 
of parameters, and 𝐷𝑝𝑟𝑒𝑑  be the unobserved data; the 
posterior predictive distribution is defined as follows, 

𝑝�𝐷𝑝𝑟𝑒𝑑|𝐷� = �𝑝�𝐷𝑝𝑟𝑒𝑑�Θ�𝑝(Θ|𝐷)𝑑Θ (11) 

Here again, we are dealing with a multi-dimensional integral 
that should be calculated numerically. The same MCMC 
procedure described above can be used to generate samples 
from the posterior predictive distribution based on draws 
from the posterior distribution of Θ. 

2.3.1. Parameter estimation results 

Figure 5 shows the contour plot of the posterior joint 
distribution of parameters 𝛼1 and 𝛼2. The figure shows that 
these two parameters are highly correlated (Correlation 
coefficient 𝜌 = −0.88 ). Similar results are presented in 
Figure 6 for the parameters 𝛾1 and 𝛾2. These variables are 
also highly correlated (𝜌 = −0.89), which highlights the 
importance of considering their joint distribution (rather 
than marginal distributions) when using the model for 
prediction. 

 
Figure 5: Contour plot of the posterior joint distribution of 

parameters 𝛼1 and 𝛼2. 

 
Figure 6: Contour plot of the posterior joint distribution of 

parameters 𝛾1 and 𝛾2.  

Model

Data

Likelihood
P (Data | Θ)

Prior
P (Θ)

Bayesian 
Inference

Posterior
P (Θ | Data)
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It was previously described that the flexible model in Eq. (6) 
was used to define the standard deviation of the dependent 
variable 𝑌 . For any given input 𝑋 , one can calculate the 
corresponding distribution of 𝜎  by knowing the joint 
distribution of 𝛾1 and 𝛾2which was one of the outcomes of 
the parameter estimation process. This result is shown in 
Figure 7. Note that for this particular dataset, the median 
value of 𝜎 is relatively constant (it has a slight decreasing 
trend) over the range of values of log𝑑𝐼𝐼 𝑑𝑁⁄ . This is 
consistent with the fact that the estimated value of 𝛾2  is 
close to zero (see Figure 6), which means that the 
relationship in Eq. (6) reduces to a constant variance case 
where 𝜎Δ𝐾 ≈ 𝛾1. Notice the change in the calculated bounds 
of 𝜎 over the range of log𝑑𝐼𝐼 𝑑𝑁⁄ . The tighter bounds in the 
middle of the range are due to a higher density of data 
points in this region, which results in a more confident 
estimate in this range. 

 
Figure 7: Distribution of 𝜎Δ𝐾 as a function of the 

independent variable log𝑑𝐼𝐼 𝑑𝑁⁄  

 
Figure 8: Posterior predictive distribution of logΔ𝐾𝐾 as a 

function of log𝑑𝐼𝐼 𝑑𝑁⁄  

Once all the model parameters are estimated, Eq. (11) can 
be used to calculate the posterior predictive distribution for 
the dependent variable logΔ𝐾𝐾  as a function of the 
independent variable log𝑑𝐼𝐼 𝑑𝑁⁄ , given past observations, 
𝐷. The result is presented in Figure 8 where the posterior 
distribution is shown by its median and the 5% and 95% 
prediction bounds. 

The procedure described above can be repeated to fit the 
model in Eq. (8) to the log𝑑𝑎 𝑑𝑁⁄  versus log𝑑𝐼𝐼 𝑑𝑁⁄  
dataset as well. The models developed in this section 
provide a quantitative means for relating the crack growth 
parameters to the AE parameters. In the remainder of this 
paper, this concept will be used to develop a complete SHM 
solution based on AE monitoring. 

3. STRUCTURAL HEALTH MANAGEMENT USING AE 

Three novel approaches are proposed for structural health 
management using AE monitoring. In all of these 
approaches, the statistical model developed in the previous 
section will be utilized to calculate system health parameters 
solely based on AE monitoring data. 

3.1. AE-based damage severity assessment 

In this section, we will calculate the probability of structural 
failure (as defined here) due to crack growth using AE 
monitoring data. 

As a crack grows in a structure, the value of the stress 
intensity factor Δ𝐾𝐾 associated with it increases as well. For 
a standard CT specimen, this relationship is defined as 
follows (ASTM E647-08 2008):  

Δ𝐾𝐾 = 𝑓(𝑎) 

=
Δ𝑃
𝐵√𝑊

2𝛼
(1 − 𝛼)3 2⁄ (0.886 + 4.64𝛼    

− 13.32𝛼2 + 14.72𝛼3 − 5.6𝛼4) 
(12) 

where Δ𝑃 is the range of the applied force cycles, 𝑊 and 𝐵 
are the width and thickness of the CT specimen, 
respectively, and 𝛼 is the dimensionless crack size defined 
as 𝑎 𝑊⁄ . Equation (12) shows that Δ𝐾𝐾, in general, depends 
on the geometry of the structure, amplitude of the applied 
load cycles and the instantaneous size of the crack. For a 
given structure, assuming that the geometry is fixed, a large 
Δ𝐾𝐾  represents either a large crack size and/or high load 
amplitude applied to the structure. Δ𝐾𝐾  can therefore be 
considered a criticality parameter that describes the potential 
of the crack for further growth at any given point in time. 

On the other hand, the resistance of a material to stable 
crack propagation under cyclic loading is characterized by 
its fracture toughness, 𝐾𝐾𝐼𝑐  (Anderson 1994). At any point 
during the crack growth, if the stress intensity exceeds the 
fracture toughness of the material, the crack growth 
transitions from stable to non-stable/rapid growth regime 
where failure is imminent (Figure 9). 



Annual Conference of the Prognostics and Health Management Society, 2011 

7 

Figure 9: Crack growth sigmoid curve showing both stable 
and unstable crack growth regions.  

In other words, the crack growth is stable as long as 𝐾𝐾𝑚𝑎𝑥  is 
less than the fracture toughness of the material, 𝐾𝐾𝐼𝑐 . This 
fact is used to define an AE-based measure of risk, 𝑅𝐴𝐸, as 
follows, 

𝑅𝐴𝐸 = 𝑝(𝐾𝐾𝑚𝑎𝑥 > 𝐾𝐾𝐼𝑐) (13) 

where 𝐾𝐾𝑚𝑎𝑥 is defined according to Eq. (12) for Δ𝑃 = 𝑃𝑚𝑎𝑥. 

Our objective is to assess the health of the structure based 
only on AE monitoring. To do so, the statistical model 
developed previously is used in the following way: 

Step 1: Estimate the model parameters ( Θ ) using 
experimental data for a given structure, 

Step 2: Monitor the structure using the AE technique and 
extract the 𝑑𝐼𝐼 𝑑𝑁⁄  parameter from the observed signals, 

Step 3:  At any given time, use Eq. (11) to calculate the 
posterior predictive distribution of Δ𝐾𝐾  as a function of 
instantaneous AE parameter, 𝑑𝐼𝐼 𝑑𝑁⁄ . 

Step 4: Use Eq. (13) to calculate 𝑅𝐴𝐸  (noting that 𝐾𝐾𝑚𝑎𝑥 =
Δ𝐾𝐾 (1 − R)⁄  for constant amplitude loading with loading 
ratio 𝑅). 

Figure 10 shows the outcome of the above procedure for 
steps 1-3. The structure is monitored using the AE 
technique, and the 𝑑𝐼𝐼 𝑑𝑁⁄  feature is extracted from the 
signals at different values of elapsed cycles, 𝑁. At any given 
cycle 𝑁, the posterior predictive distribution as a function of 
the instantaneous AE feature, 𝑑𝐼𝐼 𝑑𝑁⁄ , can be calculated. As 
the number of cycles increases, the crack continues to grow, 
and therefore, the distribution of 𝐾𝐾𝑚𝑎𝑥  gradually shifts 
towards larger values.  

Following step 4 in the procedure described above,  𝑅𝐴𝐸 can 
be calculated for any given cycle 𝑁 according to Eq. (13). 
The result is shown in Figure 11. As shown in this figure, 
𝑅𝐴𝐸  increases (non-monotonically) throughout the 
experiment. 

 
Figure 10: Probability distribution of 𝐾𝐾𝑚𝑎𝑥 as a function of 

applied fatigue cycles, 𝑁 

 
Figure 11: AE-based risk factor, 𝑅𝐴𝐸, calculated as a 

function of applied fatigue cycles, 𝑁 

The fluctuations in this figure are in fact a direct result of 
the fluctuations in the input AE feature, 𝑑𝐼𝐼 𝑑𝑁⁄ , which also 
matches the trend in Figure 10. The AE-based risk factor 
defined here is an instantaneous exceedance probability 
calculated based on the average value of 𝑑𝐼𝐼 𝑑𝑁⁄  for any 
given interval. The AE feature has an overall increasing 
trend that may fluctuate due to instantaneous dynamics of 
the crack growth. So the best way to interpret the result in 
Figure 11 is to treat it as a red/green warning mechanism to 
alert the decision-maker in real-time about the increased risk 
factor at a given cycle based on the current AE readings. 

3.2. AE-based crack growth model 

For a given initial crack size, if the rate of crack growth can 
be estimated, then the crack size itself can be easily 
calculated by a summation over crack size increments 
starting from the known initial size. This is the logic behind 

 𝐾𝐾𝐼𝐼𝐼𝐼  

IIIIII

Unstable/rapid 
Crack Growth 

Region

Stable/linear Crack 
Growth Region
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most crack growth models. In these models, however, the 
rate of crack growth is usually calculated based on its 
empirical relationship with the Δ𝐾𝐾 parameter, which itself 
has a complex derivation even for simple geometries.  

In the approach presented here, the rate of crack growth is 
estimated directly from AE monitoring using the statistical 
model that was developed earlier. The process of estimating 
crack size using this AE-based crack growth model is 
summarized in Figure 12. 

 
Figure 12: Flowchart of the AE-based crack growth model 

(Rabiei et al. 2010) 

 
Figure 13: Posterior predictive distribution of log𝑑𝑎 𝑑𝑁⁄  as 

a function of log𝑑𝐼𝐼 𝑑𝑁⁄  

The process starts by finding the parameters of the model in 
Eq. (8), where 𝑌 = log𝑑𝑎 𝑑𝑁⁄   and 𝑋 = log𝑑𝐼𝐼 𝑑𝑁⁄ , based 
on relevant experimental data. The resulting posterior 
predictive distribution will be used to estimate the 
distribution of 𝑑𝑎 𝑑𝑁⁄  for any given input 𝑑𝐼𝐼 𝑑𝑁⁄ . 

Consider a crack growth experiment where crack growth-
related AE signals are recorded throughout the test. For any 
given interval of elapsed cycles,  Δ𝑁𝑖 , the corresponding 
average AE feature (Δ𝐼𝐼 ΔN⁄ )i can be calculated. Figure 14 
shows the feature extracted from such data during crack 

growth in a CT specimen.  The probability distribution of 
the crack extension Δ𝑎𝑖  corresponding to the interval Δ𝑁𝑖 
can be calculated using Eq. (11). This is shown in Figure 15 
using the input AE data shown in Figure 14 and the 
calibrated model shown in Figure 13. 

 
Figure 14: The AE count rate feature extracted from signals 

obtained during crack growth in a CT specimen 

 
Figure 15: Crack growth rate as a function of applied fatigue 

cycles predicted via AE monitoring 

If the crack size is known at the beginning of the interval, a 
probability distribution for the crack size at the end of the 
interval can be easily obtained. By repeating this process for 
consecutive intervals, multiple crack growth trajectories can 
be generated, as shown in Figure 16. 

The main feature of the AE-based crack growth model 
presented here is that the rate of crack growth is determined 
experimentally, and therefore, there is no need to have any 
information about the amplitude of the applied loading 
cycles to the structure. This approach, however, relies 
heavily on a calibrated statistical model that should describe 
the relationship between an NDI feature of interest 
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( log𝑑𝐼𝐼 𝑑𝑁⁄  in this case) and the crack growth rate. 
Developing a robust model that can capture this relationship 
with minimum uncertainty is a difficult task that is still a 
topic of continued research. 

 
Figure 16: Crack growth trajectories obtained via AE-based 

crack growth model 

3.3. Bayesian knowledge fusion 

So far two approaches have been proposed to use AE for 
quantitative structural health management. A third approach 
will be discussed here which seeks to use AE findings as an 
independent source of information to update the outcome of 
empirical crack growth models. 

Several models of varying complexity, e.g. (Forman et al. 
1997) and (Walker 1970),   have been proposed to describe 
the crack growth phenomenon. The outcomes of these 
models suffer from uncertainty from various sources 
including material properties, model parameters and the 
model structure. Despite all efforts to capture various 
sources of uncertainty, the final outcome of the empirical 
models could still be far from true crack size.  

Consider the crack growth test described earlier in this 
paper. Figure 17 shows the true crack growth trajectory 
along with empirical model prediction for the CT specimen 
being considered here. The model in this case consistently 
underestimates the true crack size. This shows that the 
actual crack growth rate in the experiment was higher than 
what was predicted by the model. Several factors (including 
uncertainty in model structure, uncertainty in model 
parameters or presence of rogue flaw) could contribute to 
the poor performance of the empirical model.  It is therefore 
highly desirable to update the model estimates using an 
independent source of information.  

Using the statistical model presented earlier, the AE signals 
can be translated into crack growth rate information and be 
used to update the empirical model prediction. (Rabiei 
2011) proposed an efficient Bayesian framework to 

recursively update the empirical model prediction as well as 
the model parameters using crack growth rate and crack size 
observations.  

 
Figure 17: Probabilistic crack growth simulation result 

using empirical model 

 
Figure 18: Recursive Bayesian estimation of crack size 

using crack size and AE-based crack growth rate 
observations 

In Figure 18 the updated crack size estimate for the 
specimen described above is presented. This result is 
obtained by: a) recursively updating the crack growth rate 
based on the AE data, and b) updating crack size at fixed 
intervals using crack size observations (e.g. periodic 
inspections). In this figure, the line marked as model only is 
the outcome of the empirical crack growth model. The AE 
only line, on the other hand, shows the crack growth 
trajectory as predicted solely by the AE-based crack growth 
model. The estimated trajectory is the fusion result obtained 
via recursive Bayesian estimation. In this particular case, 
since the empirical model consistently underestimates while 
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the AE-based approach consistently overestimates the crack 
size, the fusion results in an enhanced crack size prediction. 
It is important to note that this observation is based on 
results from limited experimentation and cannot be 
generalized. The fusion outcome is dependent on the 
performance of the individual techniques fused together. 
Obviously, if both the model and the AE observations 
overestimate the crack size in one application, the fused 
result will also be an overestimation of the true crack 
trajectory. 

4. CONCLUSION 

Three new approaches were proposed for quantitative 
structural health management using in-situ AE monitoring: 
in the first approach, an AE-based risk measure, 𝑅𝐴𝐸, was 
defined as the probability that the crack growth will 
transition from the stable to non-stable/rapid growth regime. 
The transition probability was calculated as the probability 
that 𝐾𝐾𝑚𝑎𝑥  exceeds the fracture toughness of the material, 
𝐾𝐾𝐼𝑐 . In the proposed approach, 𝐾𝐾𝑚𝑎𝑥  is calculated as a 
function of real-time AE monitoring data using the 
calibrated statistical model developed in this paper. 

In the second approach, AE monitoring data was used to 
calculate the instantaneous distribution of crack growth rate, 
𝑑𝑎 𝑑𝑁⁄ . For a given initial crack size and with crack growth 
rates obtained from AE monitoring, the crack size 
distribution was estimated as a function of elapsed fatigue 
cycles. 

Recursive Bayesian estimation technique was used to fuse 
the outcome of the empirical crack growth model with crack 
size observations as well as the online crack growth rate 
observations obtained from AE monitoring. 
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