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ABSTRACT 

An integrated fault detection, diagnosis and reconfigurable 

control design method is studied in this paper with explicit 

consideration of control input constraints. The actuator fault 

to be treated is modeled as a control effectiveness loss, 

which is diagnosed by an adaptive algorithm. For fault 

detection, an observer is designed to generate the output 

residual and a minimum threshold is set by an H∞ index. To 

design the reconfigurable controller, an auxiliary matrix is 

introduced and a linear parameter varying (LPV) system is 

constructed by convex combination. Linear matrix 

inequality (LMI) conditions are presented to compute the 

design parameters of controllers and related performance 

index. The system performances are measured by the 

ellipsoidal sets regarding the domain of attraction and 

disturbance rejection respectively. For illustration, the 

proposed design techniques are applied to the flight control 

of a flying wing aircraft under large effectiveness loss of 

actuators. 

1. INTRODUCTION 

The reconfigurable fault-tolerant control design methods 

have been studied widely in the literature to meet increased 

requirements for reliability and safety in modern control 

systems (Zhang & Jiang, 2008). One key component in 

fault-tolerant control systems is the fault detection and 

diagnosis (FDD) module, which has been studied 

extensively in the past decades (Isermann, 2006). With 

information provided by FDD, the controller is adjusted 

according to some reconfiguration mechanism to maintain 

desirable performances. One challenging problem in 

designing reconfigurable fault-tolerant control system is 

how to integrate the FDD with the controller effectively to 

guarantee the system performance, such as stability, etc. 

Another practical consideration is to take the control input 

constraints into control system design procedure, since 

almost all practical applications involve actuators 

constrained by limited power, for example, the deflection of 

control surfaces in aircraft is constrained by amplitude and 

rate limitation. Hence, it is very significant to provide some 

design methods for the reconfigurable control problem with 

explicit consideration of control input constraints. 

Currently, the constrained control systems are widely 

studied in the literature (Tarbouriech & Turner, 2009). 

Although there are still many open problems remained to be 

investigated, many useful results have been obtained due to 

efforts of past decades. Based on the fact that system 

performance can be improved if the controller can be 

designed to allow actuator saturation compared with that 

obtained within control limits. Along with this idea, many 

researchers have made their efforts in this direction of 

research. For example, a saturated system is represented by 

a polytopic model to solve the output tracking 

problem (Tarbouriech, Pittet & Burgat, 2000). An improved 

set invariance condition is given in (Hu, Lin & Chen, 2002) 

to obtain a less conservative estimation of domain of 

attraction. As will be shown in this paper, these results 

provide a tool to solve the reconfigurable control problem. 

The reconfigurable control problem with actuator saturation 

is still not well addressed in the literature, and only a few 

results available in recent years. Generally speaking, there 

are two types of approaches to deal with such issues: one 

using the command management techniques (Bodson & 

Pohlchuck, 1998; Zhang & Jiang, 2003; Zhang, Jiang & 

Theilliol, 2008), and the other relating to controller 

design (Pachter, Chandler & Mears, 1995; Guan & Yang, 
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2009). For example, the actuator rate saturation problem is 

solved by a linear programming algorithm in (Pachter et al., 

1995). An adaptive output-feedback controller is designed 

with online estimation of actuator faults by Guan et al. 

(2009). However, only the stability problem is studied in 

that paper. 

In this paper, we aim to solve the reconfigurable output 

tracking control problem of linear systems subject to both 

actuator saturation and disturbances. The actuator saturation 

is tackled with by using the set invariance condition given 

by  Hu et al. (2002). The controller can be adjusted 

automatically with estimated fault amplitude provided by an 

adaptive diagnostic algorithm, after a fault occurs and is 

detected by an observer-based detector. 

The paper is organized as follows: The problem to be 

treated is stated in Section 2. An integrated design of the 

reconfigurable controller with fault diagnosis is presented in 

Section 3. To detect a fault, an observer is designed in 

Section 4. Then, a nonlinear model of an aircraft is used to 

test the proposed design techniques in Section 5. Finally, 

some concluding remarks are given in Section 6. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

To illustrate the basic ideas in this paper, a scalar control 

system with state-feedback controller is taken as an 

example: 

 
     

   

x t ax t bu t

u t f x

 


 (1) 

The fault under consideration is the loss of control 

effectiveness such that 

      fu t t u t  (2) 

where  fu t  represents the output of the impaired actuator, 

and    0,1t   is the control effectiveness factor.   0t   

means the total outage of the actuator, while 1 denotes a 

healthy actuator. Partial loss of control effectiveness is 

given by a value between 0 and 1. It is assumed that 

  0t   in this paper. 

To compensate the control effectiveness loss, the following 

control law can be adopted: 

      1u t t f x  (3) 

From Eqs. (2) and (3), it follows that 

          1

fu t t t f x f x    (4) 

Obviously, the system performance is not impaired in the 

presence of actuator fault while the control law shown in 

Eq. (3) is in action. However, the fault cannot be known a 

prior, and only its estimation is available. In this case, Eq. 

(3) should be replaced by 

      1u t t f x  (5) 

where  t  is an estimation of  t . 

If the estimation process can be carried out accurately and 

quickly enough, then the performance loss can be reduced to 

its minimum. For a constant fault   0ft t    occurring at 

ft , the performance can be recovered completely when 

 t  converges to 
0 . The controller structure for 

compensation of effectiveness loss is shown in Fig. 1. 

     fx t ax t bu t  t   1 t f x  u fu

FDD



 
Fig. 1  Compensation principle for effectiveness loss 

 

Above discussions can be extended readily to the 

multivariable systems. From practical point of view, since 

the control power is limited and the disturbance exists, then 

the plant to be controlled in this paper is given by: 

 

         

   

     

satt t t t t

t t

t t t

     



 

x Ax BM u Eω

y Cx

e r y

 (6) 

where   nt x ,   mt u ,   pt y  are the state, input, 

and output vectors respectively.   qt ω  is an 

immeasurable disturbance vector bounded by   0t ω . 

  pt r  is the reference signal vector bounded by 

  0t rr .  te  is the tracking error vector. A , B , C  and 

E  are known parameter matrices of appropriate 

dimensions. It is assumed that  ,A C  is detectable.  sat   is 

a standard vector-valued saturation function with its 

elements given by: 

      sat sign min 1, ,  1,2, ,i i i i m  u u u  (7) 

where  sign   represents the signum function.  

  m mt M  is a diagonal matrix representing the 

effectiveness factors of actuators, and denoted by: 

 
        

 

1 2diag , , ,

, ,  0 1,   1,   1,2, ,

m

i i i i i

t t t t

t i m

  

    



      

M
 (8) 
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where diag   represents a diagonal matrix. 

 ,  1,2, ,i t i m   are unknown stepwise fault signals. 
i  

and 
i  represent the known lower and upper bound of  i t  

respectively. 

The control objective in this paper is to realize stable 

tracking of a reference signal in the presence of faults and 

amplitude constraints of actuators. The overall control 

system configuration is shown in Fig. 2. The fault detection 

and diagnosis (FDD) module is used to detect a fault and 

provide an estimation of fault amplitude denoted by 

        1 2diag , , , mt t t t  M .  

With estimated control effectiveness factors from FDD, the 

reconfigurable controller adjusts automatically its parameter 

to recover the performance of the closed-loop system. In 

this paper, an observer is used to detect a fault, and an 

adaptive algorithm is designed to estimate the fault 

amplitude. After a fault is detected by the observer, the 

adaptive diagnostic algorithm is activated automatically. 

Otherwise, a unitary matrix is passed to  tM . In summary, 

the observer is used to determine when a fault occurs, and 

the adaptive diagnostic algorithm is used to estimate its 

amplitude. 

Reconfigurable
Controller

ue yr

FDD

M

Plant Actuator

x

 

Fig. 2  System configuration 

 

It is well known that the tracking error integral action of a 

controller can effectively eliminate the steady-state tracking 

error (Zhang & Jiang, 2001). Denote    
0

t

t d    e , 

     
T

T T
t t t  

 
x , then the following augmented 

system can be obtained from Eq. (6) such that 

          satt t t t t      A BM u Ed  (9) 

where 
n p

p p





 
  

 

A
A

C

0

0
, 

p m

 
  
 

B
B

0
, 

n p

p q p





 
  
 

E
E

0

0 I
, 

 
 

 

t
t

t

 
  
 

ω
d

r
. 

To eliminate the fault effect, the reconfigurable controller is 

realized by 

      1t t tu M K  (10) 

Substituting Eq. (10) into Eq. (9), it is obtained that 

            1satt t t t t t      A BM M K Ed  (11) 

3. INTEGRATION OF RECONFIGURABLE CONTROLLER 

WITH FAULT DIAGNOSIS 

LMI conditions will be presented in this section to design 

the controller gain K , while the estimated fault amplitude 

 tM  is obtained by an adaptive algorithm.  

Lemma 1 (Hu & Lin, 2001) Let , mu v  and suppose that 

1,   1,2, ,i i m v , then 

    sat Co ,   1,2, ,2m

j j j    u u v  (12) 

where Co   denotes the convex hull. m m

j

   is a 

diagonal matrix whose elements are either 0 or 1, and 

j m j

  I . For brevity, 1,   1,2, ,i i m v  is written as 

1v  in the following. 

From Lemma 1, if there exists an auxiliary matrix H  

satisfying 

    1 1t t M H  (13) 

then there always exist 
2

1

0,  1

m

j j

j

 


   such that 

          
2

1

1

m

j j j

j

t t t t t   



        A BM M K H Ed  (14) 

If ,  1,2, ,2m

j j   are taken as the scheduled parameters 

and can be obtained online, then Eq. (14) is actually an LPV 

system. Define 

    1t tF M H  (15) 

then it is not difficult to find out that (13) imposes a 

polyhedral set constraint on system states of Eq. (14) as 

follows: 

           1,   1,2, ,it t t t i m   F FL  (16) 

For estimation of domain of attraction, an ellipsoidal set is 

defined as follows: 

         T| 1,   0t t t     P P P  (17) 

Theorem 1 If there exist matrices  m n p

k

 
Y , 

 m n p

h

 
Y , a positive definite matrix    n p n p  

Q , and a 

positive scalar   such that 
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0,   1,2, ,i i h i m
 

  
 

k Y

Q
 (18) 

   T T 2 2

0 0

1
2 0

 1,2, ,2

j k j h

m

r

j

 


        



AQ QA EE Q B Y Y
 (19) 

then   P  is an invariant set with 1P Q , 
kK Y P , 

hH Y P , and with the fault diagnostic algorithm being 

realized by: 

 

 

       
2

T1 1

, 
1

0 0,   1,2, ,

Proj

m

i i

i f

i f i i i i j j r j r

j

t t i m

t t t t t
 



      

  


   

  
       

  
Pb k K H

  (20) 

where  , .i i i   0i   is pre-specified positive scalar. ib  

is the i-th column of B . 1

ik  is a row vector with its i-th 

element being 1 and the other elements being 0.  
,  

Proj
i i   

 

is a projection operator defined as follows: 

  
,  

ˆ   and  00,

             or

ˆProj     and  0

,  else

i i

i i

i i

X

X X

X

 

 

   

  




   





 (21) 

Proof:  Denote 

             1 2diag , , , mt t t e t e t e t     E M M  (22) 

Define a Lyapunov function 

        
T 1 2

1

m

i i

i

V t t t e t   



 P  (23) 

Its derivative with respect to time is given by: 

 

        

       

2
T 1

1

T 1

1

2

          2 2

m

j j j

j

m

i i i

i

V t t t t

t t e t e t 

  

 

 







      

 





P A BMM K H

PEd

 (24) 

Since 

 

           

     

T T TT

T T 2 2

0 0

1
2

1

t t t t t t

t t r

   


   


 

  

PEd PEE P d d

PEE P

 (25) 

then it follows that: 

            
T 1 2 2

0 0

1

2
m

i i i

i

V t t t e t e t r     



   M  (26) 

where 

   
2

1 T

1

1
2

m

j j j

j

t


 



      P A BMM K H PEE PM ‡  (27) 

Since  

      1 1

mt t t

  MM E MI  (28) 

it follows that: 

    
2

1

1

2

m

j j j

j

t t  



      PBE M K HM M  (29) 

where 

 
2

T T

1

1
2

m

j j j

j








        PA A P PEE P PB K HM  (30) 

Since 

            1 1 1 1 1

1 1

m m

i i i i i i i

i i

t t e t t e t t     

 

  BE M b k M b k  (31) 

then it can be obtained from Eqs. (20) and (26) that 

 

             
T T2 2 2 2

0 0 0 0 1V t t r t r t t              
   

P PM

  (32) 

With Eqs. (23) and (32), it is not difficult to verify that 

  P  is an invariant set by satisfying 

  2 2

0 0 0r   PM  (33) 

which is equivalent to Eq. (19). 

To complete the proof, it is still needed to guarantee that 

    t P FL , of which an equivalent condition can be 

stated as follows: 

  
   

   T

max   
1

. .   1

i
t

i

t t

s t t t




 

 
 

   
  

F

P

 (34) 

By using the method of Lagrange multipliers, it is not 

difficult to obtain that 

    1 T

i i it t  F P F  (35) 

Since 

        
T

1 T 1 1 T 1

i i h h
i i

t t t t          F P F M Y Q Y M  (36) 

then by Schur complement, an equivalent condition for 

    P FL  is given by: 

 
 11

0,   1,2, ,
h

i
t

i m

  
    

  

M Y

Q
 (37) 
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The extreme point set of  1 t
M  can be defined as follows: 

 
 



1 1

1 2diag , , , ,    ,  

                                        1,2, , ;  1,2, ,2

j j

m i i i

m

or

i m j

          

 
 (38) 

then from the convexity of  , there always exist 0j  , 

2

1

1

m

j

j




   such that 

  
2

1

1

m

j

j

j

t 



 M  (39) 

From Eq. (39), it gives 

    
2 2

1 1

1 1

m m

j

j j i iii
j j

t   

 

       M k  (40) 

then (37) can be written as: 

 

2
1 12

1

1

1 1
0

1,2, , ;  1,2, ,2

m

m

j i i i i h
j j

j

mi m j

  




 
   

        

 




k Y k Y

Q
Q

 (41) 

It is sufficient for (18) to guarantee that (41) holds true. This 

ends the proof.   □ 

Remark 1:  The values of ,  1,2, ,2m

j j   are needed 

online in the adaptive diagnostic algorithm as shown in Eq. 

(20). One way to obtain them (Wu, Lin & Zheng, 2007) is 

shown as follows:  

    
1

1 1
m

j i i i i
i

z z  


       (42) 

where 1 2

1 22 2 1m m

mz z z j      , and  

         

       

1 1 1 1

1 1 1 1

1,    

sat
,

else

r r

i i r i i ri

i i r i i r

m t t m t t

m t t m t t

 

 

 

 

 


 




H K

k K k H

k K k H

 (43) 

Since   P  is an estimation of the domain of attraction, it 

is desirable to obtain the largest one. This is a volume 

maximization problem. In general, there are two ways to 

maximize   P . Since the volume of   P  is proportional 

to  det Q , one direct way is to construct an determinant 

maximization problem (Vandenberghe, Boyd & Wu, 1998) 

as follows: 

 
   

0, , , 0

sup          logdet

                 s.t.     18  and 19

k h  Q Y Y

Q

 (44) 

The other way is to use a prescribed bounded convex 

reference set 
RX  to maximize   P , which can take its 

shape into consideration. Two typical sets of 
RX  are the 

ellipsoids and polyhedrons. By taking an ellipsoid 

      T

0 | 1,   0n pX t t t     R R  as the reference 

set, the following optimization problem can be formulated: 

    

     

0, , , 0

0

sup                 

                 s.t.      

                            18  and 19

k h

a X

b







 



Q Y Y

P  (45) 

Let 21/  , since  0X   R , then  0X  P  is 

equivalent to  R P . By Schur complement, (45) can be 

written as: 

  

     

0, , , 0
inf                 

                 s.t.      0

                            18  and 19

k h

a

b






 

 
 

 

Q Y Y

R

Q

I

I
 (46) 

For a reference set described by a polyhedron 

 0 0 0

0 1 2conv , , , ,NX x x x  0X  P  is equivalent to 

 
T

0 0

i ix x P . Then by Schur complement, the first LMI in 

Eq. (46) should be replaced by: 

 
 

T
0

0
0i

i

x

x

 
  
  Q

 (47) 

In another aspect, the system states cannot be guaranteed to 

converge to the origin due to the disturbances and actuator 

faults. Hence, a performance index is needed for the 

disturbance rejection problem, which can also be described 

by a prescribed bounded convex reference set. Assumed that 

this set is denoted by X
, then an optimization problem can 

be formulated as follows: 

    

     

0, , , 0
inf                 

                 s.t.      

                            18  and 19

k h

a X

b






 

 

Q Y Y

P  (48) 

To address the disturbance rejection and domain of 

attraction simultaneously, a scaled version of   P  is 

defined as follows: 

 

        T 1| 1,   ,  0,  0 1n pt t t           S S S = P S

  (49) 

From the convexity (Hu et al., 2002) of both (18) and (19), 

it is not difficult to verify that all the trajectories staring 

from within   P  will enter   S  and remain inside it if 

there exist 0, , , , 0k h s  Q Y Y Y  satisfying (18), (19) and 
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 T T 2

0

1

1
2 0,  1,2, ,2

1
0,   1,2, ,

m

j k j s

i i s

r j

i m

   






        

 
  

 

AQ QA EE Q B Y Y

k Y

Q

  (50) 

Therefore, to solve the disturbance rejection problem with 

guaranteed domain of attraction, the following optimization 

problem can be formulated: 

 
   

   

       

0, , , , 0

0

inf                 

                 s.t.      

                            

                           18 , 19  and 50

k h s

a X

b X

c






 

 

 

Q Y Y Y

S

P
 (51) 

Remark 2:  The controller gain K  computed from (51) 

may be too high to be used in practice. To adjust the 

controller gain K , since 
kK Y P , then the following 

inequality can be added into the optimization problems: 

 T ,  0k k m  Y Y I  (52) 

By Schur complement, (52) is equivalent to 

 0
m k

n

 
 

 

YI

I
 (53) 

4. OBSERVER-BASED FAULT DETECTION 

To activate the adaptive diagnostic algorithm as shown in 

Eq. (20), the time ft  when a fault occurs is needed to be 

known. It is the responsibility of fault detection. In this 

paper, the fault detection is carried out by comparing the 

output residual with the threshold to be set. 

To detect the fault, an observer is defined as follows: 

 
          

   

satt t t t t

t t

      



x Ax B u L y y

y Cx
 (54) 

where  tx  and  ty  are estimation of  tx  and  ty  

respectively. 

Denote      ,x t t t e x x      ,y t t t e y y then an 

observer error equation can be obtained without 

incorporating  tω  

 
          

   

satx x m

y x

t t t t

t t

      



e A LC e B M u

e Ce

I
 (55) 

With  ,A C  being detectable, it is not difficult to obtain the 

observer gain L  such that A LC is stable. Then a fault is 

detected if   ,y ft e where f  is a pre-specified 

threshold. If    0 0 ,x x then 0f   is sufficient to detect 

a fault. 

However, when  tω  is presented, false alarm may be 

generated with above detector, even if    0 0x x  is 

satisfied. Increasing 
f  may prevent a false alarm, but it 

may lead to a detector which is insensitive to a fault of small 

amplitude. Hence, it is desirable to determine a minimum 

threshold. 

In the presence of the disturbance  tω , the observer error 

equation becomes: 

 
            

   

satx x m

y x

t t t t t

t t

       



e A LC e B M u Eω

e Ce

I
 (56) 

Assumed that  0 0x e , then by Laplace transformation, it 

is obtained that 

            
1

saty n ms s t s G s s


       e C A LC B M u ωI I  

  (57) 

where    
1

nG s s


   C A LC EI . 

Since no fault occurs when 
ft t , that is  f mt t M I , 

then Eq. (57) can be written as: 

      y s G s se ω  (58) 

Since the disturbance  tω  is unknown, then the H
norm 

of  G s  can be used, which is denoted by: 

    maxsup 
w

G s G jw




     (59) 

Where sup denotes the least upper bound, 
max  denotes the 

maximum singular value of a matrix, and 1j   . 

 G s


 actually gives out the peak gain of  G s  across all 

frequencies. Hence, a minimum threshold for setting fault 

alarms can be given by: 

     0min f G s 


  (60) 

With the minimum threshold, the fault detection can be 

carried out by 

 
   

   

min : No fault occurs
  

A fault has occurredmin :

y f

y f

t

t





  
 

  

e

e
 (61) 

Remark 3:  With the threshold given in (60), there still 

exist a possibility that the fault detector is insensitive to 

some kinds of fault which may result in small output 

residuals compared  with the threshold. In this case, the 
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adaptive diagnostic algorithm will not be activated after 

fault occurring, and the system performance can only be 

guaranteed by the robustness of the controller designed. 

Since our emphasis is put on avoiding the false alarm due to 

disturbance, other fault detection methods which may be 

more sensitive to the faults will not be discussed in detail in 

this paper. Actually, as will be shown in next section, the 

controller is robust enough to guarantee the tracking 

performance under serious faults while the adaptive 

diagnostic algorithm is not activated. 

5. APPLICATION EXAMPLE 

For illustration, the design techniques are applied to the 

flight control of a Zagi flying wing aircraft  (Beard & 

McLain, 2011). In this example, the control objective is to 

track the pitch angular and roll angular commands. In the 

straight and level trim condition with airspeed 10 (m/s) and 

altitude 50 (m), a linearized model can be obtained as 

follows: 

     

   

t t t

t t

 



x Ax Bu

y Cx
 

 0    0    0             1            -0.0001

 0    0    1             0             0.1665

 0    0   -2.5369    0             1.3228

 0    0   -0.0000   -5.6319    0

 0    0    0.1817    0            -

A

3.4009

 
 
 
 
 
 
 
 

,

    0              0              0

    0              0              0

    0              4.8744     6.3103

  -20.8139    0              0

    0              3.6834    -1.8480

 
 
 
 
 
 
 
 

B ,
1 0 0 0 0

0 1 0 0 0

 
  
 

C  

where the states  
T

, , , ,p q r x  represent the pitch angle 

(rad), roll angle (rad), and roll rate (rad/s), pitch rate (rad/s), 

yaw rate (rad/s) in body frame. The controls  
T

, ,e a r  u  

represent the deflection angles (rad) of elevator, aileron and 

rudder respectively. The control effectiveness matrix B  is a 

normalized control matrix such that the control inputs are 

constrained by the unitary limits.  

To compute the controller gains with the design method in 

Section 4.1, it is assumed that 
5 1E I , 

0 710R I , 
7 R I , 

0 1.5r  , 1  , 
0 1  , 0.2,  1,  1,2, ,i i i m    , 510  . 

Then by solving the optimization problem (51) with (53), it 

is obtained that * 0.22  , * 10.1667  , and 

    0.5505   -0.3489   -0.1205    0.1068   -0.0567   -0.2250    0.1294

   -0.3489    0.4144    0.1617   -0.0543    0.0704    0.1420   -0.1615

   -0.1205    0.1617    0.0805   -0.0169    0.0318    0.04

P

68   -0.0628

    0.1068   -0.0543   -0.0169    0.0330   -0.0082   -0.0430    0.0186

   -0.0567    0.0704    0.0318   -0.0082    0.0249    0.0220   -0.0265

   -0.2250    0.1420    0.0468   -0.0430    0.0220    0.1079   -0.0549

    0.1294   -0.1615   -0.0628    0.0186   -0.0265   -0.0549    0.0764

 
 
 
 
 
 
 
 
 
 
 

 

   34.0816  -17.4027   -5.4353   10.1004   -2.6318  -13.7182    5.9938

   33.3249  -43.7326  -20.7667    4.7188  -10.6075  -12.9678   16.7942

   27.1748  -36.9970  -18.2546    3.7820   -6.2969  -10.59

K

28   14.4132

 
 
 
  

 

For design of the fault detector, the desired poles for 

A LC  are assumed to be  1, 2, 3, 4, 5     . Then by pole 

placement, it is obtained that  
T

 1.3112   -0.4096   -0.0615    2.3566    0.0939

-0.5300    2.1190   -1.4849    0.4902    0.3049

 
  
 

L  

It follows from (60) that a minimum threshold for setting 

fault alarms can be given by 

 min 1.6424f   

To verify the tracking performance of the designed 

controller under fault situations, the nonlinear model with 6 

degree of freedom is used, and it is assumed that the 

effectiveness factor of the elevator is reduced to be 0.2 at 

15ft  , and the effectiveness factors of both aileron and 

rudder are reduced to be 0.2 at 55ft  . The learning rates 

for the adaptive diagnostic algorithm are specified by 

100, 1,2, ,i i m   . The reference commands for the pitch 

angle and the roll angle are both given by the square signals 

with time period of 20 seconds each, and the amplitudes for 

both maneuvers are 10 degrees.  

Then through simulation with the nonlinear model of the 

aircraft, the tracking results are given by Fig. 3. For 

comparison, the tracking results in normal case are also 

presented in this figure. It is obvious that good performance 

is achieved for both tracking of the pitch angle and roll 

angle commands. Though the effectiveness loss of elevator 

at 15ft   has impaired the tracking performance, it is 

recovered quickly. This is actually contributed by excellent 

function of our integrated fault detection, adaptive diagnosis 

and reconfiguration algorithm. After malfunction of the 

elevator, the output residuals exceed the threshold for fault 

alarm as shown in Fig. 4. Then the adaptive diagnostic 

algorithm presented in (20) is activated to start the fault 

estimation process, which is shown in Fig. 5. Due to fast 

estimation of the effectiveness factor of the elevator, 

according to the control law in (10), the effectiveness loss is 

compensated quickly as shown in Fig. 6, which results in 

good tracking performance under fault condition as shown 

in Fig. 3.  

In addition, from Fig. 4, it can be found out that the 

residuals in normal case are not equal to zero, which results 

from the un-modeled dynamics of the aircraft. However, 

their values are smaller than thresholds. Hence, a false alarm 

has been avoided by using the fault detection method 

proposed in Section 4.  

For effectiveness loss of both aileron and rudder at 55ft  , 

the output residuals are smaller than the threshold, and these 

faults have not been detected. However, good tracking 
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performance of the roll angle command can still be achieved 

as shown in Fig. 3 due to strong robustness of the controller 

designed. Since the effectiveness loss of aileron and rudder 

is not compensated, the responses of these two actuators are 

not approaching those in normal case as shown in Fig. 6. 

For information, some other state variables from the 

nonlinear model are also given as in Fig. 7, which indicates 

that the aircraft has reached new equilibrium points under 

both the normal case and the fault case. These states are 

, ,e e eX Y Z  for aircraft position in inertial frame, , ,U V W  for 

aircraft velocity in body frame, and   for yaw angle. From 

Fig. 7, it can be seen that the main influence of effectiveness 

loss of elevator is on the pitch rate, while the effectiveness 

loss of aileron and rudder mainly affect the roll rate, yaw 

rate, and lateral-directional velocity in body frame. For an 

intuitionistic comparison, the 3D trajectories of the aircraft 

under both normal case and fault case are also presented in 

Fig. 8. 
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Fig. 4  Output residuals 
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Fig. 7  Other states of aircraft 
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Fig. 8  3D trajectories of the aircraft 

 

6. CONCLUSION 

An integrated active fault-tolerant control method against 

partial loss of actuator effectiveness and saturation is 

proposed in this paper. LMI conditions are presented to 

compute the design parameters by integrated design of 

reconfigurable controller and fault diagnosis module. An 

observer is designed to detect a fault, and a minimum 

threshold is set to avoid the false alarm induced by 

disturbances. The system performance is described by two 

ellipsoidal sets regarding the domain of attraction and 

disturbance rejection respectively.  

The proposed design techniques are applied to flight control 

of a flying wing aircraft under actuator faults. The nonlinear 

model of the aircraft is used for simulation, and satisfactory 

tracking performance can be obtained. The effectiveness 

loss of the elevator can be detected and compensated by the 

proposed integrated design method. However, the fault 

detector proposed in this paper is not sensitive to the faults 

of both aileron and rudder, though good tracking 

performance can still be achieved. This should be improved 

in our future work. 
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