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ABSTRACT
Maintenance of critical or/complex systems has recently
moved from traditional preventive maintenance to Con-
dition Based Maintenance (CBM) exploiting the ad-
vances both in hardware (sensors / DAQ cards, etc.)
and in software (sophisticated algorithms blending to-
gether the state of the art in signal processing and pat-
tern analysis). Along this path, Environmental Control
Systems and other critical systems/processes can be im-
proved based on concepts of anomaly detection, fault di-
agnosis and failure prognosis. The enabling technolo-
gies borrow from the fields of modeling, data processing,
Bayesian estimation theory and in particular a technique
called particle filtering. The efficiency of the diagnostic
approach is demonstrated via simulation results.

1. INTRODUCTION
Heating, Ventilating and Air Conditioning (HVAC) sys-
tems have a large span of applications ranging from in-
dustrial buildings, households to small scale units in-
stalled in aerial and ground vehicles operating as part
of Environmental Control Systems (ECS). Defective or
faulty operation of such systems have both environmen-
tal and economical impact. Typical drawbacks are high
operating cost, maintenance cost and thermal discom-
fort.

A standard ECS system is composed of four main
components that are encountered in subcritical vapor
compression cycles: The evaporator, condenser, Ther-
mostatic Expansion Valve (TEV) and compressor. The
refrigerant enters the compressor as a superheated va-
por at a low pressure. In the compressor, the refrig-
erant is compressed to a high pressure and it is routed
to the condenser. At this higher pressure, the refriger-
ant has a higher temperature than the ambient conditions
and the refrigerant condenses. The refrigerant exits the
condenser as a subcooled liquid at a higher pressure and
passes through the thermostatic expansion device. At the
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exit of the expansion valve, the refrigerant is at low pres-
sure and routed to the evaporator. At this lower pres-
sure the refrigerant has a lower temperature than ambi-
ent conditions, therefore heat is transferred to the refrig-
erant, and the refrigerant evaporates. Finally the refrig-
erant re-enters the compressor and the cycle is repeated.
The main components as well as the several phases of
the thermo-fluid in a vapor compression cycle with two-
phase heat exchangers are depicted in Figure 1.

From first principles modeling, the dynamic behavior
of thermo-fluid systems is dictated by highly coupled,
nonlinear partial differential equations. Such equations
are both complicated to handle for analysis and conduct-
ing numerical simulations. The main difficulty in the dy-
namic modeling of vapor compression cycles is the rep-
resentation of the thermo-fluid inside the two-phase heat
exchanger. Wedekind’s work (Wedekind, Bhatt, & Beck,
1978) indicated that two-phase transient flow problems
can be converted into lumped-parameter systems of non-
linear ordinary differential equations assuming that the
mean void fraction remains relatively invariant in the
two-phase section of a heat exchanger. This approach
has also been adopted in this paper following the work
reported in (X. He, 1996; X.-D. He & Asada, 2003; Ras-
mussen, 2005).

The ECS systems are subjected to various fault con-
ditions. A survey for the most common faults encoun-
tered in ECS systems is given in (Comstock, Braun, &
Groll, 2002). In this paper, the fault under consideration
is the refrigerant leakage that takes place in the evapo-
rator. According to (Braun, 2003), refrigerant leakage
accounts for about 12% of the total service calls in re-
sponse to a loss of cooling. All refrigeration systems
have the potential to leak because pressures in the system
are usually many times higher than atmospheric. Loss of
refrigerant from industrial and commercial refrigeration
systems can occur: (a) due to gradual leakage from joints
or seals (b) through accidental rapture of a pipe or joint
takes place and results in a significant loss of refrigerant
charge in a short period of time and (c) during servicing
when some refrigerant can be accidentally vented to gain
access to a section of pipe or a given piece of equipment
for repair.

A statistical rule-based method for Fault Detection
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Figure 1: Main components of the vapor compression
cycles and thermo-fluid phases

and Diagnosis (FDD) has been applied in for packaged
air conditioning systems in (Li & Braun, 2003; Rossi &
Braun, 1997) and for rooftop air conditioner in (Breuker
& Braun, 1998). In (Stylianou & Nikanpour, 1996),
an FDD method is employed for reciprocating chillers
utilizing physical modeling, pattern recognition and ex-
pert knowledge. An on-line refrigerant leakage detec-
tion scheme is proposed in (Navarro-Esbri, Torrella, &
Cabello, 2006) using adaptive algorithms.

This paper presents the implementation of an on-
line particle-filtering-based framework for fault diagno-
sis and failure prognosis in a two-phase heat exchanger
of an ECS. The methodology considers an autonomous
module, and assumes the existence of fault indicators
(for monitoring purposes) and the availability of real-
time measurements. The fault detection and identifica-
tion (FDI) module uses a hybrid state-space model of the
plant, and a particle filtering algorithm to calculate the
probability of leakage in the evaporator; simultaneously
computing the state probability density function (pdf) es-
timates.

The failure prognosis module, on the other hand com-
putes the remaining useful life (RUL) estimate of the
faulty subsystem in real time, using the the detection
algorithm current state estimates of the nonlinear state-
space fault growth model and predicts the evolution in
time of the probability distribution of the leaked mass.

The enabling technologies borrow from the fields of
modeling, data processing, Bayesian estimation theory
and in particular a technique called particle filtering. The
proposed FDI framework is enhanced with an additional
particle filtering routine that is executed in parallel with
the state estimator, which estimates the unknown model
parameters of the leakage progression model. The sim-
ulation result indicate that the proposed dual particle fil-
tering scheme is highly adaptive and reliable even for
abrupt crack that cause leakage.

This methodology allows the inclusion of customer
specifications (statistical confidence in fault detection,
minimum prediction window, etc.) in a simple and di-
rect way. Moreover, all the outcomes are easily provided
to plant operators through real-time updated graphs and
may be easily coded and embedded in compact modules.

This paper is organized as follows: Section 2 presents
the evaporator model which was used for the numerical
simulations. In Section 3 the leakage flow rate progres-
sion model is given. The technical approach of the de-
tection algorithm is presented in Section 4. The prognos-
tic module is presented in Section 5. Results in the form
of numerical simulations are given in Section 6. Finally,
concluding remarks are given in Section 7.

2. EVAPORATOR MODELING
For the dynamic representation of the evaporator, this pa-
per adopts the modeling approach introduced by (Grald
& MacArthur, 1992; X.-D. He & Asada, 2003; Cheng,
He, & Asada, 2004). This approach is based on the work
reported in (Wedekind et al., 1978) where a mean void
fraction is used in the two-phase region of the heat ex-
changer. The model converts the two-phase evaporat-
ing flow system into a type of lumped parameter system.
The dynamics of the two heat exchangers use a moving
boundary layer model to separate the distinct two-phase
liquid from the single-phase superheated of the evapora-
tor. Based on (X. He, 1996), the fundamental standing
assumptions of the heat exchangers dynamic model are:

1. One dimensional fluid flow
2. Negligible heat conduction along the axial direc-

tions of heat exchangers
3. Invariant mean void fraction in the two-phase sec-

tions during a short transient
4. Negligible refrigerant pressure drop along the heat

exchangers
Using the mean void fraction assumption the mass bal-
ance equation can be written as:

d

dt
{[ρl (1− γ̄) + ρgγ̄]Atle} = ṁin − ṁmid (1)

where γ̄ is the mean void fraction, le is the tube length
that corresponds to the two-phase section,At is the cross
section area of the tube, ṁin is the inlet flow rate, ṁmid
is the flow rate of the moving boundary, and ρl, ρg are the
refrigerant’s liquid and vapor density in the two-phase
section. The energy balance equation can be written as:

d

dt
{[ρlhl (1− γ̄) + ρghgγ̄]Atle} =

[hl (1− x)+hgx]︸ ︷︷ ︸
hin

ṁin−hgṁmid+leπUwDt (Tw−Te)︸ ︷︷ ︸
Q(le,Te,Tw)

(2)

where x is the inlet vapor quality, Dt is the diameter of
the tube, Uw is the heat transfer coefficient between the
tube wall and the refrigerant, Te is the temperature of
the refrigerant in the two-phase section, Tw is the tem-
perature of the tube wall, and hl, hg are the specific en-
thalpies of the refrigerant liquid and vapor, respectively.
The first term in the right hand side of Eq. (2) represents
the rate at which energy enters the two-phase region by
the inlet mass flow rate, the second term represents the
rate at which thermal energy exits the two-phase region,
by the outlet mass flow rate. The last term represent the
heat transfer rate from the tube wall to the refrigerant.
Multiplying Eq. (1) with hg and subtracting Eq. (2) one
gets:

d

dt
[ρl (1− γ̄)hlgAtle] = (1− x)hlgṁin −Q (3)

where hlg = hg − hl. Assuming that the refrigerant
properties remain constant over the time step, the moving
boundary dynamics can be written as:
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Figure 2: Schematic of the evaporator

dle
dt

= −πUwDt (Tw − Te)
ρl (1− γ̄)hlgAt

le+
1− x

ρl (1− γ̄)At
ṁin (4)

The dynamic equation of the system’s second state
variable is produced by the vapor balance in the evapora-
tor. The vapor mass flow rate entering the evaporator is
ṁinx. The vapor mass flow rate exiting the evaporator is
ṁout while the rate of vapor generated from liquid dur-
ing the evaporation process in the two-phase section is
Q(le, Te, Tw)/hlg. Assuming that in the evaporator the
vapor volume is significantly larger than the liquid vol-
ume, the vapor balance equation is given by:

dme

dt
= Ve

dρg
dt

= ṁinx− ṁout +
Q

hlg
(5)

where me and Ve are the total vapor mass and total vol-
ume of the evaporator. Since ρg is the denotes the vapor
saturated density, from the state equation one can easily
obtain the one-to-one mapping Te (ρg(t)).

It is assumed that the wall temperature is spatially uni-
form. The one dimensional energy balance equation for
the tube wall is given by

cwpwAw
dTw
dt

= UwAw(Te − Tw) + UaAa(Ta − Tw)

(6)
where cw, pw and Aw are the specific heat, density and
cross sectional area of the tube wall, respectively. In ad-
dition, Ua denotes the heat transfer coefficient between
the tube wall and the air, Aathe surface area between the
tube wall and the air and Ta the air exiting temperature
from the evaporator. Similarly, assuming that the air exit
temperature is spatially uniform, the one dimensional en-
ergy balance equation can be written as

capaAa
dTa
dt

= UwAw(Tw − Ta) + ṁa(TA − Ta) (7)

where ca, pa and Aa are the specific heat, density and
cross sectional area of the air tube, respectively. The
variable TA denotes the air temperature at the entrance
of the evaporator and ṁa the air flow rate.

3. REFRIGERANT LEAKAGE MODEL
The refrigerant leakage is produced typically by a crack
in the system pipes or by a faulty connection of the pipe
system joints. Based on (Merritt, 1967), the mass flow
rate of the leaked refrigerant is given by the following
equation:

dmleak

dt
= cdAl

√
2ρ(P − Po) (8)

where mleak is the mass of the leaked refrigerant, cd is
the discharge coefficient, Al is the crack surface, ρ is the
refrigerant density, P is the refrigerant pressure inside
the pipe and Po is the refrigerant pressure outside the
pipe. Assuming that the outer pressure is significantly
smaller than the refrigerant pressure inside the pipe, the
refrigerant leakage growth model can be approximated
by:

dmleak

dt
= Cr

√
ρlPe (9)

where Pe is the refrigerant pressure in the two-phase sec-
tion of the evaporator Cr =

√
2cdAl.

4. TECHNICAL APPROACH - THE
DIAGNOSTIC ALGORITHMS

A fault diagnosis procedure involves the tasks of fault
detection and isolation (FDI), and fault identification (as-
sessment of the severity of the fault). In general, this pro-
cedure may be interpreted as the fusion and utilization
of the information present in a feature vector (measure-
ments), with the objective of determining the operating
condition (state) of a system and the causes for devia-
tions from particularly desired behavioral patterns. Sev-
eral ways to categorize FDI techniques can be found in
literature. FDI techniques are classified according to the
way that data is used to describe the behavior of the sys-
tem: data-driven or model-based approaches.

Data-driven FDI techniques (Chen, Zhang, & Vacht-
sevanos, n.d.; Chen, Vachtsevanos, & Orchard, 2010)
usually rely on signal processing and knowledge-based
methodologies to extract the information hidden in the
feature vector (also referred to as measurements). In
this case, the classification/prediction procedure may be
performed on the basis of variables that have little (or
sometimes completely lack of) physical meaning. On
the other hand, model-based techniques, as the name im-
plies, use a description of a system (models based on
first principles or physical laws) to determine the current
operating condition.

A compromise between both classes of FDI tech-
niques is often needed when dealing with complex non-
linear systems, given the difficulty of collecting use-
ful faulty data (a critical aspect in any data-driven FDI
approach) and the expertise needed to build a reliable
model of the monitored system (a key issue in a model-
based FDI approach).

From a nonlinear Bayesian state estimation stand-
point, this compromise between data-driven and model-
based techniques may be accomplished by the use of
a Particle Filter (PF) based module built upon the dy-
namic state model describing the time progression or
evolution of the fault (Orchard & Vachtsevanos, 2009;
Chen, Brown, Sconyers, Vachtsevanos, & Zhang, 2010;

3



Annual Conference of the Prognostics and Health Management Society, 2011

X (t+ 1) = Φ (X (t), θ, t,N (t))

ṁv(t) = H (X (t), t) + v(t)

−

θ
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ṁv(t)
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X̂ i(t)
wi(t) = φ

(
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w̄i(t) = wi(t)∑N
1 wj(t)
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wi(t− 1)

wi(t)
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Figure 3: Block diagram of the PF algorithm for state estimation

X (t+ 1) = Φ (X (t), θ, t,N (t))

ṁv(t) = H (X (t), t) + v(t)

−

Resampling

ṁv(t)

ˆ̇mi
v(t)

θ̂i(t)
wi(t) = φ

(
εi(t)
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1 wj(t)
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θ̂i(t− 1)
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εi(t)

X̄ (t− 1) =
∑

j∈QX j(t− 1)/ |Q|
State Estimator

X̄ (t− 1)

Figure 4: Block diagram of the PF algorithm for parameter estimation where |Q| denotes the cardinality of the set
Q =

{
j ∈ 1, . . . , N : xjd,2(t− 1) = 1

}
.

Orchard & Vachtsevanos, 2007). The fault progression
is often nonlinear and, consequently, the model should
be nonlinear as well. Thus, the diagnostic model is de-
scribed by:

xd(t+ 1) = fd(xd(t), n(t))

xc(t+ 1) = ft(xd(t), xc(t), ω(t)) (10)
y(t) = ht(xd(t), xc(t), v(t))

where fb, ft, and ht are nonlinear mappings, xd(t) is
a collection of Boolean states associated with the pres-
ence of a particular operating condition in the system
(normal operation, fault type #1, #2, etc.), xc(t) is a set
of continuous-valued states that describe the evolution
of the system given those operating conditions, y(t) de-
notes the available measurements, ω(t) and v(t) are non-
Gaussian distributions that characterize the process and
feature noise signals respectively. Since the noise signal
n(t) is a measure of uncertainty associated with Boolean
states, it is advantageous to define its probability density
through a random variable with bounded domain. For
simplicity, n(t) may be assumed to be uniform white
noise (Orchard & Vachtsevanos, 2007). The PF approach
using the above model allows statistical characterization
of both Boolean and continuous-valued states, as new
feature data (measurements) are received. As a result,
at any given instant of time, this framework provides an
estimate of the probability masses associated with each

fault mode, as well as a pdf estimate for meaningful
physical variables in the system. Once this information is
available within the FDI module, it is conveniently pro-
cessed to generate proper fault alarms and to report on
the statistical confidence of the detection routine.

One particular advantage of the proposed particle fil-
tering approach is the ability to characterize the evolu-
tion in time of the above mentioned nonlinear model
through modification of the probability masses associ-
ated with each particle, as new data from fault indicators
are received. In addition, pdf estimates for the system
continuous-valued states provide the capability of per-
forming swift transitions to failure prognosis algorithms,
one of the main advantages offered by the proposed ap-
proach.

The PF based FDI module is implemented accordingly
using the non-linear time growth model given in Eq. (9)
to describe the expected leaked mass flow rate. The goal
is for the algorithm to make an early detection of the
evaporator’s leakage due to an unexpected crack or a
faulty connection to the evaporators pipes. Two main op-
erating conditions are distinguished: The normal condi-
tion reflects the fact that there is no leakage while a faulty
condition indicating an unexpected crack in the evapora-
tor which causes leakage. Denote by xd,1 and xd,2 two
Boolean states that indicate normal and faulty conditions
respectively. The nonlinear model is given by:
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[
xd,1(t+ 1)
xd,2(t+ 1)

]
= fb

([
xd,1(t)
xd,2(t)

]
+ n(t)

)

ṁleak(t) = θ(t)xd,2(t)
√
pl(Te(t))Pe(t) + ω(t)

(11)
ṁv(t) = h(ṁleak(t), t) + v(t)

where

fb(x) =

{
[1 0]

T if
∥∥∥x−[1 0]

T
∥∥∥ ≤

∥∥∥x−[0 1]
T
∥∥∥

[0 1]
T else

[xd,1(to) xd,2(to) ṁleak(to)]
T

= [1 0 0]
T (12)

In the above equations θ(t), is a time-varying model
parameter that represents the crack surface (the crack
constant Cr) in the evaporator that causes the leak. The
one-to-one mapping h(·) is also referred to as fault-to-
feature mapping and it is obtained using the first prin-
ciples model described in Section 2. A more practical
approach is to approximate the fault-to-feature mapping
by a neural network that assigns the operating conditions
and the leakage to the valve flow rate. In particular set
h(ṁleak(t), t) ∼= ΨNN (ṁleak(t), Te(t), TA(t)).

The inlet flow rate of the evaporator is substituted by
ṁv that denotes the TEV flow rate. It is assumed that
ṁv can be measured. The above system can be written
in a more compact form as

X (t+ 1) = Φ(X (t), θ, t,N (t)) (13)
ṁv(t) = H(X (t), t) + v(t) (14)

where X T = [xd,1 xd,2 ṁleak]
T and VT =

[n ω]
T
. The steps of the PF algorithm execution are

described below:

1. From Eq. (13) generate N state estimates (parti-
cles) denoted by X̂ i(t) where i = 1, . . . , N . To
generate the state estimates, use a zero mean Gaus-
sian distribution for ω(t) and uniform white noise
for n(t).

2. From Eq. (14) calculate the liquid side flow rate
estimates denoted by ˆ̇mi

v , substituting the particles
X̂ i(t+ 1) to the mapping H(·).

3. Calculate theN errors εi = ˆ̇mi
v−ṁv , and assign to

each particle X̂ i(t) a weight wi(t) = φ
(
εi
)
, where

φ (·) denotes the standard normal distribution.

4. Normalize the weights wi(t). The normalized
weights w̄i(t) represent the discrete probability
masses of each state estimate.

5. Calculate the final state estimate X̃ (t) using the
weighted sum of all the states X̂ i(t).

An important part of the PF algorithm is the resampling
procedure. Resampling is an action that takes place to
counteract the degeneracy of the particles caused by es-
timates that have very low weights. A block diagram of

θ̃(t)

State Estimator

Parameter Estimator

X̄ (t− 1)

X̃ (t)

Figure 5: Block diagram of the complete FDI algorithm
that utilizes a dual PF for state and parameter estimation.

the PF algorithm is given in Figure 3. An obvious short-
coming of the above procedure is that the crack coeffi-
cient Cr is unknown in a real life application. To this ex-
tent we augment to the standard FDI algorithm a param-
eter estimator module utilizing also PF with the objective
to identify on-line the time-varying parameter θ(t). The
parameter estimator is executed in parallel with the state
estimator. The execution steps of the PF algorithm for
parameter estimation are described below:

1. For each faulty particle (xid,2(t) = 1) calculate the
mean state X̄ (t). If there are not any faulty particles
exit the parameter estimation module.

2. Using X̄ (t) from Eq. (13) generate Nθ param-
eter estimates (particles) denoted by θ̂i(t) where
i = 1, . . . , Nθ.

3. From Eq. (14) calculate the liquid side flow rate
estimates denoted by ˆ̇mi

v , substituting the particles
X̄ i(t+ 1) to the mapping H(·).

4. Calculate theN errors εi = ˆ̇mi
v−ṁv , and assign to

each particle θ̂i(t) a weight wi(t) = φ
(
εi
)
, where

φ (·) denotes the standard normal distribution.

5. Normalize the weights wi(t). The normalized
weights w̄i(t) represent the discrete probability
masses of each state estimate.

6. Calculate the final state estimate θ̃(t) using the
weighted sum of all the states θ̂i(t).

The resampling module takes place is an identical way
as for the state estimator. A block diagram of the PF
algorithm for parameter estimation is given in Figure 4.
The interconnection of the two PF modules for both state
and parameter estimation is given in Figure 5.

5. PROGNOSIS
Prognosis can be essentially understood as the gener-
ation of long-term predictions describing the evolution
in time of a particular signal of interest or fault indica-
tor. The goal of the prognostic algorithm is to use the
evolution of the fault indicator in order to estimate the
RUL of a failing component. Since prognosis intends to
project the current condition of the indicator, it necessar-
ily entails large-grain uncertainty. This paper adopts a
prognosis scheme based on recursive Bayesian estima-
tion techniques, combining the information from fault
growth models and on-line data from sensors monitor-
ing the plant.
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Figure 6: PF based FDI module

The prognosis algorithm is activated when a fault has
been declared by the FDI module. Prognosis is a prob-
lem that goes beyond the scope of filtering applications,
since it involves future time horizons. The main idea
of the prognostic algorithm is to project the continuous
state particle population in time, using the fault growth
model, in order to estimate the time-to-failure (TTF) of
each particle. Considering the nonlinear model given in
Eq. (11) and using the notation of the diagnostic model
introduced in Eq. (10), the progression in time of the
continuous state can be written us:

xc(t+ 1) = ψ
(
xc(t), t

)
(15)

The above equation represents the nonlinear mapping
ft(·), initially introduced in Eq. (10). From this map-
ping we have excluded the dependence of the noise ω(t)
and the dependence of the boolean state xd(t), since in
the prognostic mode a fault has already been detected.
The inclusion of the time variable in the definition of the
nonlinear mapping ψ(·) allows the investigation of time
varying fault growth models. The execution of the prog-
nostic algorithm at each time instant includes the follow-
ing steps:

1. At each time instant, receive from the fault detec-
tion module N particles of the continuous state de-
noted by x̂ic(t), where i = 1, . . . , N . For each par-
ticle, using the fault growth model, iterate pi steps
in time, with pi ∈ N, such that the pi-step ahead
predictions given by:

x̂ic(t+ pi) = ψ
(
x̂ic(t+ pi − 1), (t+ pi − 1)

)

are such that X low
hazard ≤ x̂ic(t + pi) ≤ Xhigh

hazard,
where X low

hazard, Xhigh
hazard denote the upper and

lower bounds of a hazard zone that designate the
limits of a critical failure. The initial estimates x̂ic
are taken directly by the PF detection algorithm de-
scribed in the previous section.

2. Using the RUL estimates (pi) and the normalized
weights of the detection algorithm (w̄i(t)), the pdf
and the weighted estimate of the RUL, denoted as
t̂RUL, can be obtained for each time step.

0 200 400 600 800 1000
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0.02
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0.08

0.1

time (sec)

m
le
a
k
(k
gr
)

Leaked mass

Hazard Threshold

Figure 7: This figure illustrates the actual (dashed line)
and the estimated (solid line) value of the leaked mass.

In many practical applications, the error that can be
generated by considering the particle weights invari-
ant for future time instants is negligible with respect to
other sources, such as model inaccuracies or wrong as-
sumptions about process/measurement noise parameters.
Thus, from this standpoint, Eq. (15) is considered suffi-
cient to extend the fault estimate trajectories, while the
current particle weights are propagated in time without
changes. The computational burden of this method is
considerably reduced and, as it will be shown in simula-
tion results, it can give a satisfactory view about how the
system behaves in time for most practical applications.

The proposed fault diagnosis framework allows the
use of the pdf estimates of the system continuous val-
ued states (computed at the moment of fault detection) as
initial conditions in the failure prognostic routine, giving
excellent insight into the inherent uncertainty in the pre-
diction problem. As a result, a swift transition between
the two modules (fault diagnosis and failure prognosis)
may be performed, and moreover, reliable prognosis can
be achieved within a few cycles of operation after the
fault is declared. This characteristic is, in fact, one of
the main advantages offered by this particle-filter based
framework.

6. SIMULATION RESULTS
The performance of the proposed FDI and prognostic
algorithms was tested via numerical simulations. The
evaporator dynamics are described by Eqs. (1)-(7). Re-
garding the inlet flow rates we set:

ṁin = ṁv − ṁleak and ṁout = ṁc

where ṁv and ṁc are the flow rates of the TEV and
compressor, respectively. The leakage fault is seeded ac-
cording to Eq. (9). The systems parameters are summa-
rized in Table 1. The number of particles used for the
two estimators (state and parameter) are N = 100 and
Nθ = 150. The crack constant is given by:

Cr(t) = 5 · 10−9step(t− 144) (16)
Using the above representation we simulate the occur-
rence of an and abrupt and unexpected crack that causes
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and the estimated (solid line) value of the crack coeffi-
cient.
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Figure 9: This figure illustrates the actual (dashed dotted
line) and the estimated (solid line) value of RUL.

Table 1: Simulator parameters
γ̄ 0.8474 Aw 6.6361 ·10−5m2

At 3.14 · 10−2 m2 UwAw 40.9962W/K

Uw 592.9817W/Km2 ṁa 0.765 kgr/sec

Dt 0.02m ca 103 J/kgr ·K
Ve 0.0057m3 ρa 1.1996 kgr/m3

cw 1.9552·103J/kgr·K Aa 0.1518m2

ρw 7.8491 · 103 kgr/m3 x 0

the nonlinear leakage growth model given in Eq. (9).
Signal noise has been added to the available measure-
ments. The saturated states are calculated based on the
tables of R134a refrigerant. The operating conditions
are ṁv = ṁc = 0.0108 kgr/sec and TA = 26 Co. Be-
sides detecting the faulty condition, it is desired to obtain
some measure of the statistical confidence of the alarm
signal. For this reason, two outputs will be extracted
from the FDI module. The first output is the expecta-
tion of the Boolean state xd,2(t), which constitutes an
estimate of the probability of fault. The second output is
the statistical confidence needed to declare the fault via
hypothesis testing (H0: ‘the evaporator is not leaking’
vs H1: ‘The evaporator is leaking’). The latter output
needs another pdf to be considered as the baseline. In
this case, a normal distribution N(0, σ) is used to define
this baseline data. This indicator is essentially equivalent
to an estimate of type II error. Customer specifications
are translated into acceptable margins for the type I and
II errors in the detection routine.

The algorithm itself will indicate when the type II er-
ror (false negatives) has decreased to the desired level.
Figure 6 shows two indicators that are simultaneously
computed. The first indicator, depicted as a function
of time, shows the probability of a determined failure
mode, and it is based on the estimate of the Boolean state
xd,2. FDI alarms may be triggered whenever this indica-
tor reaches a pre-determined threshold (in this case the
threshold value is 0.9). If more information is needed,
the type II detection error (second and third indicators,
respectively) may be considered.

Figure 7 illustrates the actual and estimated leaked
mass. Figure 8 illustrates the estimated crack coefficient.
A small bias is evident in the crack coefficient estimate
in the healthy condition. However, this bias has a very
small value and a low probability of fault. Finally Fig-
ure 9 illustrates the actual RUL compared to t̂RUL that
is estimated by the prognosis module. The results in-
dicate that the enhanced FDI and prognostic algorithms
provide very accurate estimates of the fault progression,
the crack coefficient and the RUL estimate.

7. CONCLUSIONS
This paper is introducing an architecture for the devel-
opment, implementation, testing and assessment of a
particle-filtering-based framework for FDI and progno-
sis. The proposed framework for FDI has been success-
ful and very efficient in pinpointing abnormal conditions
in very complex and nonlinear processes, such as the de-
tection of leakage in a two-phase evaporator of an ECS.
The FDI algorithm is enhanced with an adaptive mod-
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ule that provides estimates of the fault nonlinear model
parameters. Regarding prognosis, it was shown that that
the proposed approach is suitable for online implemen-
tation, providing acceptable results in terms of precision
and accuracy. A successful case study has been pre-
sented, offering insights about how model inaccuracies
and/or customer specifications (hazard zone or predic-
tion window definitions) may affect the algorithm per-
formance.

REFERENCES
Braun, J. (2003). Automated Fault Detection and Di-

agnostics for Vapor Compression Cooling Equip-
ment. Transaction of the ASME, 125, 266-274.

Breuker, M., & Braun, J. (1998). Common faults and
their impacts for rooftop air conditioners. Interna-
tional Journal of HVAC&R Reserach, 4, 303-318.

Chen, C., Brown, D., Sconyers, C., Vachtsevanos, G.,
& Zhang, B. (2010). A .NET framework for an
integrated fault diagnosis and failure prognosis ar-
chitecture. In IEEE AUTOTESTCON.

Chen, C., Vachtsevanos, G., & Orchard, M. (2010).
Machine remaining useful life prediction based on
adaptive neuro-fuzzy and high-order particle filter-
ing. In Annual Conference of the Prognostics and
Health Management Society.

Chen, C., Zhang, B., & Vachtsevanos, G. (n.d.). Predic-
tion of machine health condition using neuro-fuzzy
and Bayesian algorithms. (To be published in
IEEE Transactions on Instrumentation and Mea-
surement)

Cheng, T., He, X.-D., & Asada, H. (2004). Nonlin-
ear observer design for two-phase flow heat ex-
changers of air conditioning systems. In Ameri-
can Control Conference, 2004. Proceedings of the
2004 (Vol. 2, p. 1534 - 1539 vol.2).

Comstock, M., Braun, J., & Groll, E. (2002). A survey
of common faults for chillers. ASHRAE Transac-
tions, 108, 819-825.

Grald, E. W., & MacArthur, J. (1992). A
moving-boundary formulation for modeling time-
dependent two-phase flows. International Journal
of Heat and Fluid Flow, 13(3), 266 - 272.

He, X. (1996). Dynamic Modeling and Multivariable
Control of Vapor Compression Cycles in Air Con-
ditioning Systems. Unpublished doctoral disserta-
tion, Massachusetts Institute of Technology.

He, X.-D., & Asada, H. (2003). A new feedback lin-
earization approach to advanced control of multi-
unit HVAC systems. In American Control Con-
ference, 2003. Proceedings of the 2003 (Vol. 3,
p. 2311 - 2316 vol.3).

Li, H., & Braun, J. (2003). An Improved Method for
Fault Detection and Diagnosis Applied to Pack-
aged Air Conditioners. American Society of Heat-
ing, Refrigerating and Air Conditioning Engi-
neers, 109, 683-692.

Merritt, H. (1967). Hydraulic Control Systems. John
Wiley & Sons.

Navarro-Esbri, J., Torrella, E., & Cabello, R. (2006).
A vapour compression chiller fault detection tech-
nique based on adaptative algorithms. Application
to on-line refrigerant leakage detection. Interna-
tional Journal of Refrigeration, 29, 716-723.

Orchard, M., & Vachtsevanos, G. (2007). A particle
filtering-based framework for real-time fault di-
agnosis and failure prognosis in a turbine engine.
In Control Automation, 2007. MED ’07. Mediter-
ranean Conference on (p. 1 -6).

Orchard, M., & Vachtsevanos, G. (2009). A particle-
filtering approach for on-line fault diagnosis and
failure prognosis. Transactions of the Institute of
Measurment and Control, 31, 221-246.

Rasmussen, B. (2005). Dynamic Modeling and Ad-
vanced Control of Air Conditioning and Refriger-
ation Systems. Unpublished doctoral dissertation,
University of Illinois.

Rossi, T., & Braun, J. (1997). A statistical, rule-based
fault detection and diagnostic method for vapor
compression air conditioners. International Jour-
nal of HVAC&R Reserach, 3, 19-37.

Stylianou, M., & Nikanpour, D. (1996). Performance
monitoring, fault detection, and diagnosis of re-
ciprocating chillers. ASHRAE Transactions, 102,
615-627.

Wedekind, G., Bhatt, B., & Beck, B. (1978). A System
Mean void Fraction Model For Predicting Various
Transient Phenomena Associated with Two-Phase
Evaporating and Condensing Flows. International
journal of Multiphase Flow, 4, 97-114.

Ioannis A. Raptis was born in Athens, Greece in
1979. He received his Dipl-Ing. in Electrical and
Computer Engineering from the Aristotle University of
Thessaloniki, Greece and his Master of Science in Elec-
trical and Computer Engineering from the Ohio State
University in 2003 and 2006, respectively. From 2005
until 2006 he conducted research at the Locomotion and
Biomechanics Laboratory of the Ohio State University.
In 2006 he joined the Unmanned Systems Laboratory
at the University of South Florida. In 2010 he received
his Ph.D. degree in the department of Electrical En-
gineering at the University of South Florida. In 2010
he joined the Intelligent Control Systems Laboratory
of the Georgia Institute of Technology. His research
interests include nonlinear systems control theory,
nonlinear control of electromechanical/robotic systems
and rotorcraft/aircraft system identification and control.

George J. Vachtsevanos is a Professor Emeritus of Elec-
trical and Computer Engineering at the Georgia Institute
of Technology. He was awarded a B.E.E. degree from
the City College of New York in 1962, a M.E.E. de-
gree from New York University in 1963 and the Ph.D.
degree in Electrical Engineering from the City Univer-
sity of New York in 1970. He directs the Intelligent
Control Systems laboratory at Georgia Tech where fac-
ulty and students are conducting research in intelligent
control, neurotechnology and cardiotechnology, fault di-
agnosis and prognosis of large-scale dynamical systems
and control technologies for Unmanned Aerial Vehicles.
Dr. Vachtsevanos was awarded the IEEE Control Sys-
tems Magazine Outstanding Paper Award for the years
2002-2003 (with L. Wills and B. Heck). He was also
awarded the 2002-2003 Georgia Tech School of Electri-
cal and Computer Engineering Distinguished Professor
Award and the 2003-2004 Georgia Institute of Technol-
ogy Outstanding Interdisciplinary Activities Award.

8


