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ABSTRACT

There is no established threshold or limit for gear 
vibration based condition indicators (CI) that indicates 
when a gear is in need of maintenance. The best we can 
do is set CI thresholds statistically, based on some 
small probability of false alarm. Further, to the best of 
our knowledge, there is no single CI that is sensitive to 
every failure mode of a gear.  This suggests that any 
condition based maintenance system for gears will have 
some form of sensor fusion.  

Three statistical models were developed to define a 
gear health indicator (HI) as a function of CI:  order 
statistics (max of n CIs), sum of CIs and normalized 
energy.  Since CIs tend to be correlated, a whitening 
process was developed to ensure the HI threshold is 
consistent with a defined probability of false alarm. 
These models were developed for CIs with Gaussian or 
Rayleigh (skewed) distributions.  Finally, these 
functions, used to generate HIs, were tested on gear test 
stand data and their performance evaluated as 
compared to the end state of the gear (e.g. photos of
damage). Results show the HIs performed well 
detecting pitting damage to gears. *

1 INTRODUCTION

Vibration based gear fault detection algorithms have 
been developed to successfully detect damaged on 
gears (McFadden and Smith 1985). Significant effort 
has also been expended to validate the efficacy of these 
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United States License, which permits unrestricted use, 
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original author and source are credited.

algorithms (Zakrajsek 1993, Lewicki et al. 2010). 
These studies have demonstrated the ability of gear CI 
algorithms to detect damage. However, they have not 
established standardized threshold values for a given 
quantified level of damage. Additionally, it has been 
shown (Wemhoff et al. 2007, Lewicki et al. 2010) that 
different algorithms are sensitive to different fault 
modes (Tooth Crack, Tooth Spacing Error, Tooth 
surfacing Pitting).

The concept of thresholding was explored by Byington 
et al. (2003), where for a given, single CI, a Probability 
Density Function (PDF) for the Rician/Rice statistical 
distribution was used to set a threshold based on an 
probability of false alarm (PFA).  No single CI has 
been identified that works with all fault modes. This 
suggests that any functioning condition monitoring will 
use n number of CIs in the evaluation of gear health. A 
need exists for a procedure to set a PFA for a function 
using n number of CIs.

All CIs have a probability distribution (PDF). Any 
operation on the CI to form a health index (HI), is then 
a function of distributions (Wackerly et al. 1996). 
Functions such as:

 The maximum of n CI (the order statistics)
 The sum of n CIs, or
 The norm of n CIs (energy)

are valid if and only if the distribution (e.g. CIs) are 
independent and identical (Wackerly et al. 1996). For 
Gaussian distribution, subtracting the mean and 
dividing by the standard deviation will give identical Z
distributions. The issue of independence is much more 
difficult.  

Two CIs are independent if the probability (P) of CI1

and CI2 are equal to:
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P CI1 CI2  P CI1 P CI2          (1)

Equivalently, CI1 and CI2 are independent random 
variables if the covariance of CI1, CI2 is 0. This is, in 
general, not the case, where the correlation coefficient 
is defined as the covariance divided by the standard 
deviation:

 
Cov CI1,CI2 

1 2
( 2)

The range of correlation coefficients used in this study 
for pairs of gear CIs are listed in Table 1. 

ij
CI 1 CI 2 CI 3 CI 4 CI 5 CI 6

CI 1 1 0.84 0.79 0.66 -0.47 0.74

CI 2 1 0.46 0.27 -0.59 0.36

CI 3 1 0.96 -0.03 0.97

CI 4 1 0.11 0.98

CI 5 1 0.05

CI 6 1

Table 1: Correlation Coefficients for the Six CI Used 
in the Study

This correlation between CIs implies that for a given 
function of distributions to have a threshold that 
operationally meets the design PFA, the CIs must be 
whitened (e.g. de-correlated). Fukinaga (1990) presents 
a whitening transform using the Eigenvector matrix 
multiplied by the square root for the Eigenvalues 
(diagonal matrix) of the covariance of the CIs. 

A  1 2T
          (3)

where T is the transpose of the eigenvector matrix,
and  is the eigenvalue matrix. The transform can be 
shown to not be orthonormal, illustrating that the 
Euclidean distances are not preserved in the transform. 
While ideal for maximizing the distance (separation) 
between classes (such as in a Baysian classifier), the 
distribution of the original CI is not preserved. This 
property of the transform makes it inappropriate for 
threshold setting.

If the CIs represented a metric such as shaft order 
acceleration, then one can construct an HI which is the 
square of the normalized power (e.g. square root of the 
acceleration squared). This can be defined as 
normalized energy, where the health index is: 

HI  CI  cov(CI)1  CIT
         (4)

Bechhoefer and Bernhard (2007) were able to whiten 
the CI and establish a threshold for a given PFA. 

The objective of this analysis is to broaden the 
diagnostic capability available for gear health indexes 
by generalizing a method to develop HIs across CIs 
with other functions and statistical distributions.  

1. GENERALIZED FUNCTION OF 
DISTRIBUTIONS

The desired linear transformation operates on the vector 
CI such that:

)(0

,

Y

LY

ncorrelatio

CI T





  (5)

where Y preserves the original distribution of the CIs.

The Cholesky Decomposition of Hermitian, positive 
definite matrix results in A = LL*, where L is a lower 
triangular, and L* is its conjugate transpose. By 
definition, the inverse covariance is positive definite 
Hermitian.  It then follows that:

LL*  1     (6)
and 

Y  L  CIT          (7)
where Y is 1 to n independent CI with unit variance 
(one CI representing the trivial case). The Cholesky 
Decomposition, in effect, creates the square root of the 
inverse covariance. This in turn is analogous to 
dividing the CI by its standard deviation (the trivial 
case of one CI). In turn, Eq. (7) creates the necessary 
independent and identical distributions required to 
calculate the critical values for a function of 
distributions. 

1.1 Gear Health as a Function of Distributions 

Prior to detailing the mathematical methods used to 
develop the HI, background information will be 
discussed. A common nomenclature for the 
user/operator of the condition monitoring system will
be presented, such that the health index (HI) has a 
common meaning. The critical values (threshold) will 
be different for each monitored component, because the 
measured CI statistics (e.g. covariance) will be unique 
for each component type. The threshold will be 
normalized, such that the HI is independent of the 
component. Further, using guidance from GL 
Renewables (2007), the HI will be designed such that 
there are two alert levels: warning and alarm.  Then the 
HI is defined such that the range is:

 0 to 1, where the probability of exceeding an 
HI of 0.5 is the PFA

 A warning alert is generated when the HI is 
greater than or equal to 0.75

 An alarm alert is generated when the HI is 
greater than or equal to 1.0
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2. HI BASED ON RAYLEIGH PDFs

The PDF for the Rayleigh distribution uses a single 
parameter,  , resulting in the mean ( = *(/2)0.5) and 
variance (2 = (2 - /2) * 2) being a function of . 
Note that when applying Eq. (7) to normalize and 
whiten the vector of CI data, the value for  for each CI 
will then be: 

5264.122

,1
2

2









           (8)

The PDF of the Rayliegh is:

   22 2exp  xxxf         (9)

The cumulative distribution function, the integral of (9) 
is:

F (x) 1 exp x 2 22          (10)

It can be shown that the PDF of the magnitude of a 
frequency of a random signal is a Rayleigh PDF 
(Bechhoefer and Bernhard 2006). This property makes 
the Rayleigh an appropriate model for thresholds for 
shaft (Shaft order 1, etc) and bearing energies. The next 
section will demonstrate how this can be used 
appropriately for gears.

2.1 The Rayleigh Order Statistic

Consider a HI function which takes the maximum of n 
CIs. If the CIs are Independent and Identical (IID), then 
the function defines the order statistic. Given the order 
statistic PDF as (Wackerly 1996):

g x   n F x  n1
f n 

   (11)

The threshold is then calculated for t, from the inverse 
Cumulative distribution function (CDF):

    dxnfxFnPFA
t

x

n 

 11
      (12)

For n = 3, PFA of 10-3, after solving the inverse CDF 
(Eq 12), the threshold t equals 6.1 (Note, the solution to 
Eq 12 can sometime require significant effort. See the 
Appendix for solution strategies). The HI algorithm, 
referred to as the Rayleigh Order Statistics (OS) is then:

  1.6
5.0max  YHI

       (13)

Here Y = L x CIT (e.g. whitening and normalizing the 
CIs by applying Eq (7), which is scaled by 0.5 over the 
threshold. This then is consistent with the definition of 
the HI presented in 2.1, or a HI of 0.5 for the defined 
PFA.

2.2 The Sum of n Rayleigh

Consider a HI function which takes the sum of n CIs. If 
the CIs are Independent and Identical (IID), then the 
function defines a distribution with a Nakagami PDF 
(Bechhoefer and Bernhard 2007). Given the mean and 
variance for the Rayleigh, the sum of n normalized 
Rayleigh distributions is n * *(/2)0.5, with variance 
2 = n. Given the Nakagami PDF as:

 
  2

1212
x

ex 






 






       (14)

where  is the gamma function. Then, the statistics for 
the Nakagami are calculated as: 

     2222 , xExVarxE           (15)

which are used in the inverse Cumulative distribution 
function (CDF) to calculate the threshold. 

For n = 3 CIs, the threshold is 10.125 and the HI 
algorithm, referred to as the Rayleigh normalized 
energy (NE) is then:




3

1125.10
5.0

i iHI Y
    (16)

For a more in depth treatment of the Nakagami, see
Bechhoefer and Bernhard (2007). Again, the dividing 
0.5/10.125 allows Eq (15) to be consistent with the HI 
paradigm.

2.3 The Total Energy of n Rayleigh

Consider a HI function which takes the norm of n CIs, 
which represents the normalized energy. If the CIs are 
IID, it can be shown that the function defines a 
Nakagami PDF (Bechhoefer and Bernhard 2007). The 
mean is now 2*n*1/(2-2)0.5. Then, the statistics for the 
Nakagami are calculated as: 

  nn *2*221,           (17)

which are used in the inverse CDF to calculate the 
threshold. For our n = 3 CIs, the threshold is 6.259 and 
the HI algorithm, referred to as the Sum of Raleigh 
(SR) is then:




3

1

2

259.6
5.0

i iHI Y
       (18)

3. HI BASED ON GAUSSIAN PDFs

If it is found that the distribution of the CI data follows 
a Gaussian distribution a comparable mathematical 
process can be applied.  Using similar constructs as 
applied to the Rayleigh PDF, we can generate 
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thresholds for the Gaussian distribution. The PDF of 
the Gaussian is:

    22 2exp2   xxxf    (19)

The cumulative distribution function, the integral of Eq 
(19) is

  dttxxF
x




 22 2exp2)( 
       (20)

3.1 The Gaussian Order Statistic

Eq. 11 can be applied to the Gaussian PDF and CDF to 
derive the order statistic PDF of the Gaussian HI 
function:

    
  22

2

22

2exp2

2exp23
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    (21)

Again, we find the threshold by solving the inverse 
CDF of Eq (12). The PDF of the order statistic (OS) for 
a zero mean Gaussian is not bounded at zero, such as 
the Rayleigh. As such, to be consistent without the HI 
paradigm of lower HI range of 0, the OS PDF is shifted 
such the probability of the HI being less than or equal 
to zero is small. In this example, that probability is 
defined at 0.05%, corresponding to a PFA of 0.95 (e.g. 
a lower threshold). For n = 3, for a PFA of 0.95, lower 
threshold, t is -0.335, and upper threshold for a PFA of 
10-3, the threshold t is 3.41 (for HI of 0.5). The CIs are 
now a z distribution (Gaussian normalized with zero 
mean and unit variance). An additional rule is set such 
that any HI less than the lower 5% (corresponding to a 
PFA of 0.95) is an HI of zero. The HI algorithm is:

 
    34.041.3

5.034.max 



Y

mLY

HI

CI T

  (22)

where m is the mean of the CIs. Subtracting the mean 
and multiplying by L transforms the CIs into n, Z 
distributions (zero mean, IID Gaussian distributions).

3.2 The Sum of n Gaussian

Consider a HI function that takes the sum of n Gaussian 
CIs. Then the mean and variance of the sum of the CI 
are:

  E Li 
i1

3 ,  2  n
          (23)

Again the inverse normal CDF is used to calculate the 
threshold.  Similar to (22), an offset and scale value is 

needed to ensure the HI is lower bounded to 0. For n = 
3 CI, the mean,  = 3 and variance 2 = 3. Using the 
inverse normal CDF, the lower threshold (PFA of .95) 
is -0.15 and the and upper threshold (PFA 10-3), is 
8.352, then the HI algorithm is then:
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   (24)

3.3 The Total Energy of n Gaussian

Finally, we will consider a HI function that takes the 
norm of n Gaussian CIs. Again it can be shown that the 
function defines a Nakagami PDF (Bechhoefer and 
Bernhard 2007). The mean is 2*n* 1/sqrt(2-2), with 
= n and  is /2. Using the inverse Nakagami CDF to 
calculate the threshold for n = 3 CIs and a PFA of 10-3, 
the threshold is: 3.368.  The HI algorithm is then:

Y L  CIT

HI  0.5
3.368 Yi

2

i1

3
                 (25)

4. APPLICATION TO GEAR FAULT

Vibration data from experiments performed in the 
Spiral Bevel Gear Test facility at NASA Glenn was 
reprocessed for this analysis. A description of the test 
rig and test procedure is given in Dempsey et al. 
(2002). The rig is used to quantify the performance of 
gear material, gear tooth design and lubrication 
additives on the fatigue strength of gears. During this 
testing, CIs and oil debris monitoring were used to 
detect pitting damage on spiral bevel gears (Figure 1
Test Rig and Gears (Dempsey et al. 2002).

Figure 1 Test Rig and Gears (Dempsey et al. 2002)

The tests consisted of running the gears under load 
through a “back to back” configuration, with 
acquisitions made at 1 minute intervals, generating time 
synchronous averages (TSA) on the gear shaft (36 
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teeth). The pinion, on which the damage occurred, has 
12 teeth.
TSA data was re-processed with gear CI algorithms 
presented in Zakrajsek et al. (1993) and Wemhoff et al.  
(2007), to include:

 TSA: RMS, Kurtosis (KT), Peak-to-Peak 
(P2P), Crest Factor (CF)

 Residual RMS, KT, P2P, CF
 Energy Operator RMS, KT
 Energy Ratio
 FM0
 Sideband Level factor
 Narrowband (NB) RMS, KT, CF
 Amplitude Modulation (AM) RMS, KT
 Derivative AM KT
 Frequency Modulation (FM) RMS, KT

From these CIs, a total of six CIs were used for the HI 
calculation: Residual RMS, Energy Operator RMS, 
FM0, NB KT, AM KT and FM RMS. These CIs were 
chosen because they exhibited good sensitivity to the 
fault. Residual Kurtosis and Energy Ratio also were 
good indicators, but were not chosen because; 

 It has been the researcher’s experience that 
these CIs become ineffective when used in 
complex gear boxes, and

 As the faults progresses, these CIs lose 
effectiveness.  The residual kurtosis can in fact 
decrease, while the energy ratio will approach 
1.

Covariance and mean values for the six CI were 
calculated by sampling healthy data from four gears 
prior to the fault propagating. This was done by 
randomly selecting 100 data points from each gear, and 
calculating the covariance and means over the resulting 
400 data points.
The selected CI’s PDF were not Gaussian, but 
exhibited a high degree of skewness. Because of this, 
the PDFs were “left shifted” by subtracting an offset 
such that the PDFs exhibited Rayleigh like 
distributions. Then, the threshold setting algorithms 
were tested for:

 Rayleigh order statistic (OS): threshold 8.37 
for n = 6 and a PFA of 10-6, 

 Rayleigh normalized energy (NE): threshold 
10.88 for n = 6 and a PFA of 10-6, 

 Sum of Rayleigh (SR): threshold 24.96 for n
= 6 and a PFA of 10-6, 

Figures 2, 4 and 6 are HI plots that compare the OS, 
NE and SR algorithms during three experiments in the 
test rig. The HI trend (in black) is plotted on top of the 
raw HI values (in blue).  Figures 3, 5 and 7 show the 
amount of pitting damage on the pinion teeth at each 
test completion.

Figure 2 Test BV2_10_15_01EX4

Note that the spikes corresponded to changes in torque 
on the rig. All the HI algorithms where sensitive to 
damage, although in general, the best system response 
was from both the OS and NE.  

Figure 3 Pitting Damage on EX4

Note that the decrease in the HI rate of change 
corresponds to a decrease in torque load towards the 
end of the test. 

Figure 4 Test BV2_10_26_01EX5
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For the data plotted in figure 4, this test appears to have 
been halted prior to heavy pitting damage, as the gear 
HI is reach only 0.5. However, the photo of gear EX5 
(Figure 5) shows extensive pitting damage.

Figure 5 Damage on Gear EX5

Figure 6 Test BV2_1_4_02EX6

Figure 7 Damage on Gear EX6

5. DISSCUSION AND OBSERVATIONS

After the three statistical models were applied to the 
test rig CI data, it was observed that each HI algorithm 
performed well, although the OS and NE is clearly 
more sensitive to fault than the SR algorithm. 
Additionally, the measured RMS noise of the OS was 
15% to 25% higher than the NE, that RMS value being 
approximately 0.05 HI. However, the most important 

contribution is that a process has been developed to 
whiten CI data so that different HI algorithms can be 
explored with some assurance that, mathematically, the 
PFA performance was being met. 

Additionally, it is encouraging that, based solely on 
nominal data (statistics taken prior to fault 
propagation), it was observed that:

 An HI of 1 displays damage warranting 
maintenance. 

 That nominal data is approximately 0.1 to 0.2 
HI, where the PFA was set for 0.5 HI

 That while no one CI seemed to work for 
every gear tested, the HI function captured the 
damage consistently (even for a small sample 
set).

 The HI trends were low noise. This can 
facilitate prognostics. 

6. CONCLUSION

Thresholding is critical for the operation of a condition 
monitoring system. If the probability of false alarm 
(PFA) is too high, then the operator is flooded with 
numerous false alarms and tends to disregards alerts. 
Unfortunately, some of the alerts will be true, resulting 
in collateral equipment damage. If the PFA is low, but 
the probability of fault detection is low, then the 
operator cannot perform maintenance “on condition”. 
Again, there are missed faults resulting in collateral 
damage.
Because the condition indicators (CI) are correlated, 
without some pre-processing, it is difficult to 
operationally achieve the design PFA. A method was 
presented for whitening the CIs used in gear fault 
detection. The whitening was achieved by a linear 
transformation of the CI using the Cholesky 
decomposition of the inverse of the CIs covariance. 
With this transformed, whitened CI data, a health 
indexed based on a specified PFA was demonstrated. 
Three candidate HI algorithms (order statistics, 
normalized energy and sum of CI) for two different CI 
probability distribution functions (Gaussian and 
Rayleigh), were presented and tested on three data sets 
of pitted gears from a test stand. 
It was observed that the HI algorithms performed as 
designed: low PFA (e.g. noise) and good fault detection 
capability. Given this process, we will now expand the 
class of distributions that this can be applied to, for 
example, the Rice and Weibull distribution.

APPENDIX: Monte Carlo Techniques to Solve the 
Inverse CDF

The solution of the inverse CDF can be difficult for 
none standard distribution. In fact, most function of 
distributions are non-standard. Solutions for order 
statistic on Gaussians distribution are very problematic: 
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even solving using optimization techniques is 
nontrivial. 

Alternatively, Monte Carlo techniques are relatively 
simple to set up, and give accuracy limited only by 
patients. For example, since the order statistic is 
defined as the maximum of n IID distribution, it is 
relatively easy to call 10 million random tuples of n 
distribution, take the maximum of each tuple, and sort 
to generate the CDF. The critical value corresponds to 
the index of the sorted values at 10 million x (1-PFA). 

As an experiment, find the inverse CDF for the normal 
Gaussian with a PFA of 10-3. For 10 million, the index 
is 9990000. Running 100 experiments, the estimated 
critical value was: 3.090155199948529 vs. the actual 
value of 3.090232306167824. The PFA calculate from 
the Monte Carlo generated threshold was: 0.00100025, 
or an error of .025%. 
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