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ABSTRACT 

In this work, we will develop a fault detection system which 

is identified as a classification task. The classes are the 

nominal or malfunctioning state. To develop a decision 

system it is important to select among the data collected by 

the supervision system, only those carrying relevant 

information related to the decision task. There are two 

objectives presented in this paper, the first one is to use data 

mining techniques to improve fault detection tasks. For this 

purpose, feature selection algorithms are applied before a 

classifier to select which measures are needed for a fault 

detection system. The second objective is to use STRASS 

(STrong Relevant Algorithm of Subset Selection), which 

gives a useful feature categorization: strong relevant 

features, weak relevant and/or redundant ones. This feature 

categorization permits to design reliable fault detection 

system. The algorithm is tested on real benchmarks in 

medical diagnosis and fault detection. Our results indicate 

that a small number of measures can accomplish and 

perform the classification task and shown our algorithm 

ability to detect the correlated features.  Furthermore, the 

proposed feature selection and categorization permits to 

design reliable and efficient fault detection system. 

1. INTRODUCTION 

We work in conditional maintenance when the supervision 

system surveys the fault appearance. In a real supervision 

system, digital data collection devices and data storage 

technology allow organizations to store up huge data. The 

large amounts of data, has created a massive request for new 

tools to transform data into task oriented knowledge (The 

knowledge data discovery, and data mining area). Our work 

concentrates on real-world problems and fault detection 

system, where the learner has to handle problems dealing 

with datasets containing large amounts of irrelevant 

information [9],[13],[14]. Initial features are often selected 

subjectively based on human experience. However, when 

large amount of data are being monitored, expert judgement 

may be subject to errors and biases. It is therefore desirable 

to use fully automated feature selection algorithm to 

overcome these shortcomings.   

Over-instrumentation: monitoring too many metrics of a 

system poses significant problems, as a large number of 

threshold estimation, quantification, aggregation, situation 

identification and diagnostic rules exclude reliable manual 

design and maintenance, especially in evolving applications. 

On the other hand monitoring too many metrics also causes 

unnecessary performance overhead on the monitored 

systems, and data collection nodes especially in case of 

historic data collection. 

Under-instrumentation: the improper reduction of the set of 

monitored metrics, on the other hand can significantly 

compromise the capabilities of supervision, manifesting in 

large reaction times to workload changes, significantly 

reduced availability due to late error detection and 

diagnosis. The selection of a compact, but sufficiently 

characteristic set of control variables is one of the core 

problems both for design and run-time complexity [43]. 

Dimension reduction methods are usually divided into two 

groups: feature extraction and feature selection approaches. 

Feature extraction aims at applying a projection of the 

multidimensional problem space into a space of fewer 

dimensions thus resulting in aggregate measures that did not 

exist in the measured environment while feature selection is 
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finding a subset of the measured variables or a subset of the 

transformed variables via feature extraction. 

Many descriptive features may affect the precision of a 

classifier and some can even parasitize the processing of 

data. However, it should be noted that features do not have 

the same importance in the development of the classifier. 

Therefore it is very useful to be able to identify, within the 

whole training set, the appropriate features‘ types to 

discriminate between the fault detection concepts being 

considered. Yu et al [25] counted four (4) different features 

types namely irrelevant ones, strongly relevant, weakly 

relevant and redundant ones. An entire feature set can be 

conceptually divided into four (4) basic disjoint parts: 

irrelevant features (I), redundant features (part of weakly 

relevant features (WRr1 and WRr2)), weakly relevant but 

non-redundant features (WRnr), and strongly relevant 

features (predominant). Fig. 2 illustrates this hierarchy. The 

optimal subset essentially contains all predominant features, 

WRnr and WRr1 or WRr2. WRr1 is a subset of weakly 

relevant features having theirs redundant or equivalent 

features in WRr2. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hierarchy of feature‗s relevance and redundancy 

 

First of all, we have to reduce the number of sensors/metrics 

considered in order to avoid over instrumentation and to 

simplify the classification problem. The filter algorithm 

STRASS (STrong Relevant Algorithm of Subset Selection) 

[22] is initially used to select relevant information, construct 

a robust fault detection model and speed up training time. 

Moreover the proposed feature selection algorithm is based 

on two criteria of relevance which provide a useful features‘ 

categorization (Fig. 1): the strongly, weakly relevant 

features and the redundant ones. This features‘ 

categorisation is based on criteria developed in [22], [35]. In 

our precedent study [22], we define two complementary 

criteria, one Myopic and the other Contextual, to take into 

account partially redundant feature and privilege the quality 

detection of relevant subset feature. The proposed criteria 

attempt to explicitly address feature interactions by finding 

some low-order interactions 2-way (one feature and the 

class) and high order interactions k-way (k features and the 

class) interactions. Those criteria are associated with a 

greedy algorithm which is noted STRASS. STRASS proves 

its efficiency and effectiveness comparing with five 

representative algorithms on artificial benchmarks well 

known for their features interactions. The other paper‘s 

contribution is in the exploitation of redundant features to 

improve fault detection reliability by reducing false alarm 

and/or missed alarm. Reliability requires the minimization 

of undetectability and false alarm probability due to sensor 

readings, which is not only related with sensor readings but 

also affected by fault propagation. In engineering practice, 

sensors may often be faulty, meaning that they may fail to 

give adequate readings or the sensor may give an alarm for a 

normal operation state, known as a false alarm. We should 

therefore allow for some redundancy in sensors in case of 

failures. A robust strategy to identify faulty sensor readings 

and to discriminate among sensor failure and system failure 

has been developed. 

The rest of the paper is organized as follows: Section 2 

overviews the state of art of feature selection techniques for 

fault detection systems. The study highlights the importance 

of the pre-processing phase such as feature extraction and 

selection to improve the classifier. Section 3 introduces the 

features‘ categorization technique, the proposed criteria and 

STRASS features selection algorithm that take into account 

the type of features in a rather finer way than other methods. 

It is worth noting that the authors‘ contribution is not in the 

filtering algorithm, but rather in the features categorization 

that has been derived from it to build a reliable fault 

detection system. Section 4 is devoted to the proposed 

methodology using feature categorization to design reliable 

fault detection systems. In Section 5 the proposed algorithm 

is evaluated and compared with two well-known feature 

selection algorithms CFS (Correlation Based Feature 

Selection) [10] and FCBF (Fast Correlation Based Feature 

Selection) [25] and a feature extraction algorithm Principal 

Component Analysis (PCA). CFS and FCBF are considered 

to be among the best methods for their ability to treat 

different feature types and consequently provide a finer 

feature selection based on a minimal subset. Conclusions 

and recommendation for future work are summarized in 

Section 6. 

2. A SURVEY OF RELATED WORK ON FEATURE 

SELECTION 

Fault detection methods are generally based on either signal 

processing or physical models. Data-driven techniques for 

fault detection and diagnosis have also been extensively 

used. The following is a brief overview of some recently 

published papers on feature selection techniques for fault 

detection. 

Whole Set 
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Paljak et al (2009) [31] considered the selection of a 

compact, but sufficiently characteristic set of control 

variables which can provide, in a simple way, good 

parameter estimators for predictive control. Their approach 

also provides the identification of the operational domain 

hence facilitating context-aware adaptive control, diagnostic 

and repair in large Infrastructure Monitoring. They used 

mRMR (minimum Redundancy Maximum Relevance) 

feature selection algorithm combined with linear 

approximation for selecting the few and most significant 

quantitative aspects of a system for the purpose of 

supervisory instrumentation. Yang et al (2008) [37] 

presented a survey on fault diagnosis using Support Vector 

Machine (SVM) classifiers combined with other methods. 

For the detection of faults in roller bearing, Jack et al (2002) 

used Genetic Algorithms to select an optimal feature subset 

for two SVM and artificial neural network based classifiers. 

Casimira et al (2006) [6] reviewed various pattern 

recognition methods for the diagnosis of faults in induction 

motors‘ stator and rotor. A set of 31 features were initially 

extracted by a time frequency analysis of stator currents and 

voltages and combined with others features. The most 

relevant features were selected using a sequential backward 

algorithm. The experimental results demonstrated the 

effectiveness of the proposed method to improve the k-

nearest neighbours classification rate in condition 

monitoring. The work by Sugumara et al (2007) [38] 

focussed particularly on fault conditions in the roller bearing 

of a rotary machine. They used vibration signals from a 

piezoelectric transducer in different functional mode (good 

bearing, bearing with inner race fault, bearing with outer 

race fault, and inner and outer race fault). First, a set of 11 

features were extracted by time frequency analysis. Among 

these, the 4 best features were selected from a given set of 

samples using the popular C4.5 decision tree algorithm. 

Second, Proximal Support Vector Machine (PSVM), was 

used to efficiently classify the faults using statistical 

features. Torkolan et al (2004) [23] constructed a driver‘s 

assistance system. This system uses feature selection to 

identify which sensors are needed for the classification of 12 

manoeuvres (changing left, crossing shoulder, on road...). 

Sensor data like accelerator, brake, speed, etc. were 

collected from a driving simulator and a total of 138 

features were extracted from this data set. The authors used 

Naïve Bayes and Random Forest classifiers. They combined 

CFS feature selection algorithm and Random Forest with 

various measures to calculate new features and evaluate 

which among the derived features were relevant to this 

problem in addition to selecting the best sensors. The results 

indicated that to some extent new sensor hardware can be 

exchanged with a software version by computing new 

variables based on existing ones. Feature selection in this 

case allows controlled collection of data using a desired 

number and type of sensors.  

Among existing feature selection methods applied to fault 

detection system, earlier methods often evaluate variables 

without considering feature-feature correlation and 

interaction. They rank feature according to their individual 

relevance or discriminative power to the targeted classes 

and select top-ranked features. These methods are 

computationally efficient due to linear time complexity in 

terms of dimensionality. However, (1) they cannot give the 

feature categorization that we have cited and (2) they cannot 

remove partially redundant features. 

3. FEATURE CATEGORISATION: CONCEPT AND CRITERIA 

OF RELEVANCE AND REDUNDANCY 

3.1. Feature Categorisation 

Definition 1:  Irrelevant  

A feature is useful if it is correlated with or predictive of the 

class; otherwise it is irrelevant [10]. 

 

Definition 2: Weakly relevant 

A feature xi is weakly relevant to a sample N of instances 

and distribution D if it is possible to remove a subset of the 

features so that xi becomes strongly relevant (Blum and 

Langley [4]). 

Definition 3: Strongly relevant 

A feature xk is strongly relevant to sample N if there exist 

examples A and B in N that differ only in their assignment to 

xk and have different labels (or have different distributions 

of labels if they appear an N multiple of times). Similarly, xk 

is strongly relevant to target c and distribution D if there 

exist examples A and B having non-zero probability over D 

that differ only in their assignment to xk and satisfy c(A) ≠ 

c(B) ) (Blum and Langley definition‘s [4]).  

 

Definition 4: Redundant 

A feature is said to be redundant if several features taken 

together play the same role as the underlying feature (they 

discriminate the population studied by the considered 

feature). 

3.2. Criteria of Relevance and Redundancy 

Two criteria have been introduced to categorise a whole set 

of features (Senoussi et al [22]). These criteria were 

elaborated from the discriminatory power in a pair-wise data 

representation approach. The categorized features types 

depend on: predominant (strongly relevant), weakly relevant 

and redundant ones. These criteria are briefly described 

below. 

3.2.1. Data representation 

Giving the input data tabulated as   samples. A signature 

is a vector of r features x called pattern vector denoted 

by                . The functional states are 



Annual Conference of the Prognostics and Health Management Society, 2011 

4 

represented by M classes                in an r-

dimensional space. Making a decision consists in assigning 

an incoming input vector to the appropriate class. This 

decision consists in recognizing the functional state of the 

system. Let‘s associate to a feature xk the function    
  

relative to each pairs of instances            .  

 

                       
   

           
                             

                                                        
                                                        

   

The function    
  relative to each pair of instances and their 

corresponding labels is obtained in the way. 

 

             
   

           
                           

                                                          
        

 

3.2.2. Weak relevance measure 

The weakly relevance of a set of feature is defined by the 

number of all pairs of objects who have at least one 

discriminating variable and different labels or different 

distributions of labels. 

 

Proposition 1: The discriminating capacity measure of a 

feature set DC (L,): 

 

   

                        
   

            
   

 
                                                                                                    

 

Given a subset of m features L = (x1… xm); the subset of 

feature group relevance is the number of pairs that are 

discriminate at least with one feature for each class.  

3.2.3. Strong relevance to the sample/distribution 

To measure the exclusiveness of a feature, the equivalent of 

a "relevance gain" is defined as the measure related to a 

feature compared to a subset of features and is termed the 

Discriminating Capacity Gain (DCG).  

First we define the relevance of a feature xk compared to a 

relevant pre-selected features subset L= (x1… xm) on pairs of 

instances        . 

The strong relevance (SR) of feature xk on the data pair 

       is given by:  

                                    
                 

                                                                      

 

Proposition 2: Discriminating capacity gain: DCG 

The aggregation of the Strong Relevance (SR) expression 

on the whole pairs will define the DCG as:  

 

                                
   

 
       

          
                                                   

(5) 

 

The DCG of a feature xk for a set of objects compared to a 

set of L features is equal to the number of object couples 

discriminated by only xk and no other features. 

3.2.4.   Redundant feature  

Let S be the current set of features if  

 

                           

                                                (6) 

 

Then xl is a redundant or irrelevant feature compared to the 

feature subset S on .   

3.3.   STRASS Algorithm  

The criteria are associated with an algorithm related to the 

greedy type algorithms and noted STRASS (Appendix A). 

STRASS detects the strongly relevant features, the partially 

redundant features, selects a minimum feature subset and 

ranks the features’ relevance. The algorithm breaks up into 

three stages depending on its initialisation: 

(1) Selection of strongly relevant features or predominant 

features which are impossible to exclude because they 

are the only ones which allow the discrimination of 

classes.  

(2) Selection of the remaining features or weakly relevant 

features which have the largest discriminating capacity 

and when combined with a subset of features, the 

resulting overall discriminating power is increased. 

The features having equivalent discriminating capacity 

are retained as weakly relevant and redundant and are 

denoted by WRr1 and WRr2.  

 

(3) Suppression of redundant features. At this stage, 

backward elimination is employed to detect the 

features that become redundant compared to the subset 

of the selected features when adding a new feature.  

 

STRASS, presented in our previous study [22], has proved 

to be more efficient when compared to five (5) 

representative algorithms on artificial benchmarks well 

known for their features interactions and satisfactory 

performance for the selection of a minimal set of relevant 

features and handling the k-way features interaction [11]. 

Reference list entries should be alphabetized by the last 

name of the first author of each work. 
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Figure. 2 The proposed fault detection system 

 

4. FEATURES  CATEGORIZATION TO CONSTRUCT A 

RELIABLE FAULT DETECTION SYSTEM 

Reliability requires the minimization of undetectability and 

false alarm probability due to sensor readings or fault 

propagation. In this study the feature categorization will be 

used to design reliable fault detection system. Due to their 

natural discriminating characteristics the selected features 

make it practical to develop a measure of confidence for the 

fault detection system show in Fig. 2.  

With reference to Fig. 2: 

 

 

1. Firstly, a fault detection classifier is built using all 

predominant features (SR), weakly relevant but non-

redundant features (WRnr) and weakly relevant 

features (WRr1). 

2. Secondly, redundant features can be used with the 

predominant and the WRnr ones to build another 

classifier. 

3. In the case of similar results, the second classifier 

confirms the result obtained with the first one. When 

the results obtained are different, it is an indication 

that there is a problem in the acquisition platform (a 

sensor is defiling) or in the data collection (a 

parameter is erroneous). The identification of the 

features is determined by a close examination of the 

redundant feature, or acquisition of another data. 

We should therefore allow for some redundancy in sensors 

for the predominant measure in case of failures, and the 

examination of the redundant feature to relay the 

information. Therefore, missed alarms and false alarms can 

be detected. 

 

5. EXPERIMENTS AND RESULTS 

Our algorithm was implemented in MATLAB 7.5 

environment. For the filtering algorithms and classifiers 

existing tools in WEKA machine learning platform [24] 

have been used. The experiments were run using WEKA 

with its default values.  

5.1. Feature Selection and Categorization Results  

The proposed algorithm has been evaluated on datasets from 

the UCI Machine Learning Repository [39]. Their 

characteristics are shown in Table 1.  

 

Datasets Instances Features Classes 

Heart 270 14 2 

Lung cancer 32 57 2 

Hepatitis 20 20 2 

Machine 12829 22 22 

RFM 3519 72 22 

 

Table 1. Summary of dataset 
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For the fault detection task Machine and RFM datasets 

(Appendix B) have been used. This data was originally 

taken at Texas Instruments as part of the SEMATECH J-88 

project. For more information about this data set, please see 

[2][3]. 

 

Most existing feature selection algorithms are adapted for 

discretized (qualitative) data. Therefore for data sets with 

continuous features, the authors propose to use the MDL 

(Multi-interval discretization of continuous attributes) 

discretization algorithm proposed by Fayyad et al [8] also 

implemented in WEKA environment [24]. Table 2 presents 

the number of features selected by each features selection 

algorithm. The proposed algorithm has substantially reduced 

the number of features necessary to construct a classifier 

(18% in average in feature space). Table 3 gives STRASS 

selected features and their categorization. Heart and 

Hepatitis have dominant features and redundant ones, thus 

make it possible to construct a second classifier to detect the 

same diagnosis and compare the results. For lung cancer and 

RFM datasets, the selected features are all predominant. 

 

Datasets ALL 

 

STRASS CFS FCBF ACP 

Heart 13 8 6 5 12 

Lcancer 56 3 8 6 25 

Hepatitis 19 9 9 6 16 

Machine 21 5 10 8 17 

RFM 71 8 18 11 12 

Average 36 6.6 10.2 7.2 16.4 

 

Table 2. Number of features selected by each features 

selection algorithm 

 

Data sets STRASS 

Selected feature 

SRp WRnr WRr1=WRr2 

Heart  8{3,7,8,1,2,12,9,13} {3,7,8,1,2,12,13}     4=5=6=9 

11=13 

L cancer 3 {9,43,34} {9,43,34}  3=7; 8=9 

Hepatitis 9{11,18,17,6,14,8,12,3,2} {11,18} {17,6,14,8,12,2} 3=7=10 

Machine 5 {1,3,7,17,13} {3,17, 13} {1} {7=11,12,14,16} 

RFM 8 {35,26, 22,14, 44,66,9,4} {35, 26, 22,14, 44,66,9,4}   

 

Table 3.  STRASS feature categorization 

5.2 Detection Results 

For the classification task, three different classifiers have 

been used decision tree (C4.5), K-nearest-neighbor (IBk), 

Support Vector Machines (SVM) and multilayer perceptron 

(MLP). In our experiments, k is set as 1. The classification 

results are obtained with 10-fold cross-validation. These 

results are compared with two Correlation-Based Feature 

Selection algorithms: CFS
1
 [10] and FCBF

2
 [25] and the 

Principal Component Analysis (PCA). TABLES 4-6 show 

results in both accuracy and kappa obtained with a two 

tailed test. The symbols ―+‖ and ―-‖ respectively identify 

significant improvement if an algorithm wins over or loses 

to the learning algorithm with the whole dataset. 

 

Datasets C4.5 

 

C4.5+ 

STRASS 

C4.5+ 

CFS 

C4.5+ 

FCBF 

C4.5+ 

ACP 

heart 83.7 85.18+ 83.3- 84.4 + 81.67- 

L cancer 78.12 84.35 + 78.21 85.5+ 57.92- 

hepatitis 81.3 81.3 81.91+ 80.6 - 79.75- 

machine 94.58 94.72+ 94.81+ 94.70+ 93.22- 

RFM 94.38 95.34+ 94.07- 94.13- 86.79- 

Average 86.41 88.17+ 86.4 87.86+ 79.87- 

Win/Loss  4+/0- 2+/2- 3+/2- 5-/0+ 

                                                           
1 CFS  with best first search 
2 FCBF with the relevance threshold SU set to 0. 

 

 

Datasets IBk IBk+ 

STRASS 

IBk+ 

CFS 

IBk+ 

FCBF 

IBk+ 

ACP 

Heart 83.2 82.5  - 82.5- 81.9 - 80.74- 

L cancer 75 78.5 + 71.3- 71.8- 65.42- 

Hepatitis 83.8 85.8+ 77.38- 84.5+ 83.96+ 

Machine 95.80 95.97+ 93.3- 94.95- 95.3- 

RFM 94.65 96.06+ 95.84+ 94.67 93.91- 

Average 86.49 87.76+ 84.06- 85.56- 83.86- 

Win/Loss  4+/1- 1+/4- 1+/3- 1+/4- 

 

Table 5. IBk  Classifier precision with and without filtering 

 

 

Datasets SVM SVM+ 

STRASS 

SVM+ 

CFS 

SVM+ 

FCBF 

SVM+ 

ACP 

heart  84 84.3+ 84.44+ 85.18+ 84.26+ 

L cancer 65.62 81.25+ 81.25+ 87.5+ 70.00+ 

Hepatitis 86.45 87.74+ 85.16- 85.80- 83.25- 

Machine 88.98 61.12- 73.40- 72.60- 78.12- 

RFM 90.12 94.32+ 89.78- 88.92- 87.45- 

Average 83.03 81.74- 82.8- 84+ 80.61- 

Win/Loss  4+/1- 2+/3- 2+/3- 2+/3- 

 

Table 6. SVM  Classifier precision with and without 

filtering  
Table 4. C4.5  Classifier precision with and without filtering 



 

Datasets MLP STRASS CFS FCBF ACP 

heart 80.43   83.12+ 82.61+   79.35-   80.93+ 

L cancer 67.9 86.67+ 85.42+ 79.58+ 59.17- 

hepatitis 84.23 85.21+ 84.46+ 85.24+ 82.23- 

machine 79.28 59.87- 50.74- 58.90- 64.66- 

RFM 90.51 90.5 89.87- 89.61- 89.16- 

Average 80.47 81.07+ 78.62- 78.53- 75.23- 

Win/Loss  3+/1- 3+/2- 2+/3- 1+/4- 

 

Table 7. MLP  Classifier precision with and without 

filtering 

From these results it can be concluded that STRASS leads 

to a better performance than CFS, FCBF and ACP 

classifiers. The combination of C4.5 and STRASS produced 

the best results. For both classifiers, the reduction of 

features by STRASS gives results comparable or even 

superior when using all features: average accuracy 88.17% 

(STRASS) vs. 86.41% (Full Set) for C4.5, 87.76% 

(STRASS) vs. 86.49% (Full Set) for IBk and 81.07% 

(STRASS) vs. 80.47% (Full Set) for MLP. The application 

on Machine and RFM process demonstrates that this method 

is very effective for feature selection and classification.  

6. CONCLUSION AND FUTURE WORK 

In this paper we proposed to use STRASS, a contextual-

based feature selection algorithm for fault detection to 

categorize measures and to determine the interaction 

between features. This enabled us to detect the redundancy 

among measures. STRASS was initially evaluated in 

datasets related to medical diagnosis. The proposed feature 

selection algorithm was then applied to two well known 

fault detection benchmarks. STRASS has demonstrated its 

efficiency and effectiveness in reducing the dimensionality 

of datasets while maintaining or improving the 

performances of learning algorithms. The application of this 

feature categorization on Machine and RFM datasets has 

demonstrated that this method is very effective for fault 

detection.  

STRASS is based on two criteria of relevance that permit to 

obtain a useful feature categorization. In fact the algorithm 

detects the strongly relevant features, the weakly relevant 

and their corresponding partially redundant feature and 

selects a minimum feature subset. Moreover the proposed 

criterion in this study provides a useful ranking 

incorporating the context of others features and detects the 

equivalent measures (partially redundant features). Future 

work will focus on exploiting this features categorization to 

construct a reliable fault detection system by adding 

redundant measures for the predominant ones and use the 

redundant information from the redundant measures to 

construct an equivalent classifier to relay the information (in 

the case of same result for both classifier) or to point out a 

problem in the acquisition platform or in the data collection 

(in the case classifiers give different results). 
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Appendix A:  Algorithm STRASS 

 

E   The whole set of data pairs        . 

               A set of features to be treated  

S = Ø    Selected features   

SRp= Ø   Strongly relevant predominant features 

DCTot = DC (L)  

DCmax = 0  

WRnr= Ø  Weakly relevant and not redundant features 

WrR1=   Ø  Weakly relevant and redundant features 

WRr2= Ø   Weakly relevant and redundant features 

 

Table A1 STRASS algorithm pseudo-code 

1. Selection of predominant features 

for each feature xk of L do    

scan the examples  space E 

 

if DCG (xk, L-xk) ≠ 0        

   S=S+xk ; L=L-xk;  

SRp = S; 

E = E - {discriminated pairs} 

 

2. Selection of weak relevant features 

while DC (S)<DCtot do  

for each feature xk of L do    

scan the examples  space E 

 

if DC (xk+S)>DCmax  

 

DCmax = DC ( {xk}+S)   

xk max = xk ; S = S+{xk_max} ;  

L=L-{xk_max } 

WRnr = WRnr + {xk_max} 

 

if DC (xk + S) = DCmax  

 

WRr1 = WRr1+{xk_max} 

WRr2 = WRr2+{xk} // detection of redundant features 

E = E - {discriminated pairs} 

 

3. Detection of the partially redundant features  

for each feature xk of S do   

if DC (xk, S - {xk})=0  

S = S-{xk};      // suppression of the redundant features 

WRr2 = WRr2 + {xk}; // detection of redundant features 

 

return S, SRp, WRnr, WRr1, WRr2  
 

 

 

 



Appendix B: Machine and RFM Datasets 
 

Machine and RFM datasets are elaborated for fault detection 

and diagnosis in semiconductor etch [2]. The data comes 

from the metal etch step in semiconductor processing, 

specifically the Al-stack etch process. Data was collected on 

the commercially available Lam 9600 plasma etch tool [3]. 

The metal etcher was equipped with the machine state 

sensors, built into the processing tool; it collects machine 

data during wafer processing. The machine data consists of 

measured and controlled variables sampled at 1 second 

intervals during the etch. These are engineering variables, 

such as gas flow rates, chamber pressure and RF power. 

These variables are listed in Table B1. The RFM sensors 

measure the voltage, current and phase relationships at the 

fundamental frequency of 13.56 MHz and the next four 

harmonics at four locations in the RF control system. The 

resulting 70 values are sampled every 3 seconds. 

 

Table B1 Machine state variables used for process 

monitoring. 

x1 : Time x12 : Phase Error 

x2  : Step Number x13 : RF Power  

x3 : BCl3 Flow x14 : RF Impedance 

x4 : Cl2 Flow x15 : TCP Tuner 

x5 : RF Bottom Power x16 : TCP Phase Error 

x6 : RFB Reflected 

Power 

x17 : TCP Impedance 

x7 : Endpoint A Detector x18 : TCP Top Power 

x8 : Helium Pressure x19 : TCP Reflected Power 

x9 : Chamber Pressure X20 : TCP Load 

x10 : RF Tuner  X21 : Vat Valve 

x11 : RF Load  
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