
Integrating Probabilistic Reasoning and Statistical Quality Control Techniques for
Fault Diagnosis in Hybrid Domains
Brian Ricks1, Craig Harrison2, Ole J. Mengshoel3

1 University of Texas at Dallas, Richardson, TX, 75080, USA

bwr031000@utdallas.edu

2 University of Maine, Orono, ME, 04469, USA

craig.harrison@umit.maine.edu

3 Carnegie Mellon University, NASA Ames Research Center, Moffett Field, CA, 80523, USA

ole.mengshoel@sv.cmu.edu

ABSTRACT

Bayesian networks, which may be compiled to arithmetic cir-
cuits in the interest of speed and predictability, provide a prob-
abilistic method for system fault diagnosis. Currently, there
is a limitation in arithmetic circuits in that they can only rep-
resent discrete random variables, while important fault types
such as drift and offset faults are continuous and induce con-
tinuous sensor data. In this paper, we investigate how to
handle continuous behavior while using discrete random vari-
ables with a small number of states. Central in our approach is
the novel integration of a method from statistical quality con-
trol, known as cumulative sum (CUSUM), with probabilistic
reasoning using static arithmetic circuits compiled from static
Bayesian networks. Experimentally, an arithmetic circuit
model of the ADAPT Electrical Power System (EPS), a real-
world EPS located at the NASA Ames Research Center, is
considered. We report on the validation of this approach using
PRODIAGNOSE, which had the best performance in three of
four industrial track competitions at the International Work-
shop on Principles of Diagnosis in 2009 and 2010 (DXC-09
and DXC-10). We demonstrate that PRODIAGNOSE, aug-
mented with the CUSUM technique, is successful in diagnos-
ing faults that are small in magnitude (offset faults) or drift
linearly from a nominal state (drift faults). In one of these
experiments, detection accuracy dramatically improved when
CUSUM was used, jumping from 46.15% (CUSUM disabled)
to 92.31% (CUSUM enabled).

First Author et.al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

Arithmetic circuits (ACs) (Darwiche, 2003; Chavira & Dar-
wiche, 2007), which may be compiled from Bayesian net-
works (BNs) (Lauritzen & Spiegelhalter, 1988; Pearl, 1988)
to achieve speed and predictability, provide a powerful prob-
abilistic method for system fault diagnosis. While arith-
metic circuits represent a significant advance in many ways,
they can currently only represent discrete random variables
(Darwiche, 2003; Chavira & Darwiche, 2007; Darwiche,
2009). At the same time, systems that one wants to diagnose
are often hybrid–both discrete and continuous (Lerner, Parr,
Koller, & Biswas, 2000; Poll et al., 2007; Langseth, Nielsen,
Rumı́, & Salmeron, 2009). For example, important fault types
such as drift and offset faults are continuous and also induce
continuous evidence (Poll et al., 2007; Kurtoglu et al., 2010).
The literature describes two main approaches to handling hy-
brid behavior in a discrete probabilistic setting: discretization
(Kozlov & Koller, 1997; Langseth et al., 2009) and uncertain
evidence, in particular soft evidence (Pearl, 1988; Chan &
Darwiche, 2005; Darwiche, 2009). Naive discretization per-
formed off-line leads to an excessive number of states, which
is problematic both from the point of view of BN construction
and fast on-line computation (Langseth et al., 2009). Dis-
cretization can be performed dynamically on-line (Kozlov &
Koller, 1997; Langseth et al., 2009), however this is inconsis-
tent with this paper’s focus on off-line compilation into arith-
metic circuits and fast on-line inference. Uncertain evidence
in the form of soft (or virtual) evidence (Pearl, 1988) can be
used to handle, in a limited way, continuous random vari-
ables (Darwiche, 2009). Typically, soft evidence is limited
to continuous children of discrete random variables with two
discrete states (0/1, low/high, etc.). In addition, the soft evi-
dence approach requires changing the probability parameters

1

Annual Conference of the Prognostics and Health Management Society, 2011

on-line, in the AC or BN, and is thus more complicated from
a systems engineering or verification and validation (V&V)
point of view.
In this paper, we describe an approach to handle continuous
behavior using discrete random variables with a small number
of states. We integrate a method from statistical quality con-
trol, known as cumulative sum (CUSUM) (Page, 1954), with
probabilistic reasoning using arithmetic circuits (Darwiche,
2003; Chavira & Darwiche, 2007). We carefully and for-
mally define our approach, and demonstrate that it can di-
agnose faults that are small in magnitude (continuous offset
faults) or drift linearly from a nominal state (continuous drift
faults).
Experimentally, we show the power of integrating CUSUM
calculations into our diagnostic algorithm PRODIAGNOSE
(Ricks & Mengshoel, 2009a, 2009b), which uses arithmetic
circuits. We consider the challenge of diagnosing a broad
range of faults in electrical power systems (EPSs), focus-
ing on our development of an arithmetic circuit model of the
Advanced Diagnostics and Prognostics Testbed (ADAPT), a
real-world EPS located at the NASA Ames Research Center
(Poll et al., 2007). The experimental data are mainly from
the 2010 diagnostic competition (DXC-10) (Kurtoglu et al.,
2010). In addition to the challenge of hybrid behavior, this
data is sampled at varying sampling frequency, may contain
multiple faults, and may contain sensor noise and other be-
havioral characteristics that are considered nominal behav-
ior of ADAPT. Using the DXC data, we perform a compar-
ison between experiments (i) with CUSUM and (ii) with-
out CUSUM, and find significant improvements in diagnostic
performance when CUSUM is used. In fact, PRODIAGNOSE
was the best performer in the two competitions making up the
industrial track of DXC-09, and a winner of one of the com-
petitions in the industrial industrial track of DXC-10.1

In this paper, we extend previous research on the use of
CUSUM with BNs and ACs (Ricks & Mengshoel, 2009b) in
several ways. Specifically, we use CUSUM for drift faults
(previously it was used for offset faults only); provide a more
detailed discussion and analysis; and report on experimental
results for a new dataset (DXC-10) that contains a broader
range of faults, including abrupt faults, intermittent faults,
and drift faults. Our CUSUM approach is crucial for han-
dling two types of continuous faults, namely offset faults and
drift faults.
The rest of this paper is structured as follows. In Section 2.
we introduce concepts related to Bayesian networks, arith-
metic circuits, CUSUM, and the fault types we investigate.
Section 3. presents integration of CUSUM into our fault di-
agnosis approach, the PRODIAGNOSE algorithm, and discuss
both the modeling and diagnostic perspectives. We present
strong experimental results for electrical power system data
in Section 4., and conclude in Section 5..

1Please see http://www.dx-competition.org/ for details.

2. PRELIMINARIES

2.1 Bayesian networks and Arithmetic Circuits

Diagnostic problems can be solved using Bayesian networks
(BNs) (Lauritzen & Spiegelhalter, 1988; Pearl, 1988; Dar-
wiche, 2009; Choi, Darwiche, Zheng, & Mengshoel, 2011).
A Bayesian network is a directed acyclic graph (DAG) where
each node in the BN represents a discrete random variable,2

and each edge typically represents a causal dependency be-
tween nodes. Distributions for each node are represented as
conditional probability tables (CPTs). Let X represent the set
of all nodes in a BN, Ω(X) = {x1, . . . , xm} the states of a
node X ∈ X, and |X| = |Ω(X)| = m the cardinality (num-
ber of states). The size of a node’s CPT is dependent on its
cardinality and the cardinality of each parent node. By taking
a subset E ⊆ X, denoted the evidence nodes, and clamping
each of these nodes to a specific state, the answers to vari-
ous probabilistic queries can be computed. Formally, we are
providing evidence e to all nodes E ∈ E, in which E =
{E1, E2, . . . , En}, e = {(E1, e1), (E2, e2), . . . , (En, en)},
and ei ∈ Ω(Ei) for 1 ≤ i ≤ n and n ≤ m. Probabilis-
tic queries for BNs include the marginal posterior distribu-
tion over one node X ∈ X, denoted BEL(X, e), over a set
of nodes X, denoted BEL(X, e), and most probable explana-
tions over nodes X−E, denoted MPE(e).
While Bayesian networks can be used directly for inference,
we compile them to arithmetic circuits (ACs) (Chavira & Dar-
wiche, 2007; Darwiche, 2003), which are then used to answer
BEL and MPE queries. Key advantages to using ACs are
speed and predictability, which are important for resource-
bounded real-time computing systems including those found
in aircraft and spacecraft (Mengshoel, 2007; Ricks & Meng-
shoel, 2009b, 2010; Mengshoel et al., 2010). The benefits of
using arithmetic circuits are derived from the fact that BEL
computations, for example, amount to simple addition and
multiplication operations over numbers structured in a DAG.
Compared to alternative approaches to computation using
BNs, for example join tree clustering (Lauritzen & Spiegel-
halter, 1988) and variable elimination (Dechter, 1999), AC
computation has substantial advantages in terms of speed and
predictability, even when implemented in software as done in
this paper and previously (Chavira & Darwiche, 2007; Dar-
wiche, 2003; Ricks & Mengshoel, 2009b; Mengshoel et al.,
2010). The fundamental limitation of ACs is that they may,
in the general case, grow to the point where memory is ex-
hausted. In particular, this is a problem in highly connected
BNs. The BNs investigated in this paper, as well as in similar
fault diagnosis applications, are typically sparse (Mengshoel,
Poll, & Kurtoglu, 2009; Ricks & Mengshoel, 2009a, 2009b;
Mengshoel et al., 2010; Ricks & Mengshoel, 2010), and
memory consumption turns out not to be a problem.

2Continuous random variables can also be represented in BNs, however
in this article we focus on the discrete case.

2

Annual Conference of the Prognostics and Health Management Society, 2011

2.2 Cumulative sum (CUSUM)

Cumulative sum (CUSUM) is a sequential analysis technique
used in the field of statistical quality control (Page, 1954).
CUSUMs can be used for monitoring changes in a continuous
process’ samples, such as a sensor’s readings, over time. Let
δp(t) represent the CUSUM of process p at time t. Then,
taking sp(t) to be the unweighted sample (or sensor reading)
from process p at time t, we formally define CUSUM as:

δp(t) = [sp(t)− sp(t− 1)] + δp(t− 1). (1)

If δp(t) crosses a threshold, denoted as v(i), a change in pro-
cess p’s samples can be recorded. These thresholds represent
points at which an interval change occurs in p—a transition
from one interval to another (indicating a change from nom-
inal to faulty in a closely related health node, for example).
In other words, thresholds provide discretization points for
our continuous CUSUM values. It is assumed that a process
p starts out with δp(t) such that v(i − 1) ≤ δp(t) < v(i)
for some i. Formally, an interval change for process p occurs
when, at any time t, δp(t) < v(i−1) or δp(t) ≥ v(i), in which
v(i− 1) and v(i) are a pair of thresholds at levels i− 1 and i,
respectively. Thresholds themselves are independent of time,
in that they can be crossed at any time t. Values of thresholds
are configurable, and obtained through experimentation.
Often, a set of thresholds for a sensor will only contain two
thresholds. For these cases, we refer to v(0) as the lower
threshold and v(1) as the upper threshold. This implies that
the interval set of p has a cardinality of 3. The initial CUSUM
value (δp(0)) with respect to v(0) and v(1) will be v(0) ≤
δp(0) < v(1). A lower and upper threshold are thus used to
trigger an interval change if δp(t) ventures outside a nominal
range bounded by the interval [v(0), v(1)) of the real line <.

2.3 Continuous Offset and Drift Faults

22.2

22.25

22.3

22.35

22.4

22.45

22.5

22.55

22.6

22.65

E240

Time

V
ol
ta
ge

Figure 1. Graph illustrating an abrupt battery degradation
over a span of 10 seconds, manifested as a voltage drop for
sensor E240. The vertical dotted line on the graph indicates
when the fault occurred.

We consider a system consisting of parts.3 For example, a
system might be an electrical power system, and parts might

3A “part” is either a “component” or a “sensor” according to the termi-

be a battery, a wire, a voltage sensor, a temperature sensor,
etc. Let p(t) denote a measureable property of a part at time t.
We now consider how a persistent fault, which is the emphasis
of this paper, takes place.4 Let pn(t) denote the value of the
property before fault injection, and pf (t) denote the value of
the property after fault injection. More formally, let t∗ be the
time of fault injection. We then have:

p(t) =

{
pn(t) for t < t∗

pf (t) for t ≥ t∗ .

We can now formally introduce continuous offset and drift
faults. A simple model for a continuous (abrupt) offset fault
at time t is defined as follows (Kurtoglu et al., 2010):

pf (t) = pn(t) + ∆p, (2)

where ∆p is an arbitrary positive or negative constant repre-
senting the offset magnitude. In other words, we do not know
the values of ∆p or t∗ ahead of time, however once ∆p is
injected at time t∗, it does not change.
A key challenge is that ∆p will be small for small-magnitude
offset faults. For example, degradation of a battery (Figure 1),
is often very small in magnitude (low voltage drop). When
discussing the change in a sensor reading of a property, the
notation ∆sp (sensed offset) rather than ∆p (actual offset) is
used. Sensor noise, while not reflected in (2), can mask the
fault almost completely. In Figure 1, the magnitude of sensor
noise would make diagnosis very difficult without first filter-
ing data. An orthogonal issue is the large number of states
needed in a discrete random variable, if a naive approach is
used by representing a large number of offset intervals di-
rectly, which we would like to avoid.
A simple model for a continuous drift fault for a process p at
time t is defined as follows (Kurtoglu et al., 2010):

pf (t) = pn(t) +m(t− t∗), (3)

in which m is the slope. For example, a drifting sensor could
output values that start gradually increasing at a roughly lin-
ear rate (Figure 2). As seen in Figure 2, drift faults may not
be so obvious at first, due to sensor and other noise not re-
flected in (3). In a static Bayesian environment, the lack of
time-measurement may make these faults appear as continu-
ous offset faults. Not only would that diagnosis be incorrect,
but the time of diagnosis may be quite a while after the ini-
tial fault, depending on the time t from t∗ the drifting value
crossed a threshold v(i).
A major goal of our research is to correctly and quickly diag-
nose continuous offset and drift faults while minimizing the
number of discretization levels of random variables.

nology used in this paper. In the DXC-10 documentation (Kurtoglu et al.,
2010), the term “component” rather than “part” is used.

4The case of intermittent faults has been discussed previously (Ricks &
Mengshoel, 2010).

3

Annual Conference of the Prognostics and Health Management Society, 2011

Figure 2. Graph of continuous drift fault behavior for a cur-
rent sensor IT267 during a 10 second time span.

3. PROBABILISTIC DIAGNOSIS ALGORITHM

The PRODIAGNOSE diagnostic algorithm takes input from
the environment, translates it into evidence, and computes a
posterior distribution. The posterior distribution is then used
to compute a diagnosis (Ricks & Mengshoel, 2009a, 2009b;
Mengshoel et al., 2010; Ricks & Mengshoel, 2010). In this
section we first summarize how PRODIAGNOSE computes di-
agnoses (Section 3.1) and the types of BN nodes it uses (Sec-
tion 3.2). We then discuss how sensor readings, CUSUM, and
Bayesian discretization fit together (see Section 3.3), and fi-
nally how PRODIAGNOSE handles continuous offset and drift
faults by means of CUSUM techniques (Section 3.4 and Sec-
tion 3.5).

3.1 The PRODIAGNOSE Diagnostic Algorithm

Environment
Sensor Data

Commands

Diagnoses
Evaluator

Diagnostic
Algorithm

E
vidence

Q
ueries

ACE

S
ta

te

AC

s(t)

c(t)

dg(t)

q(t)e(t)

sa(t)

Figure 3. The PRODIAGNOSE DA architecture.

The PRODIAGNOSE diagnostic algorithm (DA) integrates the
processing of environmental data (Figure 3) with an inference
engine and post-processing of query results. At the highest
level, the goal of PRODIAGNOSE is to compute a diagnosis
dg(t) from sensor data s(t) and commands c(t). Input from
the environment takes the form of sensor data, s(t), and com-
mands, c(t). PRODIAGNOSE performs diagnosis when it re-
ceives sets or subsets of sensor data, which is expected at reg-
ular sample rate(s). It uses s(t) and c(t) to generate evidence,
e(t), reflecting the state of the system, which is then passed to
the AC inference engine (ACE). The generation of e(t) from
s(t) and c(t) is non-trivial, and includes the use of CUSUM
as discussed below. The health state of the system, sa(t),

is returned in response to a probabilistic query q(t), which
is either an MPE or BEL query, MPE(e(t)) or BEL(H, e(t))
respectively. PRODIAGNOSE then uses sa(t) to generate a di-
agnosis of the system, dg(t), by extracting the faulty states (if
any) of the BN nodes H that represent the health of the system
being diagnosed. The algorithms used to compute CUSUM
and perform offset and drift diagnosis (see Equation 5 and
Algorithm 1) are called from within PRODIAGNOSE (Figure
3) as further discussed in the following subsections.
One strength of PRODIAGNOSE is its configurability. The BN
representation of each part (a physical component or sensor)
in an environment is configured individually, and this data is
used by PRODIAGNOSE to initially calibrate itself to the envi-
ronment and guides its behavior when receiving s(t) or c(t).
In addition, PRODIAGNOSE is controlled by several global
parameters, including:

• Diagnosis Delay, tDD: Measured in milliseconds, this
parameter gives the delay to start diagnosis output dg(t).
In other words, dg(t) is empty for t < tDD. Diagnosis
delay is used at the beginning of environment monitor-
ing, and is useful to filter out false positives (often due to
transients) during the initial calibration process.

• Fault Delay, tFD: This parameter delays the output of
a new diagnosis (for a short while). Suppose that sa(ti)
contains, for the first time, a fault state f for a health node
H . Then we hold off until time tj , such that tj − ti >
tFD, to include f in dg(tj). In many environments, one
can get spurious diagnoses because of system transients
(perhaps due to mode switching, perhaps due to faults),
and this is a way to filter them out.

3.2 Bayesian Network Structures

A Bayesian network model of a system, for example an EPS,
consists of structures modeled after physical components of
the EPS (Ricks & Mengshoel, 2009a, 2009b). We discuss the
following BN node types:

• S ∈ S: All sensors utilize a sensor node S to clamp a
discretized value of the physical sensor’s reading s(t).
S nodes typically consist of three states, and thus have
lower and upper thresholds.

• H ∈ H: Consider H ∈ H, namely a health node H .
A health state h ∈ Ω(H) is output in dg(t), based on
the result of BEL or MPE computation, to describe the
health state of the component represented by H . We as-
sume that Ω(H) is partitioned into nominal (or normal)
states Ωn(H) and faulty (or abnormal) states Ωf (H).
Only a faulty state h ∈ Ωf (H) is output in dg(t), This
is done for all H ∈ H.

• CH ∈ CH: A change node CH is used to clamp ev-
idence for the purpose of change detection. CH nodes
have a varying number of thresholds, depending on the
purpose of the node (see Section 3.4).

4

Annual Conference of the Prognostics and Health Management Society, 2011

• DR ∈ DR: The drift node DR is used to clamp ev-
idence about drift-type behavior. Typically, DR nodes
use four thresholds, though this is configurable (see Sec-
tion 3.5).

• A ∈ A: An attribute nodeA is used to represent a hidden
state, such as voltage or current flow.

Note that there are other nodes types besides S, CH , and
DR nodes used to input evidence e(t) (Ricks & Mengshoel,
2009a, 2009b; Mengshoel et al., 2010; Ricks & Mengshoel,
2010). Since they are not the focus in this paper, we represent
these by nodes E1, . . . , En in Figures 6 and 9.

3.3 Sensors, CUSUM, and Bayesian Network
Discretization

To help filter out sensor noise, we take a weighted average of
the raw sensor readings, and these weighted averages are then
the basis for CUSUM computation. Let s̄p(t) be the weighted
average of readings {sp(t−n), . . . , sp(t)} for sensor p at time
t. Specifically, we have:

s̄p(t) =

n∑
i=0

sp(t− i)w(t− i), (4)

in which sp(t − i) is the raw sensor reading and w(t − i) is
the weight at time t − i. The summation is over all sensor
readings from time t to time t − n. In other words, we keep
a history of the past n sensor readings. The values of n and
of all weights {w(t − n), . . . , w(t)} are configurable and set
based on experimentation.
The weighted sensor averages in (4) can be used when calcu-
lating CUSUM (Ricks & Mengshoel, 2009b), and (1) can be
modified accordingly:

δ̄p(t) = [s̄p(t)− s̄p(t− 1)] + δ̄p(t− 1), (5)

in which δ̄p(t) is the weighted average CUSUM of sensor p
at time t. Weighted averages help to smooth spikes in sensor
readings that could otherwise lead to false positives or nega-
tives, and (5) is the CUSUM variant used in PRODIAGNOSE.
Figure 4 shows, for voltage sensor E240, the weighted
CUSUM values δ̄p(t) overlaid with the raw sensor readings
for the same time period. A downward trend after the offset
fault occurrence is visually seen when looking at the CUSUM
values, which makes setting appropriate thresholds to catch
the fault possible. After the lower threshold, v(0), is reached,
the voltage sensor’s CH node changes state. The CUSUM
values in Figure 4 are calculated by keeping a history of the
past n = 6 sensor readings, for any time t.
In this paper, CUSUM intervals are mapped to BN node states
in a natural way. If we have k CUSUM intervals defined on
the real line < (so k − 1 thresholds), then the corresponding
BN evidence node E has k states Ω(E) = {e1, . . . , ek} also.
If a CUSUM δp(t) crosses a threshold into an interval [v(i),

20

20.5

21

21.5

22

22.5

23

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time

V
ol

ta
ge

C
U

S
U

M

CUSUM
E240
E240 Raw

v(0)

Figure 4. Graph illustrating raw voltage sensor readings, for
sensor E240, and corresponding CUSUM values over a time
span of 10 seconds. The vertical dotted line on the graph
indicates when a very small offset fault occurred, and the hor-
izontal dashed line represents the lower threshold, v(0). The
E240 CUSUM shows a very distinct downward trend after the
fault.

v(i+ 1)), the corresponding BN evidence node Ep has a cor-
responding transition into state ei+1.
We now describe CUSUM’s characteristics and benefits, tak-
ing (5), the discretization, and Figure 4 as starting points.
First, CUSUM amplifies a small offset, along the y-axis, by
making it larger such that it becomes easier to create a thresh-
old for and detect. Second, CUSUM normalizes by shifting
offsets that can take place at different y-values to a normalized
y-value, such that offsets can be detected using thresholds that
apply to many y-values. Please see Figure 5 for an example.
There is a clear impact on IT240, which can easily be detected
with upper and lower thresholds, while the impact on IT267
is minimal since this sensor is downstream of a compensating
inverter.
CUSUM’s normalization works in combination with weight-
ing the sensor values to give better discretization points. A
key point here is that our algorithm calibrates in the begin-
ning of a scenario. The algorithm computes a zero (or nom-
inal) line based on initial sensor readings, and does not flag
diagnoses. To the left in Figure 5, both IT240 and IT267 are
close to this zero line. This zero line can help compensate for
early transients, which may trigger diagnoses, but more im-
portantly, it makes the nominal value of a sensor something
we do not need to know ahead of time. Without CUSUM, we
would have to know this nominal value ahead of time, which
becomes difficult as a system naturally ages. With CUSUM,
we use the first time period tDD of a scenario to figure this
out (calibration). After tDD, CUSUM is relative number to
the nominal reading, with zero being the nominal (weighted)
value of the sensor. After the fault injection, we see in Figure
5 that IT267 CUSUM stays well above the v(0) lower thresh-

5

Annual Conference of the Prognostics and Health Management Society, 2011

-5

0

5

10

15

20

Time

IT267 CUSUM

IT267 RAW
IT240 CUSUM
IT240 RAW

C
ur

re
nt

-5

0

5

10

15

20

C
U

S
U

M

F
au

lt
In

je
ct

io
n

v(0)

Figure 5. Graph illustrating the impact of an abrupt battery degradation offset fault on two current sensors. One sensor is
immediately downstream from the battery (IT240), while the other sensor is farther away, downstream of an inverter (IT267).
The vertical dotted line on the graph indicates when the fault occurred during the 3 minute time inteval shown.

old, while IT240 CUSUM drops below v(0).

3.4 Handling Continuous Offset Faults: Change Nodes
and CUSUM

A

Evidence Nodes Health Nodes

H DR

Rest
of

BN

E1

En

A

S

H

S

H

C

A

H
CH

Battery Circuit Breaker

Voltage Sensor

A A

Figure 6. Bayesian network structure for a battery. The CH
node provides additional evidence to the health state of the
battery.

Suppose that we have a battery, a circuit breaker, a voltage
sensor, and a load (say, a light bulb or a fan) connected in se-
ries. We assume that all these components and loads may fail,
in different ways, and a realistic EPS will contain additional
components and sensors that may also fail. Now consider the
case of a continuous offset fault in the battery. There is the
challenge of diagnosing an offset fault, which might be very
small, using a discrete BN with relatively few states per node.
In addition, there is the challenge of detecting an offset fault

Change voltage e140
CH

nominal drop A (Battery) A (Breaker) H (Sensor)
0.95 0.05 enabledHigh

closed

healthy

0.05 0.95 enabledLow
0.5 0.5 disabled
0.5 0.5 enabledHigh

open0.5 0.5 enabledLow
0.5 0.5 disabled
0.5 0.5 enabledHigh

closed

(not healthy)

0.5 0.5 enabledLow
0.5 0.5 disabled
0.5 0.5 enabledHigh

open0.5 0.5 enabledLow
0.5 0.5 disabled

Table 1. Conditional probability table (CPT) of the CH node
from Figure 6. Each row shows the probabilities for the
CH node’s nominal and drop states (first two columns) for
each combination of states from the battery’s A node, circuit
breaker’sA node, and voltage sensor’sH node (columns 3-5).
Since the probabilities remain identical for all rows when the
H node is unhealthy, we simplified the table by combining all
these unhealthy states into (not healthy).

in an upstream component (the battery) using a downstream
sensor (the voltage sensor). Clearly, we want to retain the
capabilty of diagnosing other types of faults (see (Ricks &
Mengshoel, 2009a, 2009b; Mengshoel et al., 2010; Ricks &
Mengshoel, 2010)) in the battery, the circuit breaker, and the
voltage sensor.
Figure 6 illustrates how we meet these challenges using BNs

6

Annual Conference of the Prognostics and Health Management Society, 2011

and CUSUM computation. Specifically, Figure 6 shows the
BN representation of a battery, a circuit breaker, and a voltage
sensor connected in series. Under nominal conditions, power
flows from the battery, through the circuit breaker and voltage
sensor, and to one or more loads (not depicted). Traditionally,
voltage sensor readings sp(t) for a sensor p lie on the real line
<, but can be discretized so they end up being in one of the
BN states Ω(S) = {voltageLo, voltageHi, voltageMax}
for BN node S. The resulting set of thresholds will con-
tain two levels for the S node in the BN (the lower and
upper threshold). In the case in which the current state is
S = voltageHi, the transition from this state to another oc-
curs when sp(t) < v(0) or sp(t) ≥ v(1) (see Section 2.2).
If the current state is S = voltageLo, a state change would
occur when sp(t) ≥ v(0).
While the simple discretization approach discussed above is
sufficient in many cases, in other cases it does not help, and
this is the case for example for offset faults. If ∆p (Equation
2) is small such that no state change among Ω(S) occurs, then
it is possible that an offset fault may go undiagnosed.
To handle this problem, we use CH nodes and CUSUM. In-
tuitively, the purpose of theCH node in Figure 6 is to provide
additional information about the battery, and specifically con-
tinuous offsets in sensor readings, while at the same time be
influenced by the circuit breaker and voltage sensor. Offsets
in sensor readings (∆sp) that are too small in magnitude to
cross a threshold are handled using CH nodes and CUSUM
techniques. Evidence e(t) that is clamped to a CH node is
derived from the readings sp(t) of a sensor assigned to it,
called the source. The readings from this source sensor are
converted to CUSUM values, which are then discretized and
clamped to the CH node.
In Figure 6, it is the battery, and specifically its health node
H , that the CH node should influence when clamped with
evidence e(t) that indicates a continuous offset fault. We will
call the battery the target. To understand in more detail how
this BN design works, consider in Figure 6 the parent nodes
of the CH node. Both the circuit breaker and voltage sensor
parent nodes have evidence nodes as children or parents. This
is not true, however, for the battery’s A node, which is also
a parent node of the CH node. This design makes sure that
evidence e(t) clamped to CH has less influence on the health
nodes of the circuit breaker and voltage sensor compared to
the influence on the battery’s health node. And it is after all
battery health, specifically offset faults, that we are targeting
with this CH node.
More generally, any component between a source sensor and
a target could affect the relevance of the CH node’s evidence
e(t) for the target. For these intermediary components, it is
the physical state that we are concerned about. For a circuit
breaker, this is either open or closed. An open state should
increase the probability that any voltage drop downstream is
the result of this circuit breaker state and not due to a degra-

dation of the battery. The physical state of these components
are usually represented as the state of an A node that belongs
to the component structure, as in Figure 6. These A nodes
will have a parent-child relationship to the CH node that is
similar to the relationship of the source sensor’s H node.
Table 1 shows the CPT for the CH node depicted in Figure 6.
Notice that for all rows in which the voltage sensor (column
5) is not healthy, the probabilities for all CH node states are
equal. Therefore, despite the discretized CUSUM value that
gets clamped to theCH node, the impact on the posterior dis-
tribution of the battery’s health node H (from the additional
evidence provided by the CH node) will be very small in this
case.

A

Evidence Nodes

Health Nodes

H

Rest
of

BN
A

S

H

S

H

C

A

H

CH

Battery Circuit Breaker

Voltage Sensor

A A

evidence = hi
sensor_voltage_sensor

evidence = closed
sensor_circuit_breaker

evidence = closed
command_circuit_breaker

evidence = nominal
change_battery

0.00% - stuck
0.00% - offsetToMax
1.23% - offsetToHi
0.00% - offsetToLo
98.77% - healthy

health_voltage_sensor

0.00% - disabled
0.58% - degraded
99.42% - healthy

health_battery

Figure 7. The marginal posterior distributions for theH nodes
of the voltage sensor and battery from Figure 6 when no fault
is present.

A CH node used for offset fault diagnosis is typically dis-
cretized into the same number of states as its source. For
instance, the CH node for Figure 6 only has three states,
Ω(CH) = {drop, nominal, rise}, to indicate a downward
change, no change, or upward change, respectively. Thus, as
its source sensor, the CH node will utilize a lower and upper
threshold. In the case of a battery degradation, the state of the
voltage sensor’s S node (Figure 6) may not change at all, but
the CH node’s state will become CH = drop after crossing
v(0) to indicate the slight voltage drop due to the degradation.
Figure 7 shows the marginal posterior distributions for the H
nodes of the source sensor and battery (Figure 6) under nom-
inal conditions. In this example, the circuit breaker’s state is
closed, and the source sensor is deemed to be healthy. The
state of the CH node is nominal. Thus, the state of the bat-
tery’s health node is healthy with very high probability.
Now suppose the source sensor’s value drops, but the mag-

7

Annual Conference of the Prognostics and Health Management Society, 2011

A

Evidence Nodes

Health Nodes

H

Rest
of

BN
A

S

H

S

H

C

A

H

CH

Battery Circuit Breaker

Voltage Sensor

A A

evidence = hi
sensor_voltage_sensor

evidence = closed
sensor_circuit_breaker

evidence = closed
command_circuit_breaker

evidence = drop
change_battery

0.00% - stuck
0.01% - offsetToMax
7.92% - offsetToHi
0.00% - offsetToLo
92.07% - healthy

health_voltage_sensor

0.00% - disabled
59.42% - degraded
40.58% - healthy

health_battery

Figure 8. The marginal posterior distributions for theH nodes
of the voltage sensor and battery from Figure 6, after a slight
voltage drop.

nitude of the drop is too small to cross a threshold v(i) in
the source sensor. In such a scenario, the state of the source
sensor would not change, and assuming all other evidence
clamped in the BN stays the same, this slight drop would not
cause the target’s health state to change in the absense of the
CH node. With the CH node present however (Figure 6),
this voltage drop could be detected. In Figure 8, the state of
the CH node changes from nominal to drop, and thus, the
probability of the degraded state for the battery’s H node in-
creases to become the most probable explanation.
Figure 9 shows another use forCH nodes and CUSUM. Here,
we have a bank with many loads, but very few sensors to
provide evidence concerning their state. Some of these loads
have no sensors at all, and hence diagnosing these loads be-
comes difficult. Here, we create additional CUSUM evidence
e(t), and clamp it to a single CH node. The CUSUM values
are derived from the single current flow sensor (the source)
that measures current flow into the load bank (the target). The
CH node provides discretization of this CUSUM at a higher
resolution (with more states) compared to the CH node from
our previous example (Figure 6).
In a configuration such as this, the CH node will have many
thresholds, {v(0), v(1), . . . , v(n)}, that correspond to n + 1
states. Taking v(i − 1) and v(i) to be the bounds on a
nominal range (nominal state) for the CH node’s CUSUM
values, each sequential crossing of a threshold {v(i), v(i +
1), . . . , v(n)} or {v(i− 1), v(i− 2), . . . , v(0)} represents an
offset of increasing magnitude, and typically corresponds to
a specific fault in a component in the bank. These faults are
usually offset faults or component failures.

Evidence Nodes

Health Node

Rest
of

BN
A

Load

DR E1

En

Current Flow Sensor

S

Load

A Load

Load

A

H

CH

A

A

A

A

A

A

A

A

A

Load Bank

current flow
attribute node

Figure 9. A simplified model of a BN model for a load bank.
Evidence e(t) clamped to the CH node is derived from the
current sensor’s readings. The CH node forms the leaf of a
tree, which is structured to limit the CPT size of CH .

Figure 9 contains a tree-like structure that connects the com-
ponents in the bank to the CH node. This serves to sum the
current flows (providing the source sensor measures current
flow) of each component, so that the CPT size of the CH
node is minimized (Table 2). Note that this does not affect the
number of states, |Ω(CH)|, but rather the number of parents
of a CH node, and hence the size of its CPT. This technique
serves to combine similar states along the tree that would oth-
erwise be present in the CH node’s CPT if each load bank
component was a parent of the CH node. For example, all
components in the load bank have a state that corresponds to
no current draw. In Figure 9, this would equal a total of four
no current states. The two parent A nodes of the CH node
(Figure 9) themselves have two parents. Each of these par-
ents has a state which corresponds to no current and thus the
CH node’s CPT only has to have probabilities for no current
states pertaining to its two parents (see Table 2) rather than all
four parents if all load bank component A nodes were parents
of the CH node.
Using Figure 9 as an example, consider a simple situation
in which all loads in the bank are healthy with a state set
of Ω(X) = {healthy, failed}. Assuming this corresponds
to an A state of w60 for each load and the source sensor is
healthy, we would see the most probable state of the CH
node as w240. This state would be based on the CUSUM
generated from the source sensor’s values. Now suppose one
of the loads failed. Since the source sensor is the sole sensor

8

Annual Conference of the Prognostics and Health Management Society, 2011

Change current it167
CH

w0 w30 w60 ... w420 w450 A A H
0.95 0.05 0.0 ... 0.0 0.0 w0

w0

0.0 0.05 0.9 ... 0.0 0.0 w60
0.0 0.0 0.05 ... 0.0 0.0 w90

... ...
0.0 0.0 0.0 .. 0.0 0.0 w240
0.0 0.0 0.0 ... 0.0 0.0 w270
0.05 0.9 0.05 ... 0.0 0.0 w0

w30

0.0 0.0 0.05 ... 0.0 0.0 w60
0.0 0.0 0.0 ... 0.0 0.0 w90 heal-

... ... thy
0.0 0.0 0.0 ... 0.0 0.0 w240
0.0 0.0 0.0 ... 0.0 0.0 w270

...
0.0 0.0 0.0 ... 0.0 0.0 w0

w150

0.0 0.0 0.0 ... 0.0 0.0 w60
0.0 0.0 0.0 ... 0.0 0.0 w90

... ...
0.0 0.0 0.0 ... 0.05 0.0 w240
0.0 0.0 0.0 ... 0.9 0.05 w270
0.06 0.06 0.06 ... 0.06 0.06 w0

... ... w0
0.06 0.06 0.06 ... 0.06 0.06 w270 (not

... heal-
0.06 0.06 0.06 ... 0.06 0.06 w0 thy)

... ... w150
0.06 0.06 0.06 ... 0.06 0.06 w270

Table 2. Conditional probability table (CPT) of the CH node
from Figure 9. This table is laid out in the same format as Ta-
ble 1. Some simplifications were made to the CPT so it would
fit, including taking out some intermediary states (represented
by ’...’) from the CH node and its parents.

for the entire bank, and considering it only has three states,
this load failure may not cause enough of a current drop to
cause a change of state in the source sensor. If this were the
case, the fault would be missed completely. Fortunately, the
CH node would detect this drop and its state would change
to w180.5

3.5 Handling Continuous Drift Faults: Drift Nodes and
CUSUM

Drift faults are characterized by a gradual, approximately lin-
ear change of behavior (see Section 2.3), though sensor noise
may disrupt strict linearity. While abrupt offset faults are di-
agnosed as soon as a threshold is crossed, due to their near
vertical slope at the moment the fault occurs, drift faults usu-
ally do not cross these same offset thresholds immediately,
and our diagnosis of them utilizes time t alongside thresholds
that are specific for drift faults. Utilizing time and new thresh-
olds help to differentiate an abrupt fault that trips a threshold,
from a drift fault that would also trip this same threshold after

5The additional evidence from the CH node would be enough to deter-
mine that a failure had occurred, but not for a specific load. We assume that
a few more sensors would be available to provide additional evidence to the
load bank.

a certain period of time.
A DR node (see Figure 6, voltage sensor) is used to clamp
a boolean drift state, Ω(DR) = {nominal, faulty} for a
component structure. By default, it is clamped to DR =
nominal, or no drift present.
Drift tracking uses threshold values and times on multiple lev-
els, defined as i ∈ {0, . . . , n}. For the i-th level we have:

λ(i) = [v(i), tmin(i), tmax(i)], (6)

where v(i) is a threshold value (see Section 2.2), tmin(i) is
a threshold minimum time, and tmax(i) is a threshold maxi-
mum time. Here, v(i) represents the threshold that must be
reached to move to the next level. Level i = 0 is the ini-
tial level and has these thresholds associated with it: λ(0) =
(v(0), 0,∞). Once v(i) is reached, PRODIAGNOSE moves to
level i + 1 only if tmin(i) ≤ t(i) < tmax(i), in which t(i) is
the time elapsed since the last threshold was reached.6 If v(i)
is reached but t(i) < tmin(i) or t(i) ≥ tmax(i), drift tracking
resets to i = 0. Once the maximal level n has been reached,
there is no reset. Pseudo-code for the DRIFTTRACKER is pro-
vided in Algorithm 1.
The number of levels is configurable. Currently, i ∈
{0, 1, 2, 3}; thus λ(3) represents evidence e(t) of a drift fault,
and DR = faulty at this point. In other words, DR is
clamped to faulty once level i = 3 has been reached.

Algorithm 1 DRIFTTRACKER(λ(i), t(i), i, n)
th← v(i) ∈ λ(i)
min← tmin(i) ∈ λ(i)
max← tmax(i) ∈ λ(i)
if i = n then

return faulty
end if
if |δ̄p(t)| > th and min ≤ t(i) < max then

if i < n then
i← i+ 1

else
return faulty

end if
else
i← 0

end if
return nominal

To bring out the underlying behavioral patterns in a sensor’s
readings and help filter out noise, a threshold v(i) is compared
against the sensor’s CUSUM value, δ̄p(t), at each timestep t,
and not its raw reading sp(t).
Algorithm 1 is integrated into PRODIAGNOSE for DR nodes
similar to how CUSUM is integrated for CH nodes (Ricks &
Mengshoel, 2009b, 2010). The raw sensor data for S nodes
are handled first, which includes assigning the raw sensor val-
ues and discretization of these values (Ricks & Mengshoel,

6To handle both upward and downward drift faults, we take the absolute
value of δ̄p(t). We can safely do that here, under the assumption that drift
faults are consistently one or the other.

9

Annual Conference of the Prognostics and Health Management Society, 2011

2009b). We then process CUSUM values for all CH nodes
and call the DriftTracker (Algorithm 1) for all DR nodes
(which also uses CUSUM values and thus shares much code
with that for CH node processing). CH and DR node types
take input from their S node source sensors. Similar to S
node processing, the CUSUM value for each CH and DR
node is discretized after being calculated. These discretized
values are then clamped to their respective evidence nodes in
the BN before inference is performed.

Drift voltage e140
DR

nominal faulty H (Sensor)
0.99 0.01 healthy
0.99 0.01 offsetToLo
0.99 0.01 offsetToHi
0.99 0.01 offsetToMax
0.01 0.99 drift
0.99 0.01 stuck

Table 3. Conditional probability table (CPT) of the DR node
from Figure 6. If the DR node is clamped to nominal, then
the H node (column 3) has a high probability of being in any
state except for drift. Conversely, if faulty is clamped to the
DR node, the H node has a high probability of being in the
drift state.

Using Figure 6 as an example, consider a situation in which
no drift fault is present. This would result in a DR state of
nominal. According to the DR node’s CPT (Table 3), with a
clamped state of nominal, the parent H node has equal prob-
ability of being in any state except for the drift state. Now
if a drift fault were to be detected for the voltage sensor, the
DR clamped state would become faulty. This would greatly
increase the probability of the voltage sensor’s health state
changing to drift (Table 3). Note that since drift is an un-
healthy state, the CH node from Figure 6 would no longer
have much influence over the battery under this condition (see
Section 3.4).

4. EXPERIMENTAL RESULTS

For experimentation, the ADAPT EPS was used. ADAPT is
a real-world EPS, located at the NASA Ames Research Cen-
ter, that reflects the characteristics of a true aerospace vehicle
EPS, while providing a controlled environment for injecting
faults and recording data (Poll et al., 2007). Data from each
ADAPT run is stored in a scenario file, which can later be
ingested by the diagnostic software. This design means the
diagnostic algorithm can be repeatably run on any scenario
file, supporting iterative improvement of the BN and diagnos-
tic system during the development process.
In this section, we report on experimental results for PRODI-
AGNOSE using two ADAPT data sets, namely DXC-09 and
DXC-10 data used for competitions arranged as part of the

DX Workshop Series.7

4.1 Experiments Using DXC-10 Training Data

The Diagnosis Workshop’s 2010 competition (DXC-10)8 was
divided into two tiers: Diagnostic Problem 1 (DP1) and Diag-
nostic Problem 2 (DP2). A main difference, compared to the
2009 competition (DXC-09), was the inclusion of drift (or in-
cipient) and intermittent faults in DXC-10. Abrupt faults (in-
cluding abrupt offset faults) were included in DXC-10, as in
DXC-09. Consequently, these data sets test the performance
of PRODIAGNOSE on drift and abrupt offset faults, which
is where our CUSUM-based technique are intended to help.
These experimental results were obtained by running training
set scenarios provided to all DXC-10 competitors.

4.1.1 Diagnostic Problem 1
DP1 uses a subset of the ADAPT EPS. This subset consists of
one battery, connected to a DC load, and an inverter with two
AC loads. ADAPT is in a fully powered-up state throughout
a scenario. Scenarios generated from this configuration of the
EPS are either single-fault or nominal. DP1 contains both
offset faults and drift faults, both of which test our CUSUM-
based diagnosis technique.
DP1 consists of 39 scenarios in its training set. Of these, 5
are nominal (no fault injection), 12 involve sensor faults, and
22 involve component faults. Of these 39 scenarios, 7 con-
tain offset faults, and 7 contain drift faults. Note that 9 other
scenarios in the DP1 training set contain intermittent offset
faults. While PRODIAGNOSE handles these similar to the
abrupt case, details have been discussed previously (Ricks &
Mengshoel, 2010) and are beyond this paper’s scope.
The DP1 Bayesian network currently has a total of 148 nodes,
176 edges, and a cardinality range of [2, 10]. The DP1 BN
has the same overall structure as the DP2 BN (see Section
4.1.2). Some notable differences are the inclusion, in DP1, of
additional evidence nodes (such as DR nodes) for fault types
that are not present in DP2, specifically intermittent and drift
faults, and additional CH nodes to aid in load fault diagnosis
of fault types such as drift faults.
The metrics in Table 4 are briefly summarized here to aid in-
terpretation of the results. Mean Time To Isolate refers to the
time from when a fault is injected until that fault is diagnosed.
Mean Time To Detect refers to the time from when a fault is
injected until any fault is detected. False Positives occur when
PRODIAGNOSE diagnoses a fault that is not actually present.
False Negatives occur when PRODIAGNOSE fails to diagnose
a fault that is present. Low False Positive Rates are important
because it is undesirable to perform corrective action when
the system is operating correctly. A low False Negatives Rate

7More information about the diagnostic competitions, including these
data sets, can be found here: http://www.dx-competition.org/.

8More information on DXC-10, including scenario files, can be found
here: https://www.phmsociety.org/competition/dxc/10.

10

Annual Conference of the Prognostics and Health Management Society, 2011

CUSUM
Metric Enabled Disabled
Detection Accuracy 92.31% 46.15%
False Positives Rate 0% 0%
False Negatives Rate 8.82% 61.76%
Mean Time To Detect 17.97 s 28.36 s
Mean Time To Isolate 72.27 s 51.14 s

Table 4. Experimental results with CUSUM enabled and dis-
abled using electrical power system scenarios for DP1.

indicates that few system faults will remain undetected.
In these experiments, PRODIAGNOSE achieved an impres-
sive False Positives Rate of 0% and a False Negatives Rate
of 8.82% when CUSUM was enabled. When CUSUM was
disabled, on the other hand, detection accuracy plummeted to
46% with a false negative rate of almost 62%. Detection times
also increased with CUSUM disabled, due to increased detec-
tion time of certain offset faults that now must rely solely on
an S node state change. Note that when CUSUM is disabled,
drift faults are difficult to diagnose correctly (they will appear
as abrupt offset faults) due to drift tracking’s dependence on
CUSUM. However, this actually lowers isolation times due to
no isolation time being recorded for a mis-diagnosis.9

4.1.2 Diagnostic Problem 2

DP2 represents the entire ADAPT EPS. ADAPT consists of
three batteries as the source, connected to two DC load banks,
and two inverters each connected to an AC load bank. Sce-
narios generated from the full ADAPT EPS can be single,
double, or triple-fault; or nominal. ADAPT is initially in a
powered-down state, and various relays are closed and opened
through a scenario to provide power to various components
of the EPS. DP2 contains offset faults, but no drift faults, and
thus our CUSUM-based diagnosis approach is not as exten-
sively tested as in DP1.
DP2’s training set contains 34 scenarios in total: 7 nominal, 9
with sensor faults, and 21 with component faults (some sce-
narios have both sensor and component faults). Among DP2
scenarios, 6 contain offset faults.
Since DP2 does not contain scenarios with drift and intermit-
tent faults, the DP2 Bayesian network does not implement
support for all the fault types seen in DP1. Thus, additional
evidence nodes (such as DR nodes) for these fault types are
omitted from the DP2 BN. The DP2 BN currently has a total
of 493 nodes, 599 edges, and a cardinality range of [2, 16].
Experimental results for DP2 are summarized in Table 5.
Compared to DP1, the DP2 data set did not have as many
scenarios that might benefit from CUSUM (though it is worth

9This is according to the DXC definition of Mean Time To Isolate; one
could certainly make the argument that a mis-diagnosis should be punished
more harshly.

CUSUM
Metric Enabled Disabled
Detection Accuracy 90.91% 87.88%
False Positives Rate 3.03% 3.03%
False Negatives Rate 7.69% 11.54%
Mean Time To Detect 5.74 s 10.56 s
Mean Time To Isolate 36.78 s 39.97 s

Table 5. Experimental results with CUSUM enabled and dis-
abled using electrical power system scenarios for DP2.

noting that 13 scenarios which involved component faults are
diagnosed by catching offsets in sensor readings). Conse-
quently, DP2’s increase in accuracy when using CUSUM is
not as pronounced, although it does improve from 87.88% to
90.91%. Most of DP2’s faults could be diagnosed without
needing the additional evidence provided by CH nodes. DP2
also does not contain drift faults, for which PRODIAGNOSE
is dependent on CUSUM techniques to diagnose. In addition,
with CUSUM enabled, the mean detection time decreased by
almost half, due to the role it plays in load bank component
diagnosis (see Section 3.4). This is significant, as quick di-
agnosis is very important in aircraft and spacecraft. Finally,
using CUSUM should not adversely impact the overall diag-
nostic performance of PRODIAGNOSE, and we see that all
metrics in Table 5 are equally good or better when CUSUM
is enabled compared to when it is disabled.

4.2 DXC-09 and DXC-10 Competition Results

PRODIAGNOSE had the best performance in three of four
of the Diagnosis Workshop’s industrial track competitions in
2009 and 2010 (DXC-09 and DXC-10). In both DXC-09
and DXC-10 the CUSUM techniques discussed in this pa-
per played a crucial role. DXC-10 competition data indi-
cate strong performance of PRODIAGNOSE (Kurtoglu et al.,
2010), implementing the CUSUM approach for diagnosis of
offset and drift faults, against algorithms relying on alter-
nate techniques. In the official competition, PRODIAGNOSE
achieved an overall scenario detection accuracy of 82.5% in
DP1 and 89.2% in DP2, surpassing the second-best DP2 en-
trant by 19%. In the DP2 category, PRODIAGNOSE also had
the fewest fault classification errors and the quickest fault de-
tection time. Data from the 2009 competition (DXC-09) indi-
cate PRODIAGNOSE as the top performer with detection ac-
curacies of 96.7% and 88.3% in Tier 1 and Tier 2, respectively
(Kurtoglu et al., 2009).

5. CONCLUSION

For fault diagnosis in complex and resource-constrained en-
vironments, we would like a diagnosis algorithm to be exact,
fast, predictable, able to handle hybrid (discrete and contin-
uous) as well as dynamic behavior, and easy to verify and
validate (V&V).

11

Annual Conference of the Prognostics and Health Management Society, 2011

Fulfilling all these requirements is certainly a tall order. How-
ever, we have in this paper extended previous work on the
PRODIAGNOSE diagnostic algorithm (Ricks & Mengshoel,
2009a, 2009b; Mengshoel et al., 2010; Ricks & Mengshoel,
2010), and discussed the promise of using static arithmetic
circuits, compiled from static Bayesian networks. In particu-
lar, we have shown how fault diagnosis using static arithmetic
circuits can be augmented with a cumulative sum (CUSUM)
technique, resulting in dramatically improved performance in
situations with continuous fault dynamics. In experiments
with data from a real-world electrical power system, we have
observed that our CUSUM-based technique leads to signif-
icantly improved performance in situations with continuous
offset and drift faults. In addition, the CUSUM techniques
discussed in this paper played a crucial role in the strong
performance of PRODIAGNOSE in the Diagnosis Workshop’s
industrial track competitions in 2009 and 2010 (DXC-09
and DXC-10). In DXC-09 and DXC-10, PRODIAGNOSE
achieved the best performance in three of four industrial track
competitions.

Acknowledgments

This material is based, in part, upon work supported by NSF
awards CCF0937044 and ECCS0931978.

REFERENCES

Chan, H., & Darwiche, A. (2005). On the revision of prob-
abilistic beliefs using uncertain evidence. Artificial In-
telligence, 163(1), 67–90.

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian
Networks Using Variable Elimination. In Proceedings
of the Twentieth International Joint Conference on Ar-
tificial Intelligence (IJCAI-07) (p. 2443-2449). Hyder-
abad, India.

Choi, A., Darwiche, A., Zheng, L., & Mengshoel, O. J.
(2011). Data Mining in Systems Health Management:
Detection, Diagnostics, and Prognostics. In A. Srivas-
tava & J. Han (Eds.), (chap. A Tutorial on Bayesian
Networks for System Health Management). Chapman
and Hall/CRC Press.

Darwiche, A. (2003). A Differential Approach to Inference in
Bayesian Networks. Journal of the ACM, 50(3), 280–
305.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian
Networks. Cambridge, UK: Cambridge University
Press.

Dechter, R. (1999). Bucket Elimination: A Unifying Frame-
work for Reasoning. Artificial Intelligence, 113(1-2),
41-85. Available from citeseer.nj.nec.com/
article/dechter99bucket.html

Kozlov, A., & Koller, D. (1997). Nonuniform Dynamic Dis-
cretization in Hybrid Networks. In In Proc. UAI (pp.
314–325). Morgan Kaufmann.

Kurtoglu, T., Feldman, A., Poll, S., deKleer, J., Narasimhan,
S., Garcia, D., et al. (2010). Second Interna-
tional Diagnostic Competition (DXC10): In-
dustrial Track Diagnostic Problem Descriptions
(Tech. Rep.). NASA ARC and PARC. Avail-
able from http://www.phmsociety.org/
competition/dxc/10/files

Kurtoglu, T., Narasimhan, S., Poll, S., Garcia, D., Kuhn, L.,
deKleer, J., et al. (2009, June). First International Di-
agnosis Competition - DXC’09. In Proc. of the Twenti-
eth International Workshop on Principles of Diagnosis
(DX’09) (pp. 383–396). Stockholm, Sweden.

Langseth, H., Nielsen, T. D., Rumı́, R., & Salmeron, A.
(2009). Inference in hybrid Bayesian networks. Re-
liability Engineering & System Safety, 94(10), 1499–
1509.

Lauritzen, S., & Spiegelhalter, D. J. (1988). Local computa-
tions with probabilities on graphical structures and their
application to expert systems (with discussion). Jour-
nal of the Royal Statistical Society series B, 50(2), 157–
224.

Lerner, U., Parr, R., Koller, D., & Biswas, G. (2000).
Bayesian Fault Detection and Diagnosis in Dynamic
Systems. In Proceedings of the Seventeenth na-
tional Conference on Artificial Intelligence (AAAI-00)
(p. 531-537). Available from citeseer.ist.psu
.edu/lerner00bayesian.html

Mengshoel, O. J. (2007). Designing Resource-Bounded Rea-
soners using Bayesian Networks: System Health Mon-
itoring and Diagnosis. In Proceedings of the 18th Inter-
national Workshop on Principles of Diagnosis (DX-07)
(pp. 330–337). Nashville, TN.

Mengshoel, O. J., Chavira, M., Cascio, K., Poll, S., Darwiche,
A., & Uckun, S. (2010). Probabilistic Model-Based Di-
agnosis: An Electrical Power System Case Study. IEEE
Trans. on Systems, Man, and Cybernetics, 40(5), 874–
885.

Mengshoel, O. J., Poll, S., & Kurtoglu, T. (2009). Develop-
ing Large-Scale Bayesian Networks by Composition:
Fault Diagnosis of Electrical Power Systems in Aircraft
and Spacecraft. In Proc. of the IJCAI-09 Workshop on
Self-? and Autonomous Systems (SAS): Reasoning and
Integration Challenges.

Page, E. S. (1954). Continuous inspection schemes.
Biometrika, 41, 100 - 115.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann.

Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D.,
Lee, C., et al. (2007). Advanced Diagnostics and Prog-
nostics Testbed. In Proceedings of the 18th Interna-
tional Workshop on Principles of Diagnosis (DX-07)
(pp. 178–185). Nashville, TN.

Ricks, B. W., & Mengshoel, O. J. (2009a). The Diagnostic

12

Annual Conference of the Prognostics and Health Management Society, 2011

Challenge Competition: Probabilistic Techniques for
Fault Diagnosis in Electrical Power Systems. In Proc.
of the 20th International Workshop on Principles of Di-
agnosis (DX-09). Stockholm, Sweden.

Ricks, B. W., & Mengshoel, O. J. (2009b). Methods for Prob-
abilistic Fault Diagnosis: An Electrical Power System
Case Study. In Proc. of Annual Conference of the PHM
Society, 2009 (PHM-09). San Diego, CA.

Ricks, B. W., & Mengshoel, O. J. (2010). Diagnosing In-
termittent and Persistent Faults using Static Bayesian
Networks. In Proc. of the 21st International Workshop
on Principles of Diagnosis (DX-10). Portland, OR.

Brian Ricks received the Bachelor’s of Sci-
ence degree in Computer Science from the
University of Texas at Dallas, in 2010.
He is currently a graduate student at the
University of Texas at Dallas, majoring in
Computer Science. He previously worked
at the NASA Ames Research Center, Intel-
ligent Systems Division, as an intern with

Carnegie Mellon University - Silicon Valley, and also at the
NASA Ames Research Center as an intern with the Universi-
ties Space Research Program. He will graduate in Spring of
2012 with a Master’s in Computer Science. Mr. Ricks per-
formed part of the research reported here during both prior
internships, under the leadership of Dr. Ole J. Mengshoel.

Ole J. Mengshoel received the B.S. degree
from the Norwegian Institute of Technol-
ogy, Trondheim, Norway, in 1989, and the
Ph.D. degree from the University of Illi-
nois at Urbana-Champaign, Illinois, in 1999,
both in computer science.
He is currently a Senior Systems Scientist
with Carnegie Mellon University (CMU),

Silicon Valley, CA, and affiliated with the Intelligent Sys-
tems Division, National Aeronautics and Space Adminis-
tration (NASA) Ames Research Center, Moffett Field, CA.
Prior to joining CMU, he was a Senior Scientist and Re-
search Area Lead with USRA/RIACS and a Research Sci-
entist with the Decision Sciences Group, Rockwell Scientific,
and Knowledge-Based Systems, SINTEF, Norway. His cur-
rent research focuses on reasoning, machine learning, diagno-
sis, prognosis, and decision support under uncertainty – often
using Bayesian networks and with aerospace applications of
interest to NASA. He has published more than 50 papers and
papers in journals, conference proceedings, and workshops.
He is the holder of four U.S. patents.
Dr. Mengshoel is a member of the Association for the Ad-
vancement of Artificial Intelligence, the Association for Com-
puter Machinery, and IEEE.

13

