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ABSTRACT

As electrical and electronic systems (EES) steadfastly
increase their functional complexity and connectedness,
they pose ever-growing challenges in fault analysis and
prevention. Many EES faults are intermittent, emerging
(new faults), or cascading, and cannot be addressed by the
traditional component-level diagnostic design. Leveraging
the latest advancements in Network Science, we take the
holistic approach to model and analyze the highly
interrelated in-vehicle EES as layered sub-networks of
hardware components, software components, and
communication links. We develop multi-partite, multi-
attribute betweenness centrality measures to quantify the
complexity and maintainability of the layered EES network.
We then use the betweenness centrality distribution to
identify fault analysis monitoring points and fault-mitigation
strategies. The promising results obtained by our initial
empirical study of an example in-vehicle EES presents a
first step toward network-theory based IVHM.

1. INTRODUCTION

The complexity of the electrical and electronic system
(EES) in vehicles has evolved over the years in response to
continuously increasing demand for incorporating new
electronic control units (ECUs) onto vehicles. These allow
for advanced safety, convenient and comfort features, as
well as meeting new emission and fuel-economy standards.
However, the fast growing number of ECUs and their
peripherals has led to complex interactions which can lead
to unexpected emerging or cascading failures.

Current state-of-the-art diagnosis and prognosis algorithms
typically focus on one aspect of the system which makes it
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difficult to capture problems originating from the interaction
between and across different system layers: physical level
(power or communication), functional level and
communication level.  Such multi-layer problems are
typically addressed after the fact with tedious and error
prone manual analysis.

In this paper, we consider in-vehicle EES as an embedded
and distributed complex system, subject to the design for
fault detection, isolation, and mitigation. Based on recent
advancements in Network Science, we develop the layered
EES network modeling methodology to capture highly
inter-related in-vehicle EES. We develop novel multi-partite
and multi-attribute betweenness centrality measures to
quantify the importance to which a node has control over
pair-wise connections between other nodes in the layered
EES network model. We apply multi-partite and multi-
attribute betweenness centrality measures to rank and
recommend fault detection and isolation monitoring points
that cannot be discovered by single layered analysis
techniques and conventional betweenness centrality
measures. We provide usage-based and random failure
simulation strategies for recommending fault isolation and
mitigations points for desired diagnostic coverage. We
present our initial empirical study toward this network-
based approach of IVHM.

We discuss related work in Section 2 and introduce our
layered network modeling methodology in Section 3. In
Sections 4-6, we describe our multi-partite and multi-
attribute betweenness centrality, and their application to
fault analysis monitoring. Section 7 provides an example
study. We conclude our papers with future research
direction in Section 8.

2. RELATED RESEARCH

Our work is related to embedded system, complex system
diagnosis, and network science.  Struss et. al. (2010)
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compiled a special issue on the recent advancements of
model-based diagnosis in which (Wang & Provan, 2010)
describes the automated benchmark diagnostic model
generator, with various domain, topology and system-level
behaviors, based on the graphical model approach of
network science. The benchmark models generated in
(Wang & Provan, 2010) can be provided as the input to our
methodology for fault detection, isolation and mitigation
analysis.

Simonot-Lion (2009) is another special issue compiling
recent advancements in the area of in-vehicle embedded
system. Zeng et al., (2009) describes a stochastic analysis
framework for the end-to-end latency of distributed real-
time systems and demonstrated the experimental results on
Controller Area Network (CAN). This work focuses on
simulation and analysis of probability distribution for end-
to-end latency analysis of active safety functions on
vehicles. Our work, on the other hand, focuses on design
and diagnosis.

Our proposed new measures for quantifying EES
complexity and maintainability is based on betweenness
centrality measures in network science. Brandes (2008)
gives a comprehensive survey and contrasts most recent
variants of betweenness centrality. Our proposed new
measures are inspired from our layered EES network;
therefore, there is no compatible measures in the state-of-
the-art as surveyed in (Brandes, 2008). The measures closest
to ours are those described in (Borgatti, 2005; Flom et. al.,
2004). However, their works do not consider multi-partite,
multi-attributes layered networks. In general, these works
focus on social network analysis and has no mentioning of
fault-isolation and fault-mitigation analysis.

3. LAYERED NETWORK MODELING

By taking the holistic approach to model in-vehicle EES, we
make the following modeling assumptions to construct the
layered, multi-partite, multi-attribute network for analyzing
an EES system.

1. Each network layer models one aspect of EES; for
example, physical network layer represents physical
wiring connections of ECUs, functional network layer
represents relations of software functions among ECUs,
message network layers models message flows among
ECUs, and so on.

2. Nodes can be annotated with node types. Designation
of node type leads to partitions of nodes where nodes in
the same partitions do not have edges; for example, one
ECU node is not directly linked to another ECU node,
but via Message nodes in a message network layer.

3. Nodes can be annotated with node attributes to
represent their special characteristics. Node attributes
are usually defined orthogonally to node types; nodes
with the same node type may have different node

attributes, and similarly nodes with different types may
have the same node attribute. For example, node
attributes {Sending, Receiving} can be used to annotate
nodes across node types {ECU, Message}.

4. Edges within the layered network can be annotated with
edge attributes where the value of an attribute typically
represents the types of information flowing between
nodes. For example, a feature node may have an edge to
another feature node with edge attributes {data,
frequency} in the dataflow network.

5. [Edges across different layers typically represent
dependency or identity relations. For example, the same
hardware ECU node may appear in both electrical and
physical sub-networks which warrant across layer
edges.

Formally, we consider a graph G=(N,E) consists of a
nonempty countable set of nodes N and a set of directed or
undirected edges E = NxN. A multipartite graph is a graph
where N is divided into nonempty disjoint subsets (called
Parts) and no two nodes in the same subset have an edge
connecting them. Nodes can be associated with a vector of
node attributes N,; similarly, edges can be associated with a
vector of edge attributes E,. Part is imposed by topological
structure, whereas attribute is primarily augmented for the
semantic aspect of a node. A layered, multi-partite, multi-
attribute EES network consists of layers of multi-partite,
multi-attribute graphs where node types correspond to parts,
and edges across layers represent dependency or identity
relations for entities in different layers. Figure 1 shows an

example layered network of in-vehicle EES layered
network.
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Figure 1: An example layered EES network consists of
layers of electrical, physical, functional, message, and
dataflow sub-networks; relation within each layers are
shown to the right; dependency and identify relations across
layers are summarized into double arrows across layers of
sub-networks. Note that across layer links are not restricted
to neighboring layers only.
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4, BETWEENNESS CENTRALITY

Betweenness centrality is defined in social network analysis
to quantify the importance to which a node has control over
pair-wise connections between other nodes, based on the
assumption that the importance of connections is equally
divided among all shortest paths for each pair (Freeman,
1978). The betweenness centrality BC(n;) for a node i € N
is defined as follows.
. op;(D)
BC(i) = Zh:ti;tj U—hj’
where a,; is the total number of shortest paths between h
and j, and oy, (i) is the number of such shortest paths that
pass through the node i. The BC (i) can be scaled between

0 and 1 using (ﬁvcl(_ii) where |N| is the number of nodes in the

graph. Correspondingly, the betweenness centrality BC (e)

for an edge e € E is defined as the number of shortest paths
apj(e)

passing through the edge, i.e., BC(e) = Ypxix; - The
hj

BC(e) could be between 0 and 1

usin L@
g [(INI-D(IN[-2)]/2

normalized

Recognizing the rich semantics in the layered EES network,
we develop novel multi-partite, multi-attribute betweenness
centrality to account for node types and attributes in the
layered in-vehicle EES network.

4.1. Multi-partite Betweenness Centrality

In the layered EES network, each node and edge can have
different types and attributes which warrant further
constraints on how betweenness centrality can be defined
when considering different semantic meaning of shortest
paths in the layered EES network. We propose three
different multipartite betweenness centrality measures based
on the constraints on node types (parts) in the network.

We first define the homogeneous multipartite betweenness
centrality BCp(i) for a nodei € N, , where Np is a part
Np < N, is defined as follows:
, apj(i)

BCp(i) = Zh#iij ENp %Ml
where ay,; is the total number of shortest paths between h
and j, given that nodes h, i, and j are all in the same part
Np , and gy;(i) is the number of such shortest paths that
pass through the node i. This is to constrain the shortest
paths such that the starting and ending nodes are the same
node types (in the same part) as the one of the intermediate
node. For example, an ECU node linked to another ECU
node via a gateway ECU with some message nodes along
the path.

Next, we define the bi-mode multipartite betweenness
centrality where the starting and ending nodes are the same
part but different from the part of the intermediate node. The

bi-mode multipartite betweenness centrality BC(i) for a
node i is:

o=y Y
h,jENQ =Np i€Np Ohj
where ay,; is the total number of shortest paths between h
and j that are in the same part, but are different from the part
of the node i, and oy;(i) is the number of such shortest
paths that pass through i . One example use of this measure
is to consider a message node i sitting on the paths of
communications between two different ECU nodes.

We define the heterogeneous multipartite betweenness
centrality for a node BC (i) for a node i as follows:
som= Yy 29
hen, feNpjeng M
0,l€Np,JENQ
where ay,; is the total number of shortest paths between h
and j that are in different parts and not in the same part as
the node i (N, # Np # Ny), and ay;(i) is the number of
such shortest paths that pass through i . This measure
assumes that there are at least three parts defined in the
network.  One example use of such measure could be
finding out the betweenness for a node in functional layer
and starting and ending nodes are in the layers of message
and physical networks.

4.2. Multi-attribute Betweenness Centrality

To account for attributes orthogonal to topological
definition of parts, we define homogeneous multi-attribute
betweenness centrality BC, (i, a) and negated multi-attribute
betweenness centrality BC;(i,a) for a node i € N and an
attribute a € Ay as follows:
BCG,a) = Z 310)
neizja(ma=at) M

where gy, is the total number of shortest paths between h
and j, given that nodes h, i, and j has the same values for the
attribute a (i.e.,, a(h) = a(@) = a(j)), and op;(i) is the
number of such shortest paths that pass through i ; and

or; (1)

BC;(i,a) = 6
nj

h=izj,a(h)=a(j),a(i)=a(j)

where ay,; is the total number of shortest paths between h
and j, given that nodes h and j has the same values for the
attribute a (i.e., a(h) = a(j)) but they have different values
from node i (i.e., a(i) # a(j)), and oy, (i) is the number of
such shortest paths that pass through i.

Similarly, the multi-attribute betweenness centrality,

BC,(e,a) and BC;(e, a) for an edge e € E and an attribute
a € Ag, can be defined as those for the nodes. One example
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use of multi-attribute betweenness centrality is the attributes
of an ECU such as the “role” which can have the attribute
value “receiving” or “sending” for different messages.

4.3. Betweenness Centrality Distribution

In addition to quantifying the importance of a target (a node
or an edge) in the network, we can compute the betweenness
centrality for every target in the network to derive a
distribution of betweenness centrality. We can then
compute descriptive statics (e.g., average, percentile,
variance, skewness, etc.) to characterize such betweenness
centrality distribution. In Figure 2, we show an example of
truncated homogeneous betweenness centrality distribution
for a functional network.

The betweenness centrality distribution can be used to
quantify the complexity, as well as maintainability of a
layered EES system. For example, a centralized design of
EES may have a more skewed betweenness centrality
distribution than the one with distributed design. In Figure
2, we see that 69/584=11.81% nodes have above average
betweenness centrality, which give us a quite skewed
distribution from the functional network point of view.

To improve system maintainability, more resources can
potentially be put into the system to improve the reliability
of the targets with high betweenness centrality metric, or to
increase diagnostic coverage for targets with low
betweenness centrality metric. The betweenness centrality
distribution can enable such a trade-off analysis for
improving the design of maintainability.

Betweeness Centrality Distribution
ECU_VD Network

Maormalized Betweenness Centrality
00 01 02 03 04 05 06 07

0 10 20 30 40 50 60 70

Node (ECU or VD)
Figure 2: An example distribution of betweenness centrality:

the top 69 nodes (out of 584 nodes) have above average
betweenness centrality in a functional network.

5. FAULT ANALYSIS MONITORING POINTS

Fault-detection and fault-isolation requires actively
monitoring a system in operation. The layered EES network
models diverse aspects of the system and the operational
status can be thought of as signals and information flow
over the network. One may consider using the network
model as a platform to simulate the operations of EES;
however, it is unlikely to simulate all possible combinations
of inputs, especially in the wide ranges of different and
unforeseeable operational environments.

Betweenness centrality, as a measure of quantifying the
node importance, provides a good basis for ranking where to
include fault analysis monitoring points, assuming due to
resource constraints not all parts can be monitored. In
Figure 3, we show an example network to illustrate this
point. The upper panel shows that node G has four
immediate neighboring nodes whereas node | has only three
immediate neighbors; however, node | is more important
than node G with respect to betweenness centrality measure
(BC()=14 > BC(G)=0.67). The bottom left panel shows that
if node G fails, node | can still monitor all traffics on the
network; however, if node | fails, the network is fragmented
as shown in the bottom right panel. This warrants the claim
that the high betweenness centrality node serves as a better
fault monitoring point.

We propose to use the betweenness centrality distribution,
in conjunction with the measure of degree neighbors, as the
basis for setting up monitoring points for fault detection and
isolation with respect to desired fault coverage. The
following steps can generate recommended fault analysis
monitoring points:

1. Compute betweenness measures (multi-partite, multi-
attribute betweenness centrality) to quantify the
importance of the nodes in EES;

BC(I)> BC(G)

8 oo@

Figure 3: An example to illustrate the usefulness of
betweenness centrality for fault analysis monitoring.
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2. Apply an adjustable threshold to select nodes as
candidate monitoring points (e.g., select nodes with BC
measure above x-percentile of BC distribution).

3. Check whether the degree neighbors (e.g. 2nd degree
neighbor) of all selected nodes provide the desired
coverage of the whole network;

4. 1f no, go back to Step 2 and adjust the threshold,;

5. If yes, recommend the selected nodes as the monitoring
points.

Diagnostic coverage for a given monitoring point is
computed via the nodes’ degree neighbors, which is system
dependent and subject to the observability of failure
mechanisms. Figure 4 shows an example of diagnostic
coverage for node | as the monitoring point.

Figure 4: Example diagnostic coverage with a monitoring
point at node | and coverage of 2™ degree neighbors (nodes
in red fonts).

The diagnostic coverage of the whole network is the union
of the diagnostic coverage of all selected monitoring points.
It is advised to trade-off between cost and diagnostic
coverage in selecting monitoring points for a given system.

6. FAULT MITIGATION ANALYSIS

The purpose of fault-mitigation analysis is (1) to quantify
how robust the EES is with respect to different failures, and
(2) to identify which surviving nodes can potentially take
over the functionality of nodes which have failed.

To support fault-mitigation analysis, we introduce two
sequential failure strategies: random failure and usage-based
failure strategies to simulate the effects of failures. For
usage-based failure strategy, we assume that the usage of a
node is in proportion to its betweenness centrality. We can
either deterministically fail the node with the largest
betweenness centrality by assuming that the most used node
is more likely to fail, or randomly select a node to fail.

The steps for fault-mitigation simulation are summarized as
follows:

1. Compute betweenness centrality measures (multi-
partite, multi-attribute betweenness centrality) for all
nodes.

2. Select the next node to fail according to the selected
failure strategy (random or usage-based failure).

3. Simulate the effect of failures by removing the edges of
the selected node.

4. Check whether the sequential failure simulation has
reached the completion criterion (e.g., stop simulation
when all edges are removed from the network; or when
a certain percentage of survival nodes is remained in
the network).

5. Ifno, go to Step 1;

6. If yes, output the effects of sequential failure for
mitigation analysis.

The output of sequential failure simulation consists of a

sequence of failure nodes and their effects in the form of

updated betweenness centrality distributions.

We propose two measures to quantify the robustness of
EES. First, we propose to quantify network fragmentations
that may result in the loss of the ability in executing fault-
mitigation operation, using the threshold for dissolving the
giant component. Second, we propose to quantify the
gradual changes of sequential failures using the mean of the
normalized betweenness centrality.

A giant component is a connected sub-network that contains
a majority of the entire network nodes. Since nodes in the
giant component can all reach each other, this warrants the
potential of executing fault-mitigation operations. However,
when failures are induced, edges are removed from failed
nodes. This may lead to network fragmentation which in
turn dissolves the giant component; consequently, fault-
mitigation operations may not be able to reach all nodes in
the network. Hence we can evaluate the robustness of a
layered EES network: by considering how many failures are
needed for a given failure strategy (usage-based or random)
to reach a threshold value of nodes remaining in the giant
component.

To quantify the gradual effect of sequential failures before
the giant component reaches its dissolving threshold, we
propose to use the changes in the means of the normalized
betweenness centralities. By definition, nodes in two
different fragmented subnets will not have shortest paths
between them. This will lead to the decreasing of the mean
of the normalized betweenness centrality for the whole
network as sequential failures progress.

Since the output of a failure simulation records the effect of
each simulated sequential failure, we can make
recommendations on which nodes may potentially be
burdened to implement fault-mitigation functions of the
failed nodes. A simple heuristic is to use the neighbors of
the failed node to carry out the function. Such heuristic may
not be viable for usage-based strategy, as the failing node is
the one that has the highest importance for pair-wised
connections. Another heuristic is having every second
highest importance node of the survival network fragments
carry out the function of the failed node. This heuristic
avoids immediate nearest-neighbor failing and at the same
time carries out the failed node that needs to sit on many
shortest paths.
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Figure 5: An example functional network depicting relations
between virtual devices (green nodes) and ECUs (yellow
nodes).

7. AN EXAMPLE STUDY

To demonstrate the values of proposed methods, we show
our analysis on an example layered EES network. We first
show how consideration of different node types may lead to
different views of the importance of a node. We next show
the effect of usage-based node failures based on different
node types. Finally, we show simulation of sequential
failures for fault-mitigation analysis.

We apply multi-partite betweenness centrality on the
network depicted in Figure 5. We show the distributions of
betweenness centrality for each part in Figure 6 and Figure
7.

We simulate the failures and inspect the changes of
betweenness centrality measures.  Figure 8 show an
example of changes in the distribution of betweenness
centrality for failing the top three ECUs. Nodes with
increasing betweenness centrality after the failures can be
considered as survival nodes that can carry out functions of
failed nodes (e.g., Node9 and Nodel7 in Figure 8).

Betweeness Centrality Distribution
Functional Network
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Figure 6: An example distribution of betweenness centrality
in functional network. The distribution shows the top 59
ECU (out of 102) with above average betweenness
centrality.

Betweeness Centrality Distribution
Functional Network

D_
z ~|°
T
T o |
O o
wn
2 o
£ 24
(]
2 (o)
£ < |
m o
pe © ©
@
N~ o
[] o
£
o
Z o | @ o o o o
o
T T T T T
2 4 6 8 10
Node (VD)

Figure 7: An example distribution of betweenness centrality
for VD part in functional network. The distribution shows
the top 10 VDs (out of 482) with above betweenness
centrality.
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Changes in Betweenness Centrality
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Figure 8: An example of changes in the distribution of
betweenness centrality by failing the top 3 ranking ECU.
The original ECU betweenness centrality is charted along
with their new distribution after each simulated failures
(Faill, Fail2, and Fail3).

8. CONCLUSION

The network-theory based approach reported in this paper
provides a first step toward integrated fault detection,
isolation, and mitigation analysis capabilities for in-vehicle
embedded electrical and electronic systems (EES). We
apply layered network modeling over EES to build a layered
multi-partite, multi-attribute network which represents
physical, structural, functional, and data-flow aspects of in-
vehicle EES. We employ two failure strategies to simulate
failures and analyze the effects using betweenness centrality
measures. We develop novel multi-partite, multi-attribute
betweenness centrality to account for the effects of failures
and to quantify complexity, maintainability, and robustness
of EES. We provided an example to demonstrate our
proposed methodology.
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