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ABSTRACT 

As electrical and electronic systems (EES) steadfastly 
increase their functional complexity and connectedness, 
they pose ever-growing challenges in fault analysis and 
prevention. Many EES faults are intermittent, emerging 
(new faults), or cascading, and cannot be addressed by the 
traditional component-level diagnostic design. Leveraging 
the latest advancements in Network Science, we take the 
holistic approach to model and analyze the highly 
interrelated in-vehicle EES as layered sub-networks of 
hardware components, software components, and 
communication links. We develop multi-partite, multi-
attribute betweenness centrality measures to quantify the 
complexity and maintainability of the layered EES network.  
We then use the betweenness centrality distribution to 
identify fault analysis monitoring points and fault-mitigation 
strategies.  The promising results obtained by our initial 
empirical study of an example in-vehicle EES presents a 
first step toward network-theory based IVHM. 

1. INTRODUCTION 

The complexity of the electrical and electronic system 
(EES) in vehicles has evolved over the years in response to 
continuously increasing demand for incorporating new 
electronic control units (ECUs) onto vehicles. These allow 
for advanced safety, convenient and comfort features, as 
well as meeting new emission and fuel-economy standards. 
However, the fast growing number of ECUs and their 
peripherals has led to complex interactions which can lead 
to unexpected emerging or cascading failures.  

Current state-of-the-art diagnosis and prognosis algorithms 
typically focus on one aspect of the system which makes it 

difficult to capture problems originating from the interaction 
between and across different system layers: physical level 
(power or communication), functional level and 
communication level.  Such multi-layer problems are 
typically addressed after the fact with tedious and error 
prone manual analysis.    

In this paper, we consider in-vehicle EES as an embedded 
and distributed complex system, subject to the design for 
fault detection, isolation, and mitigation.  Based on recent 
advancements in Network Science, we develop the layered 
EES network modeling methodology to capture highly 
inter-related in-vehicle EES. We develop novel multi-partite 
and multi-attribute betweenness centrality measures to 
quantify the importance to which a node has control over 
pair-wise connections between other nodes in the layered 
EES network model. We apply multi-partite and multi-
attribute betweenness centrality measures to rank and 
recommend fault detection and isolation monitoring points 
that cannot be discovered by single layered analysis 
techniques and conventional betweenness centrality 
measures. We provide usage-based and random failure 
simulation strategies for recommending fault isolation and 
mitigations points for desired diagnostic coverage.  We 
present our initial empirical study toward this network-
based approach of IVHM.  

We discuss related work in Section 2 and introduce our 
layered network modeling methodology in Section 3. In 
Sections 4-6, we describe our multi-partite and multi-
attribute betweenness centrality, and their application to 
fault analysis monitoring. Section 7 provides an example 
study. We conclude our papers with future research 
direction in Section 8. 

2. RELATED RESEARCH 

Our work is related to embedded system, complex system 
diagnosis, and network science.  Struss et. al. (2010) 
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compiled a special issue on the recent advancements of 
model-based diagnosis in which (Wang & Provan, 2010) 
describes the automated benchmark diagnostic model 
generator, with various domain, topology and system-level 
behaviors, based on the graphical model approach of 
network science. The benchmark models generated in 
(Wang & Provan, 2010) can be provided as the input to our 
methodology for fault detection, isolation and mitigation 
analysis.  

Simonot-Lion (2009) is another special issue compiling 
recent advancements in the area of in-vehicle embedded 
system. Zeng et al., (2009) describes a stochastic analysis 
framework for the end-to-end latency of distributed real-
time systems and demonstrated the experimental results on 
Controller Area Network (CAN).  This work focuses on 
simulation and analysis of probability distribution for end-
to-end latency analysis of active safety functions on 
vehicles.  Our work, on the other hand, focuses on design 
and diagnosis.  

Our proposed new measures for quantifying EES 
complexity and maintainability is based on betweenness 
centrality measures in network science. Brandes (2008) 
gives a comprehensive survey and contrasts most recent 
variants of betweenness centrality.  Our proposed new 
measures are inspired from our layered EES network; 
therefore, there is no compatible measures in the state-of-
the-art as surveyed in (Brandes, 2008). The measures closest 
to ours are those described in (Borgatti, 2005; Flom et. al., 
2004). However, their works do not consider multi-partite, 
multi-attributes layered networks.  In general, these works 
focus on social network analysis and has no mentioning of 
fault-isolation and fault-mitigation analysis. 

3. LAYERED NETWORK MODELING 

By taking the holistic approach to model in-vehicle EES, we 
make the following modeling assumptions to construct the 
layered, multi-partite, multi-attribute network for analyzing 
an EES system.  

1. Each network layer models one aspect of EES; for 
example, physical network layer represents physical 
wiring connections of ECUs, functional network layer 
represents relations of software functions among ECUs, 
message network layers models message flows among 
ECUs, and so on.   

2. Nodes can be annotated with node types.   Designation 
of node type leads to partitions of nodes where nodes in 
the same partitions do not have edges; for example, one 
ECU node is not directly linked to another ECU node, 
but via Message nodes in a message network layer. 

3. Nodes can be annotated with node attributes to 
represent their special characteristics. Node attributes 
are usually defined orthogonally to node types; nodes 
with the same node type may have different node 

attributes, and similarly nodes with different types may 
have the same node attribute. For example, node 
attributes {Sending, Receiving} can be used to annotate 
nodes across node types {ECU, Message}. 

4. Edges within the layered network can be annotated with 
edge attributes where the value of an attribute typically 
represents the types of information flowing between 
nodes. For example, a feature node may have an edge to 
another feature node with edge attributes {data, 
frequency} in the dataflow network.  

5. Edges across different layers typically represent 
dependency or identity relations. For example, the same 
hardware ECU node may appear in both electrical and 
physical sub-networks which warrant across layer 
edges. 

Formally, we consider a graph G=(N,E) consists of a 
nonempty countable set of nodes N and a set of directed or 
undirected edges E ك N×N. A multipartite graph is a graph 
where N is divided into nonempty disjoint subsets (called 
Parts) and no two nodes in the same subset have an edge 
connecting them.  Nodes can be associated with a vector of 
node attributes NA; similarly, edges can be associated with a 
vector of edge attributes EA. Part is imposed by topological 
structure, whereas attribute is primarily augmented for the 
semantic aspect of a node.  A layered, multi-partite, multi-
attribute EES network consists of layers of multi-partite, 
multi-attribute graphs where node types correspond to parts, 
and edges across layers represent dependency or identity 
relations for entities in different layers. Figure 1 shows an 
example layered network of in-vehicle EES layered 
network. 

  

Figure 1: An example layered EES network consists of 
layers of electrical, physical, functional, message, and 
dataflow sub-networks; relation within each layers are 
shown to the right; dependency and identify relations across 
layers are summarized into double arrows across layers of 
sub-networks. Note that across layer links are not restricted 
to neighboring layers only. 
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4. BETWEENNESS CENTRALITY 

Betweenness centrality is defined in social network analysis 
to quantify the importance to which a node has control over 
pair-wise connections between other nodes, based on the 
assumption that the importance of connections is equally 
divided among all shortest paths for each pair (Freeman, 
1978). The betweenness centrality ܥܤሺ݊௜ሻ for a node ݅ א ܰ 
is defined as follows. 

ሺ݅ሻܥܤ ൌ ∑ ఙ೓ೕሺ௜ሻ

ఙ೓ೕ
௛ஷ௜ஷ௝ , 

where ߪ௛௝  is the total number of shortest paths between ݄ 
and ݆, and ߪ௛௝ሺ݅ሻ is the number of such shortest paths that 
pass through the node ݅ .  The ܥܤሺ݅ሻ can be scaled between 
0 and 1 using ಳ಴ሺ೔ሻ

ሺ|ಿ|షభሻ where |N| is the number of nodes in the 
graph.  Correspondingly, the betweenness centrality ܥܤሺ݁ሻ 
for an edge ݁ א  is defined as the number of shortest paths ܧ
passing through the edge, i.e., ܥܤሺ݁ሻ ൌ ∑ ఙ೓ೕሺ௘ሻ

ఙ೓ೕ
௛ஷ௜ஷ௝ . The 

ሺ݁ሻܥܤ  could be normalized between 0 and 1 
using ஻஼ሺ௘ሻ

ሾሺ|ே|ିଵሻሺ|ே|ିଶሻሿ/ଶ
. 

Recognizing the rich semantics in the layered EES network, 
we develop novel multi-partite, multi-attribute betweenness 
centrality to account for node types and attributes in the 
layered in-vehicle EES network. 

4.1. Multi-partite Betweenness Centrality 

In the layered EES network, each node and edge can have 
different types and attributes which warrant further 
constraints on how betweenness centrality can be defined 
when considering different semantic meaning of shortest 
paths in the layered EES network. We propose three 
different multipartite betweenness centrality measures based 
on the constraints on node types (parts) in the network. 

We first define the homogeneous multipartite betweenness 
centrality ܥܤ௉ሺ݅ሻ  for a node ݅ א ௉ܰ , where ௉ܰ is a part 

௉ܰ ؿ ܰ, is defined as follows: 

௉ሺ݅ሻܥܤ ൌ ∑ ఙ೓ೕሺ௜ሻ

ఙ೓ೕ
௛ஷ௜ஷ௝ אேು  , 

where ߪ௛௝  is the total number of shortest paths between ݄ 
and ݆, given that nodes ݄, ݅, and ݆ are all in the same part 

௉ܰ , and ߪ௛௝ሺ݅ሻ is the number of such shortest paths that 
pass through the node ݅ . This is to constrain the shortest 
paths such that the starting and ending nodes are the same 
node types (in the same part) as the one of the intermediate 
node.  For example, an ECU node linked to another ECU 
node via a gateway ECU with some message nodes along 
the path.  

Next, we define the bi-mode multipartite betweenness 
centrality where the starting and ending nodes are the same 
part but different from the part of the intermediate node. The 

bi-mode multipartite betweenness centrality ܥܤ௉തሺ݅ሻ  for a 
node ݅ is: 

௉തሺ݅ሻܥܤ ൌ ෍
௛௝ሺ݅ሻߪ

  ேುאேೂ ஷேು ,௜א௛௝    ௛,௝ߪ

, 

where ߪ௛௝  is the total number of shortest paths between ݄ 
and ݆ that are in the same part, but are different from the part 
of the node ݅ , and ߪ௛௝ሺ݅ሻ  is the number of such shortest 
paths that pass through ݅ . One example use of this measure 
is to consider a message node ݅  sitting on the paths of 
communications between two different ECU nodes.  

We define the heterogeneous multipartite betweenness 
centrality for a node ܥܤ௉෠ሺ݅ሻ for a node ݅ as follows: 

௉෠ሺ݅ሻܥܤ ൌ ෍
௛௝ሺ݅ሻߪ

  ேೂאேು,௝אே೚ ,௜א௛௝    ௛ߪ

, 

where ߪ௛௝  is the total number of shortest paths between ݄ 
and ݆ that are in different parts and not in the same part as 
the node ݅ ሺ ௢ܰ ് ௉ܰ ് ொܰሻ, and ߪ௛௝ሺ݅ሻ  is the number of 
such shortest paths that pass through ݅  .  This measure 
assumes that there are at least three parts defined in the 
network.   One example use of such measure could be 
finding out the betweenness for a node in functional layer 
and starting and ending nodes are in the layers of message 
and physical networks. 

4.2. Multi-attribute Betweenness Centrality 

To account for attributes orthogonal to topological 
definition of parts, we define homogeneous multi-attribute 
betweenness centrality ܥܤ஺ሺ݅, ܽሻ and negated multi-attribute 
betweenness centrality ܥܤ஺ҧሺ݅, ܽሻ  for a node ݅ א ܰ  and an 
attribute ܽ א  :ே as followsܣ

,஺ሺ݅ܥܤ ܽሻ ൌ ෍
௛௝ሺ݅ሻߪ

 ௛௝௛ஷ௜ஷ௝,௔ሺ௛ሻୀ௔ሺ௜ሻୀ௔ሺ௝ሻߪ

, 

where ߪ௛௝  is the total number of shortest paths between ݄ 
and ݆, given that nodes ݄, ݅, and ݆ has the same values for the  
attribute ܽ  (i.e., ܽሺ݄ሻ ൌ ܽሺ݅ሻ ൌ ܽሺ݆ሻ ), and ߪ௛௝ሺ݅ሻ  is the 
number of such shortest paths that pass through ݅ ; and 

,஺ҧሺ݅ܥܤ ܽሻ ൌ ෍
௛௝ሺ݅ሻߪ

 ௛௝௛ஷ௜ஷ௝,௔ሺ௛ሻୀ௔ሺ௝ሻ,௔ሺ௜ሻஷ௔ሺ௝ሻߪ

, 

where ߪ௛௝  is the total number of shortest paths between ݄ 
and ݆ , given that nodes ݄ and ݆ has the same values for the  
attribute ܽ (i.e., ܽሺ݄ሻ ൌ ܽሺ݆ሻ) but they have different values 
from node ݅ (݅. ݁. , ܽሺ݅ሻ ് ܽሺ݆ሻ), and ߪ௛௝ሺ݅ሻ is the number of 
such shortest paths that pass through ݅. 

Similarly, the multi-attribute betweenness centrality, 
,஺ሺ݁ܥܤ ܽሻ and ܥܤ஺ҧሺ݁, ܽሻ for an edge ݁ א  and an attribute ܧ
ܽ א  ா, can be defined as those for the nodes. One exampleܣ
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Figure 5: An example functional network depicting relations 
between virtual devices (green nodes) and ECUs (yellow 
nodes).   

7. AN EXAMPLE STUDY 

To demonstrate the values of proposed methods, we show 
our analysis on an example layered EES network.  We first 
show how consideration of different node types may lead to 
different views of the importance of a node.  We next show 
the effect of usage-based node failures based on different 
node types.  Finally, we show simulation of sequential 
failures for fault-mitigation analysis. 

We apply multi-partite betweenness centrality on the 
network depicted in Figure 5.  We show the distributions of 
betweenness centrality for each part in Figure 6 and Figure 
7. 

We simulate the failures and inspect the changes of 
betweenness centrality measures.  Figure 8 show an 
example of changes in the distribution of betweenness 
centrality for failing the top three ECUs. Nodes with 
increasing betweenness centrality after the failures can be 
considered as survival nodes that can carry out functions of 
failed nodes (e.g., Node9 and Node17 in Figure 8).   

 
Figure 6: An example distribution of betweenness centrality 
in functional network.   The distribution shows the top 59 
ECU (out of 102) with above average betweenness 
centrality.  

Figure 7: An example distribution of betweenness centrality 
for VD part in functional network. The distribution shows 
the top 10 VDs (out of 482) with above betweenness 
centrality. 
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Figure 8: An example of changes in the distribution of 
betweenness centrality by failing the top 3 ranking ECU. 
The original ECU betweenness centrality is charted along 
with their new distribution after each simulated failures 
(Fail1, Fail2, and Fail3).  

8. CONCLUSION 

The network-theory based approach reported in this paper 
provides a first step toward integrated fault detection, 
isolation, and mitigation analysis capabilities for in-vehicle 
embedded electrical and electronic systems (EES). We 
apply layered network modeling over EES to build a layered 
multi-partite, multi-attribute network which represents 
physical, structural, functional, and data-flow aspects of in-
vehicle EES.  We employ two failure strategies to simulate 
failures and analyze the effects using betweenness centrality 
measures.  We develop novel multi-partite, multi-attribute 
betweenness centrality to account for the effects of failures 
and to quantify complexity, maintainability, and robustness 
of EES.  We provided an example to demonstrate our 
proposed methodology.  
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