
Bayesian fatigue damage and reliability analysis using Laplace approximation and
inverse reliability method

Xuefei Guan1, Jingjing He2, Ratneshwar Jha1, Yongming Liu2

1 Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699, USA
guanx@clarkson.edu
rjha@clarkson.edu

2 Department of Civil & Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
jihe@clarkson.edu
yliu@clarkson.edu

ABSTRACT
This paper presents an efficient analytical Bayesian method
for reliability and system response estimate and update. The
method includes additional data such as measurements to re-
duce estimation uncertainties. Laplace approximation is pro-
posed to evaluate Bayesian posterior distributions analyti-
cally. An efficient algorithm based on inverse first-order re-
liability method is developed to evaluate system responses
given a reliability level. Since the proposed method in-
volves no simulations such as Monte Carlo or Markov chain
Monte Carlo simulations, the overall computational efficiency
improves significantly, particularly for problems with com-
plicated performance functions. A numerical example and
a practical fatigue crack propagation problem with experi-
mental data are presented for methodology demonstration.
The accuracy and computational efficiency of the proposed
method is compared with simulation-based methods.

1. INTRODUCTION

Efficient inference on reliability and responses of engineer-
ing systems has drawn attention to the prognostics and health
management society due to the increasing complexity of those
systems (Melchers, 1999; Brauer & Brauer, 2009). For high
reliability demanding systems such as aircraft and nuclear
facilities, time-dependent reliability degradation and perfor-
mance prognostics must be quantified to prevent potential
system failures. Reliable predictions of system reliability and
system responses are usually required for decision-makingin
a time and computational resource constrained situation. The
basic idea of time-independent component reliability analysis
involves computation of a multi-dimensional integral overthe
failure domain of the performance function (Madsen, Krenk,
& Lind, 1986; Ditlevsen & Madsen, 1996; Rackwitz, 2001).
For many practical problems with high-dimensional parame-
ters, the exact evaluation of this integral is either analytically
intractable or computationally infeasible with a given time
constraint. Analytical approximations and numerical simula-
tions are two major computational methods to solve this prob-
lem (Rebba & Mahadevan, 2008).
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The simulation-based method includes direct Monte Carlo
(MC) (Kalos & Whitlock, 2008), Importance Sampling
(IS)(Gelman & Meng, 1998; Liu, 1996), and other MC sim-
ulations with different sampling techniques. Analytical ap-
proximation methods, such as first- and second- order relia-
bility methods (FORM/SORM) have been developed to esti-
mate the reliability without large numbers of MC simulations.
FORM and SORM computations are based on linear (first-
order) and quadratic (second-order) approximations of the
limit-state surface at themost probable point (MPP)(Madsen
et al., 1986; Ditlevsen & Madsen, 1996). Under the condition
that the limit-state surface at the MPP is close to its linear
or quadratic approximation and that no multiple MPPs ex-
ist in the limit-state surface, FORM/SORM are sufficiently
accurate for engineering purposes(Bucher et al., 1990; Cai
& Elishakoff, 1994; Zhang & Mahadevan, 2001; Zhao &
Ono, 1999). If the final objective is to calculate the sys-
tem response given a reliability index, the inverse reliabil-
ity method can be used. The most well-known approach is
inverse FORM method proposed in (Der Kiureghian, Yan,
& Chun-Ching, 1994; Der Kiureghian & Dakessian, 1998;
Li & Foschi, 1998). Several studies for static failure us-
ing the inverse FORM method have been reported in the
literature. (Du, Sudjianto, & Chen, 2004) proposed an in-
verse reliability strategy and applied it to the integratedrobust
and reliability design of a vehicle combustion engine piston.
(Saranyasoontorn & Manuel, 2004) developed an inverse re-
liability procedure for wind turbine components. (Lee, Choi,
Du, & Gorsich, 2008) used the inverse reliability analysis
for reliability-based design optimization of nonlinear multi-
dimensional systems. (Cheng, Zhang, Cai, & Xiao, 2007)
presented an artificial neural network based inverse FORM
method for solving problems with complex and implicit per-
formance functions. (Xiang & Liu, 2011) applied the inverse
FORM method to time-dependent fatigue life predictions.

Conventional forward and inverse reliability analysis is
based on the existing knowledge about the system (e.g., un-
derlying physics, distributions of input variables). Time-
dependent reliability degradation and system response chang-
ing are not reflected. For many practical engineering prob-
lems, usage monitoring or inspection data are usually avail-
able at a regular time interval either via structural healthmon-
itoring system or non-destructive inspections. The new in-
formation can be used to update the initial estimate of sys-
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tem reliability and responses. The critical issue is how to in-
corporate the existing knowledge and new information into
the estimation. Many methodologies have been proposed to
handle reliability updating problems. Bayesian updating is
the most common approach to incorporate these additional
data. By continuous Bayesian updating, all the variables
of interest are updated and the inference uncertainty can be
significantly reduced, provided the additional data are rele-
vant to the problem and they are informative. (Hong, 1997)
presented the idea of reliability updating using inspection
data. (Papadimitriou, Beck, & Katafygiotis, 2001) reported
a reliability updating procedure using structural testingdata.
(Graves, Hamada, Klamann, Koehler, & Martz, 2008) applied
the Bayesian network for reliability updating. (Wang, Rabiei,
Hurtado, Modarres, & Hoffman, 2009) used Bayesian reli-
ability updating for aging airframe. A similar updating ap-
proach using Maximum relative Entropy principles has also
been proposed in (Guan, Jha, & Liu, 2009). In those studies,
MCMC simulations have been extensively used to draw sam-
ples from posterior distributions. The Convergence Theorem
ensures the resulting Markov chain converges to the target
distribution (Gilks, Richardson, & Spiegelhalter, 1996) and
it becomes almost a standard approach for Bayesian analysis
with complex models. For practical problems with compli-
cated performance functions, simulations are time-consuming
and efficient computations are critical for time constrained re-
liability evaluation and system response prognostics. Some
of the existing analytical methods includes variational meth-
ods (Ghahramani & Beal, 2000) and expectation maximiza-
tion methods (Moon, 1996). Those methods usually focus on
the approximation of distributions and does not provide a sys-
tematical procedure for inverse reliability problems. In struc-
tural health management settings, simulation-based method
may be infeasible because updating is frequently performed
upon the arrival of sensor data. All these application require
efficient and accurate computations. However, very few stud-
ies are available on the investigation of complete analytical
updating and estimation procedure without using simulations.

The objective of the proposed study is to develop an effi-
cient analytical method for system reliability and response up-
dating without using simulations. Three computational com-
ponents evolved in this approach are Bayesian updating, relia-
bility estimation, and system response estimation given a reli-
ability or a confidence level. For Bayesian updating, Laplace
method is proposed to obtain an analytical representation of
the Bayesian posterior distribution and avoid MCMC simula-
tions. Once the analytical posterior distribution is obtained,
FORM method can be applied to update system reliability or
probability of failure. In addition, predictions of systemre-
sponse associated with a reliability or a confidence level can
also be updated using inverse FORM method to avoid MC
simulations.

The paper is organized as follows. First, a general Bayesian
posterior model for uncertain variables is formulated. Rele-
vant information such as response measures and usage mon-
itoring data are used for updating. Then an analytical ap-
proximation to the posterior distribution is derived basedon
Laplace method. Next, FORM method is introduced to es-
timate system reliability levels and a simplified algorithm
based on inverse FORM method is formulated to calculate
system response given a reliability level or a confidence level.
Following that, numerical and application examples are pre-
sented to demonstrate the proposed method. The efficiency
and accuracy of the proposed method are compared with sim-
ulation results.

2. PROBABILISTIC MODELING AND LAPLACE
APPROXIMATION

In this section, a generic posterior model for uncertain param-
eters is formulated using Bayes’ theorem to incorporate addi-
tional data such as measurements. Uncertainties from model
parameters, measurement, and model independent variables
are systematically included. To avoid MCMC simulations as
in classical Bayesian applications, Laplace approximation is
derived to obtain an analytical representation of the posterior
distribution. The updated reliability and system responses can
readily be evaluated using this posterior approximation.

2.1 Bayesian modeling for uncertain parameters
Consider a generic parameterized modelM(y;x) describing
an observable eventd, wherex is an uncertain model param-
eter vector andy is model independent variable. If the model
is perfect, one obtainsM(y;x) = d. In reality, such a perfect
model is rarely available due to uncertainties such as the sim-
plification of the actual complex physical mechanisms, statis-
tical error in obtaining the parameterx, and the measurement
error in d. Using probability distributions to describe those
uncertainties is a common practice.

Given the prior probability distribution ofx, p(x|M), and
the known relationship (conditional probability distribution or
likelihood function) betweend andx, p(d|x,M), the pos-
terior probability distributionp(x|d,M) is expressed using
Bayes’ theorem as

p(x|d,M) = p(x|M)p(d|x,M) 1
Z ∝ p(x|M)p(d|x,M), (1)

whereZ =
∫

X
p(x|M)p(d|x,M)dx is the normalizing con-

stant.
The modelM is assumed to be the only feasible model

andM is omitted hereafter for simplicity. Letm be the model
prediction ande the error term (for example, the measurement
error ofd). The variabled reads

d = m+ e. (2)

The probability distribution form is represented by the func-
tion p(m|x) = fM (m) and the probability distribution fore
is by the functionp(e|x) = fE(e). The conditional proba-
bility distribution ofp(d|x) can be obtained by marginalizing
the joint probability distribution ofp(d,m, e|x) as follows:

p(d|x) =
∫

M

∫

E

p(m|x)p(e|x)p(d,m, e|x)dedm. (3)

Becaused = m+ e,

p(d, z, e|x) = δ(d−m− e). (4)

Substitute Eq. (4) into Eq. (3) to obtain

p(d|x) =
∫

M

fM (m)fE(d−m)dm. (5)

Next, termsfM (m) andfE(e) need to be determined. Con-
sider a general case where the model predictionm has a sta-
tistical noise componentǫ ∈ E with a distribution function
p(ǫ|x) = fE(ǫ) due to the modeling errorm =M(y;x) + ǫ.
Equation (2) is revised as

d =M(y;x) + ǫ+ e. (6)

Marginalizingp(m|ǫ, θ) = δ(m − M(y;x) − ǫ) over ǫ to
obtain

fM (m) =

∫

E

p(ǫ|x)p(m|x, θ)dǫ = fE(m−M(y;x)). (7)
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For the purpose of illustration,ǫ ande are assumed to be two
independent Gaussian variables with standard deviations of
σǫ and σe, respectively. This assumption is usually made
when no other information about the uncertain variables is
available (Gregory, 2005). Equation (5) is the convolutionof
two Gaussians and it can be further reduced to another Gaus-
sian distribution as

p(d|x) = 1
√

2π(σ2
ǫ + σ2

e)
exp

[−(d−M(y;x))2

2(σ2
ǫ + σ2

e)

]

. (8)

Substituting Eq. (3) into Eq. (1) yields the posterior prob-
ability distribution of the uncertain parameterx incorporat-
ing the observable eventd. The reliability or system state
variables can readily be updated with Eq. (1). For problems
with high dimensional parameters, the evaluation of Eq. (1)
is rather difficult because the exact normalizing constantZ,
which is a multi-dimensional integral, is either analytically in-
tractable or computationally expensive. Instead of evaluating
this equation directly, the most common approach is to draw
samples from it using MCMC simulations. For applications
where performance functions are computationally expensive
to evaluate, this approach is time-consuming and hence not
suitable for online updating and prognostics. To improve the
overall computational efficiency, Laplace method is proposed
to approximate the non-normalized Bayesian posterior distri-
bution ofp(x|d). The derivation of Laplace approximation is
presented below.

2.2 Laplace approximation for Bayesian posterior
distributions

Consider the above non-normalized multivariate distribution
p(x|d) in Eq. (1) and its natural logarithmlnp(x|d). Expand-
ing lnp(x|d) using Tylor series around an arbitrary pointx∗

yields

lnp(x|d) =lnp(x∗|d) + (x− x∗)T∇lnp(x∗|d)+
1

2!
(x− x∗)T

[
∇2lnp(x∗|d)

]
(x− x∗)+

O((x− x∗)3),

(9)

where∇lnp(x∗|d) is the gradient oflnp(x|d) evaluated atx∗,
∇2lnp(x∗|d) is the Hessian matrix evaluated atx∗, andO(·)
are higher-order terms. Assume that the higher-order terms
are negligible in computation with respect to the other terms.
We obtain

lnp(x|d) ≈ lnp(x∗|d) + (x− x∗)T∇lnp(x∗|d)
︸ ︷︷ ︸

(∗)

+

1

2!
(x− x∗)T

[
∇2lnp(x∗|d)

]
(x− x∗).

(10)

The term(∗) is zero at local maxima (denoted asx0) of the
distribution since∇lnp(x0|d) = 0. Therefore, if we choose
to expandlnp(x|d) aroundx0, we can eliminate term(∗) in
Eq. (10) to obtain

lnp(x|d) ≈ lnp(x0|d) + 1
2 (x− x0)

T
[
∇2lnp(x0|d)

]
(x− x0). (11)

Exponentiatinglnp(x|d) of Eq. (11) yields

elnp(x|d) ≈ p(x0|d)exp
{

−1

2
(x− x0)

T [−∇2lnp(x0|d)](x− x0)

}

. (12)

The last term of Eq. (12) resembles remarkably a multivari-
ate Gaussian distribution with a mean vector ofx0 and a co-
variance matrixΣ =

[
−∇2lnp(x0|d)

]−1
. The normalizing

constant is

Z =

∫

X

elnp(x|d)dx ≈ p(x0|d)
√

(2π)n |Σ|, (13)

whereΣ =
[
−∇2lnp(x0|d)

]−1
, n is the dimension of the

variablex, and|Σ| is the determinant ofΣ.
The non-normalized Bayesian posterior distributionp(x|d)

is now approximated as

p(x|d) ≈ 1√
(2π)n|Σ|

exp
{
− 1

2 (x− x0)
T [Σ−1](x− x0)

}
, (14)

which is a multivariate Gaussian distribution with a mean vec-
tor of x0 and a covariance matrixΣ. To computex0 andΣ,
the first step is to find the local maxima oflnp(x|d) and eval-
uate the Hessian oflnp(x|d) at the local maxima. Numeri-
cal root-finding algorithms can be used to find local maxima,
such as Gauss-Newton algorithm (Dennis Jr, Gay, & Walsh,
1981), Levenberg-Marquardt algorithm (More, 1978), trust-
region dogleg algorithm (Powell, 1970), and so on. Laplace
method can yield accurate results given the target distribution
is approximately Gaussian distributed, which is quite com-
mon for practical problems (Gregory, 2005).

With the analytical representation of the posterior distribu-
tion p(x|d), the updated reliability index can be calculated us-
ing the FORM method. In addition, updated system response
predictions associated with a reliability index or a confidence
level can also be calculated using inverse FORM method. For
the sake of completeness, the basic concept of the FORM and
inverse FORM methods are introduced briefly.

3. FORM AND INVERSE FORM METHODS

The time-invariant reliability analysis entails computation of
a multi-dimensional integral over the failure domain of the
performance function.

PF ≡ P [g(x) < 0] =

∫

g(x)<0

fX(x)dx, (15)

wherex ∈ Rn is a real-valuedn-dimensional uncertain vari-
able,g(x) is the performance function, such thatg(x) < 0
represents the failure domain,PF is the probability of fail-
ure, andfX(x) is the joint probability distribution ofx.
The surfaceg(x) = 0 is usually called limit-state surface.
In FORM/SORM methods, the uncertain variable is usually
transformed from the standard probability space to the stan-
dard Gaussian space, also referred to asreduced variable
space. Denote the transformed performance function asg(z),
wherez ∈ Rn is ann-dimensional standard Gaussian vari-
able, also calledreduced variable. The distance between the
closest point (most probable point (MPP), labeled as MPP in
Figure 1) on the limit-state surfaceg(z) = 0 to the origin in
the reduced variable space is the Hasofer-Lind reliabilityin-
dex (Madsen et al., 1986), denoted asβHL in Figure 1. MPP
is also known as thedesign point.
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Figure 1: Linear (FORM) and quadratic (SORM) approxima-
tions of the performance function at MPP on the limit-state
surface.

Reliability analysis entails the computation ofβHL and the
design point, which is a standard constrained optimization
problem defined as

minimize: ||z|| subject tog(z) = 0, (16)

where||z|| denotes the distance between the pointz and the
origin in the reduced variable space.

The design point is generally not known a priori, hence an
iterative process is required to find the design pointz∗ in the
reduced variable space such thatβHL ≡ ||z∗|| corresponds to
the shortest distance betweenz∗ and the origin of the reduced
variable space. Because reduced variables are based on the
mean and standard deviation of a normal distribution, the non-
normal variables must be transferred to its equivalent normal
distribution. Rackwitz-Fiessler (Madsen, 1977) procedure is
usually adopted for this purpose. The idea requires the cu-
mulative density function (CDF) and the probability density
function (PDF) of the target distribution be equal to a nor-
mal CDF and PDF at the value of variablex on the limit-
state surface. This procedure finds the meanµeq and standard
deviationσeq of the equivalent normal distribution and thus
the variablex can be reduced to a standard Gaussian variable
z = (x − µeq)/σeq. Several algorithms are available to lo-
cates the design pointz∗, for example the Hasofer & Lind
- Rackwitz & Fiessler (HL-RF) algorithm (Hasofer & Lind,
1974; Rackwitz & Flessler, 1978). With an initial guess ofz0
on the limit-state surface, the basic procedure computes the
new location forz∗ iteratively according to

zk+1 =
1

|∇g(zk)|2
[∇g(zk)zk − zk]∇g(zk)T . (17)

A reasonable guess can be fixing the firstn−1 components of
z0 to its distribution means and solving for the last component
on the limit-state surface. The iterative procedure terminates
based on some criteria such as|βk+1 − βk| < ǫβ , whereǫβ is
a small control parameter assigned by users. Usually a value
of ǫβ = 10−4 to 10−3 yields accurate results forβHL and the
design point(Cheng et al., 2007).

After finding the design point andβHL by solving Eq. (16)
using the iterative formula of Eq. (17), FORM or SORM
can approximate the probability of failure using a linear or
quadratic approximation of the performance function, respec-
tively. Both of them are based on Taylor series expansion of
the performance function around the design point truncated

to linear and quadratic terms. For example, using FORM
method yields the probability of failure as

P FORM
F ≅ Φ(−βHL), (18)

whereΦ is the standard Gaussian CDF. The precision of this
approximation depends on the non-linearity of the limit-state
surface. Experience shows that FORM method yields accu-
rate results for general engineering purposes (Cheng et al.,
2007). FORM is a widely used computational model in reli-
ability index approach (RIA) for reliability-based designop-
timization (RBDO) since it finds the reliability indexβHL.
The advantage of RIA is that the probability of failure is for-
wardly calculated for a given design. However, inverse reli-
ability analysis in performance measure approach (PMA) is
known to be more robust and informative than the reliabil-
ity analysis in RIA (Tu, Choi, & Park, 1999; Youn, Choi, &
Du, 2005). The idea of inverse reliability analysis in PMA is
to investigate whether a given design satisfies the probabilis-
tic constraint with a target reliability indexβt. The inverse
reliability analysis can also be expressed as an optimization
problem such that

minimize: g(z) subject to||z|| = βt. (19)

In inverse reliability analysis, among the different values of
performance functiong(z) taking onz that pass through the
βt curve in the reduced variable space, the onez∗ that min-
imizes the performance function is sought. Figure 2 illus-
trates the inverse reliability analysis. The pointz∗ is also
called MPP and the corresponding minimal value ofg(z∗)
is called probabilistic performance measure (PPM). Both re-
liability analysis and inverse reliability analysis search for
MPPs. The difference is that the former search for the MPP
on the limit-state surfaceg(z) = 0 while the latter search for
MPP on theβt curve. Based on the idea of inverse FORM
procedure proposed in (Der Kiureghian et al., 1994), an effi-
cient and simplified iterative formula in the reduced variable
space is formulated as:

zk+1 = zk + λ

[

−βt

∇g(zk)
|∇g(zk)|

− zk

]

, (20)

where∇ is the gradient vector with respect toz andλ is the
step size at thekth iteration (a small constant is used in this
formula instead of an adaptive value). The initial valuez0 is
usually assigned to the distribution mean value. The iterative
procedure proceeds until a convergence is achieved, i.e., when

|zk+1 − zk|
|zk+1|

≤ ε, (21)

whereε is a small quantity assigned by the user. For practical
problems,ǫt = 10−4 to 10−3 usually yields satisfactory es-
timates (Cheng et al., 2007). Based on the iterative formula,
an algorithm locating MPP in inverse reliability problems is
given as Algorithm 1.

Algorithm 1 Inverse FORM algorithm solving MPP given a
target reliability indexβt

1: Initiatez0 andλ, setk = 0
2: repeat
3: calculatezk+1 according to Eq. (20)
4: calculated = |zk+1−zk|

|zk+1|

5: k ← k + 1
6: until d ≤ ǫt
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For a given confidence level, the reliability indexes asso-
ciated with that level should be first calculated using inverse
Gaussian CDF then the MPPs associated with these indexes
can be calculated using Algorithm 1. System responses are
readily evaluated with these MPPs.

FORM

MPP

βt

β=1

g(z)=-1.0
g(z)=2.5

g(z)=4.0

β=2

Figure 2: Inverse reliability analysis and MPP for target prob-
ability of failure ofβt and the linear approximation of the per-
formance function at MPP labeled as FORM. Values ofg(z)
are for illustration purposes only.

Both iterative formulae in Eq. (17) and Eq. (20) implicitly
assumes that the components ofz are uncorrelated. For cor-
related component variables inz, the correlated components
need to be transformed into uncorrelated components via the
orthogonal transformation ofz′ = L−1(zT ), whereL is the
lower triangular matrix obtained by Cholesky factorization of
the correlation matrixR such thatLL′ = R, whereL′ is the
transpose ofL.

The overall computational procedure according to the pro-
posed method is summarized as follows:

1. Formulate Bayesian posterior distributions according to
Eq. (8).

2. Compute the posterior approximation according to Eq.
(14).

3. Reliability or probability of failure estimation is calcu-
lated using iterative formula of Eq. (17) and Eq. (18).

4. To estimate system responses associated with a reliabil-
ity level or confidence level, calculate MPPs using Al-
gorithm 1 and then calculate system responses with the
obtained MPPs.

Prior estimations are evaluated according to Steps 3 and 4
using prior distributions. To illustrate the proposed method,
several examples are presented in the next section.

4. EXAMPLES

A numerical example is given first to illustrate the overall
procedure, and a practical fatigue crack propagation prob-
lem with experimental data and a beam example with finite
element analysis data are demonstrated. Comparisons with
traditional simulation-based methods are made to investigate
the accuracy and computational efficiency of the proposed
method.

4.1 A numerical example with two uncertain variables
Consider a performance functionf(x, y) = x + y describ-
ing an observable eventz = f(x, y) + ǫ, wherex andy are
two uncertain variables andǫ is an Gaussian error term with
zero mean and a standard deviation ofσǫ = 0.5. Variablex
is normally distributed with a mean ofµx = 2 and a stan-
dard deviation ofσx = 0.5 and variabley is also normally
distributed with a meanµy = 5 and a standard deviation
σy = 1.5. Variablesx and y are correlated with a corre-
lation coefficient ofρxy = −0.5. The covariance matrix is

Σxy =
[

σ2
x σxσyρxy

σxσyρxy σ2
y

]

. f(x, y) > 9 is defined as fail-

ure event and the limit-state surface isf(x, y) − 9 = 0. The
likelihood function can be expressed according to Eq. (8) as

p(z|x) = 1√
2πσǫ

exp

{

−1

2

[
z − f(x, y)

σǫ

]2
}

. (22)

Assume that the evidence ofz = 8 is observed. The poste-
rior distribution that encodes this information is formulated
according to Eq. (1) as,

p(x|z) = 1
√

2π |Σxy |
exp

{

−1

2

(

x− µx

y − µy

)T

[Σxy ]
−1

(

x− µx

y − µy

)

}

×

1√
2πσǫ

exp

{

−1

2

[

z − f(x)

σǫ

]

2
}

.

(23)

Based on the information given above, the prior estimate
of the probability of failure for eventf(x, y) > 9 and the
prediction of system responsez associated with a given relia-
bility or confidence level can be calculated using FORM and
inverse FORM methods. After obtaining the additional data
z = 8, those estimates can be updated using the proposed an-
alytical procedure. The updating process firstly involves the
Laplace approximation for the posterior of Eq. (23). Then the
iterative formula of Eq. (17) is employed to find the design
point (x∗, y∗) andβ, and the probability of failurePF can be
estimated using FORM according toΦ(−β).

To calculate the confidence bound (e.g.,[lo, up] =
[0.025, 0.975] bound) ofz, reliability indexes associated with
the upper and lower limits are first calculated according to
βlo = Φ−1(lo) andβup = Φ−1(up). The iterative inverse
FORM formula of Eq. (20) solves the required design point
for βlo andβup. Finally the confidence bound ofz can be
computed using these two design points. To compare the effi-
ciency and the accuracy, MC and MCMC simulations serve
as benchmark solutions to this example. Table 1 presents
results for this example. The prior estimates for probability
of failure (PoF) and interval prediction are calculated using
FORM and inverse FORM methods, respectively. For this
simple example, just a few function evaluations ensure ob-
taining converged results. A crude Monte Carlo simulation
with 106 samples yields very close results. For the posterior
estimate with Bayesian updating, the proposed analytical so-
lutions using Laplace, FORM, and inverse FORM (results are
labeled as iFORM in all the tables hereafter) methods are very
close to the solution obtained using MCMC simulation with
a chain length of106. By comparing the number of function
evaluations between the analytical and MC or MCMC solu-
tions, it is observed that the proposed analytical method can
reduce the computational cost by several orders of magnitude.
It would be significantly advantageous to use the proposed
analytical procedure for time constrained or online prognosis
systems.

5
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Table 1: Probability of Failure (PoF), confidence interval (CI) estimates, and the number of function evaluations (NFE)for
f(x, y) = x + y. Both x and y are normally distributed with means of 2 and 5 and standard deviations of 0.5 and 1.5,
respectively. The correlation coefficient betweenx andy is−0.5. The failure is defined asf(x, y) > 9.

Method PoF 95 CI NFE

prior FORM,iFORM 0.030181 4.2570∼9.7430 21
MC 0.030417 4.2493∼9.7455 106

posterior Laplace,FORM,iFORM 0.0045455 6.6536∼8.9852 47
MCMC 0.0046910 6.6506∼8.9898 106

4.2 Reliability updating and response prognostics of a
fatigue crack damaged system with experimental
data

In this section, a practical fatigue crack damage problem is
presented with experimental data. As a typical damage mode
in many structures, the reliability of a system with possible
fatigue cracks must be accurately quantified in order to avoid
severe failure events. Because fatigue crack propagation is
a time-dependent process, crack growth prognosis provides
valuable information for system maintenance or unit replace-
ment. Due to the stochastic nature of fatigue crack propaga-
tion, fatigue crack growth is not a smooth and stable process.
Therefore additional information such as usage information
from health monitoring systems and crack size measures from
inspections can be used to update various quantities of inter-
est. By performing continuous updating, uncertainties asso-
ciated with system reliability and crack size prognosis canbe
reduced for decision-making. Because crack growth equa-
tions are usually in the forms of differential equations or fi-
nite element models, simulation-based methods are relatively
more expensive in terms of computational cost. To demon-
strate the updating procedure with the proposed method and
validate its effectiveness and efficiency, experimental data are
incorporated in this example. A portion of the experimental
data is used to obtain the parameter distributions of the crack
growth equation and one from the rest of the dataset is arbi-
trarily chosen to represent the ”actual” target system. First
we estimate PoF and crack growth prognosis with the prior
parameter distributions. Then we choose a few points from
the ”acutal” target system to represent measurements from
crack size inspections. These measures are used to perform
Bayesian updating with the analytical methods proposed in
previous sections. Both system reliability and crack growth
prognosis are updated. Results are compared with simulation-
based methods in terms of accuracy and efficiency.

(Virkler, Hillberry, & Goel, 1979) reported a large set of
fatigue crack propagation data on aluminum alloy 2024-T3.
The dataset consists of fatigue crack propagation trajecto-
ries recorded from 68 center-through crack specimens, each
of which has the same geometry, loading, and material con-
figurations. Each specimen has a width ofw = 154.2mm
and a thickness ofd = 2.54mm. The initial crack size is
a0 = 9.0mm. A constant cyclic loading with a stress range
of ∆σ = 48.28MPa was applied. Without loss of generality,
the classical Paris’ equation (Paris & Erdogan, 1963) is cho-
sen as the crack growth rate governing equation. Other crack
growth equations can also be applied with the same proce-
dure. Paris’ equation describes the crack growth rate per one
constant cyclic load as

da

dN
= c(∆K)m, (24)

where∆K is the stress intensity range in one loading cycle.

For this particular crack and geometry configuration,∆K =
√

πa[sec(πa/w)]∆σ. Termsc andm are uncertainty model
parameters that are usually obtained via statistical regression
analysis of experimental testing data. For convenience,lnc is
usually used instead ofc. Given a specific number of loading
cycles, solving the ordinary differential equation in Eq. (24)
gives the corresponding crack size.

The first fifteen crack growth trajectories from Virkler’s
dataset identifies these two parameters using Maximum Like-
lihood Estimation as a joint Gaussian distribution of(lnc,m)
with a mean vector ofµ0 = [−26.7084, 2.9687] and a co-
variance matrix ofΣ0 =

[
0.5435 −0.0903
−0.0903 0.0150

]
.

p0(lnc,m) =
1

2π
√

|Σ0|
×

exp

{

−1

2
[(lnc,m)− µ0] Σ

−1
0 [(lnc,m)− µ0]

T

} (25)

As we mentioned earlier in this section, another specimen
from the rest of the dataset is arbitrarily chosen to represent
the target system. The reliability and crack growth progno-
sis of this target system are of interest. The prior estimate
of reliability and fatigue crack growth prognosis of the tar-
get system can then be estimated using this joint distribution
and the model in Eq. (24). LetM(N ; lnc,m) denotes the
model output (crack size) given a number of loading cycles
N and parameterslnc andm. Three crack size measures
ai with corresponding numbers of loading cyclesNi at the
early stage of the target system are chosen to represent the
actual inspection data. They are(a1, N1) = (10, 33062),
(a2, N2) = (11, 55101), and(a3, N3) = (12, 75569). The
standard deviation of Gaussian likelihood is also estimated
asσa = 0.304mm. The failure event is defined as the crack
size exceeding 40.0mm given the number of loading cycles as
220,000. With these additional measurement data, the poste-
rior distribution of(lnc,m) (with r response measures) reads

pn(lnc,m) ∝ p0(lnc,m)×

exp

{

−1

2

r∑

i=1

[
ai −M(Ni; lnc,m

σa

]2
}

(26)

Following the proposed analytical procedure, we obtain
updated results of reliability and crack size prognosis. Ta-
ble 2 shows the prior and posterior (updated) results of PoF
and 95% interval predictions of crack size at 220,000 load-
ing cycles. We can observe from this table that the simulation
method requires 200,000 function evaluations while the ana-
lytical method requires less than 200 function evaluationsto
produce similar results.

Figure 3 presents crack growth prognosis results obtained
by the proposed analytical method. MCMC simulation re-
sults are displayed in the same figure for comparison. Several
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Table 2: Prior and updated estimates of Probability of Failure (PoF), confidence interval (CI) for crack size, and the number
of function evaluations (NFE) for fatigue crack problem. The failure is defined as the crack size exceedsac = 40mm at the
number of loading cyclesNc = 220, 000. 95% CI predictions are calculated at the number of loading cycles equal toNc.

Measures Method PoF 95% CI NFE

0(prior) FORM,iFORM 0.0467 28.8290∼41.3095 60
MCMC 0.0498 28.9417∼41.4685 2× 105

1 Laplace,FORM,iFORM 0.0225 28.3694∼39.8084 96
MCMC 0.0186 28.3563∼39.5466 2× 105

2 Laplace,FORM,iFORM 0.0042 27.7926∼37.4207 105
MCMC 0.0039 27.6989∼37.3537 2× 105

3 Laplace,FORM,iFORM 0.0002 27.2484∼34.9112 111
MCMC 0.0001 27.0817∼34.6913 2× 105
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Figure 3: Prior and posterior prognostics of fatigue crack growth trajectory using the proposed method (Laplace,iFORM) and
the traditional simulation-based methods (MCMC). Median and 95% interval predictions are presented: (a) prior estimation;
(b) updated with 1 measure; (c) updated with 2 measures; (d) updated with 3 measures.

aspects can be observed and interpreted: 1) The proposed an-
alytical Laplace and (inverse) FORM method yields almost
identical prognostic results to those obtained using traditional
MCMC simulations, which can be confirmed by observing
Figure 3(a-d). 2) In Figure 3(a), the prior median and interval
prediction of the crack growth is far from the actual target sys-
tem because of various uncertainty associated with the crack
propagation process such as the material uncertainty, model-
ing uncertainty, as well as measurement uncertainty. These
uncertainties are finally encoded into the model parameter
(lnc,m) in form of distributions through statistical regression.

These uncertainties cause the prior estimation deviates from
the actual target system. 3) Inspection data, or crack size mea-
surement in this example, is critical to improve the accuracy
for time-dependent nonlinear system prognostics. With in-
spection data, uncertainties can be greatly reduced. As shown
in Figure 3(b-d), both the median and interval predictions for
crack growth trajectories become closer to the actual trajec-
tories as more measurements are integrated into the Bayesian
updating process.
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4.3 A cantilever beam example
A beam example is used to examine the proposed method
through finite element analysis (FEA). Data from FEA pro-
vide representative sensor output. By analyzing the sensor
output data, frequency information of the beam is extractedto
update the finite element model and also the reliability level.
For the sake of illustration and simplification, we use a simple
cantilever beam. More complex full-scale structural finiteele-
ment model analysis follows the same procedure as presented
here.

A cantilever aluminum beam is divided into ten elements
using finite element modeling, as shown in Figure (4). The
beam is 1m long, 0.1m wide and 0.01m thick. The design
cross section area isA = 0.001m2. Assume the cross section
area of the first segment of the beam (attached to the wall)
is modeled byA1 = αA due to manufacturing uncertainty,
where termα is a Gaussian variable with a mean of 1 and
a standard deviation of 0.5. Because of usage (aging) and
material degradation,α may vary along time. Other segments
have deterministic cross section dimensions that are equalto
the design value ofA. The material has a Young’s modulus
of E = 6.96× 1010Pa and a density of2.73× 103kg/m3.

1m
0.1m

0.01mfixed
 end 1            2          3           4          5          6          7          8         9        10

the cross section area of fixed-end element (#1) is uncertain

Figure 4: The cantilever beam finite element model. The
cross section area of the first element (attached to the wall)
is uncertain due to manufacture and usage and is modeled by
A1 = αA, whereA = 0.001m2 is design cross section area
andα ∼ Norm(1, 0.022).

The failure event is defined as the first natural frequency
is less than 8Hz due to the degradation of the stiffness of the
beam. The sensor data are synthesized by settingα = 0.95
and solving the dynamical equation of the beam under a free
vibration. After adding 5 percent of Gaussian white noise,
the first four mode frequency data are extracted from the sen-
sor data using Fast Fourier Transformation (FFT). They are
(f1, f2, f3, f4) = (8.03, 50.5, 142, 280)Hz.

Based on the above information, the Bayesian posterior
for uncertain variableα given the frequency information ex-
tracted from the sensor data is

p(α) ∝ exp

{

−1

2

(α− 1)2

0.52

}

× exp






−

F∑

j=1

N∑

i=1

(

{ω}i
[(
−(2πfi)2M(α) +K(α)

)
{φi}

]

j

)2






,

(27)

whereN is the number of measured mode andF is the num-
ber of measured mode shape coordinates. Term{ω}i is the
ith weighting factor for ith frequency component in the like-
lihood function. For the purpose of illustration,{ω} is con-
figured such that each frequency component has a coefficient
of variation of 0.1. TermsM(α) andK(α) are the mass and
stiffness matrices, respectively. Becauseα is a variable, ac-
tual values forM(α) andK(α) depends on each realization
of α. Term{φ}i is the ith mode shape. For the current data,
N = 4 andF = 20.

Using the proposed method we obtain results shown in Ta-
ble (3). Simulation-based results are also listed in this table
for comparison.

Table 3: Prior and posterior estimates of probability of
failure (PoF) in the beam example. Frequency data (first four
natural frequency extracted from synthesized noisy data via
FFT) are used to perform Bayesian updating. Statistics of
α (mean,standard deviation(SD)) and computational cost in
term of number of function evaluations (NFE) are shown.

Method PoF NFE α(mean,SD)

prior: FORM 0.004435 11 1.0, 0.02
MC 0.004428 106 1.0, 0.02

posterior: Laplace,FORM 0.0182 57 0.9757, 0.0134
MCMC 0.0164 106 0.9760, 0.0135

Results of the proposed method are similar to those ob-
tained using traditional simulation-based methods. However,
the computational cost is much smaller. Finite element mod-
els in practical problems are usually more sophisticated than
this beam example, and simulation-based methods are not
feasible for such computationally extensive problems. The
proposed method provides an alternative to solving such prob-
lems and it yields accurate results under the condition that
uncertain variables are approximately Gaussian-like.

In this section, three examples are presented to demonstrate
and validate the proposed analytical method. Some important
aspects of the proposed method are closely revealed, includ-
ing the computational benefits in terms of efficiency and accu-
racy. Appropriate conditions to assure these benefits are also
analyzed.

5. CONCLUSIONS

In this paper, an efficient analytical Bayesian method for re-
liability and system response updating is developed. The
method is capable of incorporating additional information
such as inspection data to reduce uncertainties and im-
prove the estimation accuracy. One major difference be-
tween the proposed work and the traditional approach is that
the proposed method performs all the calculations includ-
ing Bayesian updating without using MC or MCMC simu-
lations. A numerical example, a practical fatigue crack prop-
agation problem with experimental data, and a finite element
beam problem with FEA data are presented to demonstrate
the proposed method. Comparisons are made with traditional
simulation-based methods to investigate the accuracy and ef-
ficiency. Based on the current study, several conclusions are
drawn.

1. The proposed method provides an efficient analytical
computational procedure for computing and updating system
reliability responses. No MC or MCMC simulation is re-
quired therefore it provides an feasible and practical solu-
tion to time constrained or online prognostics. The method
is also beneficial for structural health monitoring problems
where Bayesian updating and system response predictions are
frequently performed upon the arrival of sensor data.

2. The proposed method is capable of incorporating addi-
tional information such as the inspection data and usage data
from health monitoring system by way of Bayesian updat-
ing. This property is beneficial for highly stochastic time-
dependent nonlinear system where prior estimates for relia-
bility and system response may become unreliable along with
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system developing. By continuous Bayesian updating, esti-
mation uncertainties can be reduced.

3. The proposed method yields almost identical results
to those produced by traditional simulation-based methods
given that uncertain variables are approximately Gaussian
distributed. This is true for most of the engineering problems
where the uncertain parameters are normal or log-normal
variables (which can be transformed and truncated into nor-
mal variables). When these conditions are not assured, the re-
sults need careful interpretations. The efficiency and accuracy
of the proposed method is demonstrated and verified using
three examples. The proposed method provides an alternative
for time-constrained prognostics problems. If the problem
involves too many random variables, traditional simulation-
based method may be more appropriate. Systematical com-
parisons of the method with other approaches such as varia-
tional method will be conducted in the future.
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