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ABSTRACT

This work aims to study which sensors are
required to be installed in a process in or-
der to improve certain fault diagnosis spec-
ifications. Especially, the present method is
based on structural models. Thus, system
models involving a wide variety of equations
(e.g. linear, non-linear algebraic, dynamics)
can be easy handled. The use of structural
models permits to define the diagnosis prop-
erties from the Dulmage-Mendelsohn de-
composition, avoiding in this way the com-
putation of any minimal redundant subsys-
tem. Furthermore, in the present paper, the
cost of the sensor configuration is consid-
ered. Therefore the proposed method at-
tempts to find not all the possible solution
but the optimal one. The optimal search is
efficiently performed by developing an algo-
rithm based on heuristic rules which, in gen-
eral, allow to significantly reduce the search.

1 INTRODUCTION

Designing an efficient diagnosis system may not
be done after the system has been designed, but it
can be done from the system design. Indeed, it is
known that the performance of a diagnostic sys-
tem strongly depends on the number and on the
location of actuators and sensors. Therefore, de-
signing a system that has to be diagnosed not only
require relevant fault diagnosis procedures but also
efficient sensor placement algorithms.

First works on sensor placement for fault diag-
nosis can be found, for instance, in Madron and
Veverka [1992], where a sensor placement method
which deals with linear systems is proposed. This
approach makes use of the Gauss-Jordan elimina-
tion method to find a minimum set of variables to
be measured. Another method for sensor place-
ment was proposed in Maquin et al. [1997]. This
method aims to guarantee the fault detectability
and isolability of sensor failures. The proposed

method is based on the concept of redundancy de-
gree in variables and on the structural analysis of
the system model.

Recently, some new works on this topic have
been published. This is the case of, for exam-
ple, Travé-Massuyès et al. [2006] and Rosich et al.
[2007] where methods that require the design of
Analytical Redundancy Relations (ARR) [Blanke
et al., 2006] are developed. In Commault et al.
[2006], a method based on directed graph and a
class of separators is presented. In Krysander and
Frisk [2008], an efficient method based on a partial
order on the well-determined subsets from a struc-
tural model has been proposed. Another sensor
placement method without designing ARRs has be
presented in Yassine et al. [2008]. All these works
have in common that the model is described by a
graph, which means that only the structure of the
model is regarded.

The cited works present different approaches
where diagnosis properties are characterised to be
easily handled when sensor placement problem is
formulated. However, none of them aims to effi-
ciently find the solution when the number of sen-
sors to be considered grows.

On the other hand, there are some works that
formulate the sensor placement problem as a
mixed integer linear programing since the nature
of the problem is combinatorial. In Rosich et al.
[2009] and Fijany and Vatan [2006], two similar
methods are presented where fault detectability
and isolability are defined by means of linear in-
equality constraints. Although the sensor search
of these works is quite efficient, the main drawback
is that all the ARRs need to be previously gener-
ated with all the possible sensors installed. This
yields serious computing restrictions when the set
of possible sensors is large.

The present paper introduces a sensor place-
ment method where the diagnosis specifica-
tions are based on structural model properties.
Specifically, fault detectability, discriminability
and diagnosability are characterised by means
of the Dulmage-Mendelsohn decomposition [Dul-
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mage and Mendelsohn, 1959], [Murota, 2000]. The
second objective of the method is to develop an ef-
ficient algorithm in order to find the optimal sen-
sor set such that diagnosis specifications are ful-
filled.

2 SENSOR PLACEMENT PROBLEM
FOR DIAGNOSIS

2.1 Sensor placement motivation

The solution of a diagnostic problem is generally
decomposed into two consecutive steps. The first
step is known as fault detection also called con-
flict or symptom generation, and the second step
is known as fault isolation or diagnostic analysis.
In structural model based diagnosis, the fault de-
tectability and isolability capabilities can be deter-
mined, from a theoretical point of view, by means
of the minimal testable subsets of constraints.

The minimal testable subsets can be obtained
from constraint combinations using: possible con-
flict generation [Pulido and Alonso, 2002], bi-
partite graph [Blanke et al., 2006], Dulmage-
Mendelsohn decomposition [Krysander et al.,
2008] or elimination rules [Ploix et al., 2008]. An
inconsistency in a minimal testable subset means
that, at least, one of the behavior modes associ-
ated to this constraint subset is not actual. There-
fore, tracing which constraints belongs to a mini-
mal testable subset makes possible to identify the
detectable faults and the isolable faults. In Travé-
Massuyès et al. [2006], it is shown that the family
of minimal testable subsets depends on the obser-
vations from the available sensors installed in the
system, thus it turns out that diagnostic perfor-
mance also depends on these sensors.

Additional sensors lead to additional minimal
testable subsets. Given some diagnosis specifica-
tions, one possible approach is to test on the set
of testable subsets whether the performance of the
diagnostic system satisfies the requested specifica-
tions. When they are not satisfied, the minimal
testable subsets are modified by adding more sen-
sors and the process is repeated once again until
specifications are reached. This strategy is carried
out, for example, in Travé-Massuyès et al. [2006]
and Rosich et al. [2007]. However, this approach
requires lots of computations since the generation
of testable subsets is time demanding.

A different approach for sensor placement is pro-
posed in this paper which does not require the
computation of minimal testable subsets. The
present method solves the sensor placement prob-
lem by computing the diagnosis capabilities di-
rectly from the model structure. Hence, the
minimal testable subset computation burden is
avoided.

Given a structural model, a set of candidate sen-
sors to be installed in the system and a cost asso-
ciated to each sensor, the problem to be solved in
the present paper can be summarized as finding
the optimal sensor configuration such that the re-
quested diagnosis specifications are guaranteed by
the structural model properties.

2.2 Behavioral sensor modelling

The behavior model of a system can be defined
as a set of relations which constrains the domain
of a set of system variables, V . These relations
are then modelled by a constraint set, K, where
each constraint, k ∈ K, involves a subset of vari-
ables in V . In a component-oriented model, these
constraints are associated with the components of
a system, thus knowing the behaviour model of
a component is straightforward by just selecting
those constrains associated with this component.

In the present, sensor will be considered as sys-
tem components, which means that each sensor
has to be associated with some model constraint.
Let obs(v) be the observed value acquired by the
measurement of variable v ∈ V , then the corre-
sponding model of the sensor is

v − obs(v) = 0 (1)

Equation (1) is called sensor constraint and rep-
resents the behavior model of the sensor compo-
nent. Therefore, a sensor will be regarded installed
in the system as long as its corresponding sensor
constraint is included in the system model. A con-
sequence of using sensor constraints to model sen-
sors, is that all system variables V needs to be
considered as unknown. It is worth noting that
most of the works devoted to sensor placement
for diagnosis use the same strategy to handle sen-
sors, e.g. Krysander and Frisk [2008], Rosich et
al. [2007] and Yassine et al. [2008].

2.3 Diagnosis specifications

In this section diagnosis specifications used
throughout the paper are introduced. First for
the sake of simplicity, it is assumed that a fault
can only affect one model constraint. This im-
plies that when a fault occurs in the system, only
one constraint may become inconsistent with the
observation. Hence, a one-to-one relationship be-
tween faults and model constraints is established.
This allows to characterise the diagnosis capabili-
ties by just regarding the constraints of the model.
Note that, if more that one constraint become in-
consistent (i.e. the assumption does not hold), the
presented method will be still valid. Nevertheless,
the characterisation of the fault capabilities would
be more cumbersome since sets of constraints will
be considered for each fault.

Furthermore, the structure of the model (or the
structural model) will be used to derive the diag-
nosis properties. A structural model is a simplified
description of analytical model where only counts
which variables depend on which equations. The
structural model can therefore be represented by a
bipartite graph (Blanke et al. [2006]) where K is a
set of constraint nodes, V is the other set of vari-
able nodes and A is the set of edges that connect
constraints with variables according to

A = {(k, v) | k ∈ K depends on v ∈ V } (2)

The structural model permits to extend some
diagnosis properties to properties of the Dulmage-
Mendelsohn decomposition [Dulmage and Mendel-
sohn, 1959], [Murota, 2000]. This decomposition
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decomposes the structural model in the under-
constrained part K−, the just-constrained part K0

and the over-constrained part K+. In Blanke et
al. [2006], it was first noticed that fault detectabil-
ity is strongly related with the over-constrained
part, and in Krysander and Frisk [2008] this con-
cept was further developed by also regarding fault
isolability. Based on these works, detectability,
discriminability and diagnosability are defined by
means of the Dulmage-Mendelsohn decomposition
of the structural model K.

Definition 1 (Detectable constraint) A con-
straint k ∈ K is detectable if

k ∈ K+ (3)

Equation (3) implies that at least it exists one
minimal testable subset K ′ ⊆ K such that k ∈
K ′. Therefore, it can be guaranteed, theoretically
speaking, that the inconsistency of a detectable
constraint will be detected by at least one minimal
testable subset.

Definition 2 (Discriminable constraints)
Two different constraints k1, k2 ∈ K+ are
discriminable if

k1 ∈ (K \ {k2})
+ (4)

This implies that for k1 and k2 to be discrim-
inable between them, it must exist at least two
minimal testable subsets, K ′, K ′′ ⊂ K, such that
k1 ∈ K ′ and k2 6∈ K ′ as well as k2 ∈ K ′′ and
k1 6∈ K ′′. It should also be noted that the dis-
criminable constraint definition is the same as the
fault isolability definition used by Krysander and
Frisk [2008].

Definition 3 (Diagnosable constraint) A de-
tectable constraint k ∈ K+ is diagnosable if

(K \ {k})+ = K+ \ {k} (5)

This definition ensures that no other model con-
straint belongs to the same minimal testable sub-
sets as the diagnosable constraint k belongs to.
In some sense, diagnosability can be viewed as a
special case of discriminability where all the re-
maining model constraints are involved, i.e. all
the equations in K+ \ {k} are discriminable from
k.

Diagnosis specifications dealing with detectabil-
ity, discriminability and diagnosability are repre-
sented by:

• the set of constraints, Kspec
det , that must be at

least detectable.

• the collection, K
spec
disc , of constraint sets such

that two constraints from different sets must
be discriminable.

• the set of constraints, Kspec
diag , that must be

diagnosable.

Note that, according to these definitions, the di-
agnosis specifications Kspec

diag , K
spec
disc and Kspec

det are

meaningful if the two following expressions hold,

Ki ∩Kj = ∅

for Ki, Kj ∈
(

K
spec
disc ∪ {K

spec
diag}

)

; i 6= j (6)
(

⋃

Ki∈K
spec

disc

(Ki) ∪Kspec
diag

)

⊆ Kspec
det ⊆ K (7)

Expression (6) avoids discriminating or diagnos-
ing between the same constraint, which is impos-
sible for obvious reasons. Therefore, it is imposed
that all the constraint sets in K

spec
disc together with

Kspec
diag must be disjoint. Expression (7) ensures

that both diagnosable and discriminable compo-
nents are also detectable, according to Definition
2 and Definition 3. If these properties are satis-
fied, the diagnosis specifications are qualified as
consistent in K.

3 COMPUTING DETECTABILITY,
DISCRIMINABILITY AND
DIAGNOSABILITY

The computation of the detectable, discriminable
and diagnosable sets is done by means of the
Dulmage-Mendelsohn decomposition. According
to Definition 1, the under-constrained and the
just-constrained parts, K− and K0, only contain
non-detectable constraints. Therefore, it is only
needed to obtain the over-constrained part in or-
der to determine the set of detectable constraints,
i.e. Kdet = K+.

Given an over-constrained (detectable) set of
constraints K+, the discriminable and diagnos-
able constraints can be computed by regarding the
equivalent class defined in Krysander et al. [2008].
Constraints k1, k2 ∈ K+ are in the same equiva-
lent class if the equivalent relation between k1 and
k2 defined by

k2 6∈ (K \ {k1})
+ (8)

holds. This means that the over-constrained
part, K+ of the model can be partitioned in
(K1, . . . , Kn) equivalent classes. Then, according
to (8), if Ki only involves one constraint (|Ki| = 1)
then this constraint is diagnosable, whereas if Ki

involves more than one constraint (|Ki| > 1) then
these constraints are pairwise non discriminable,
i.e. all the constraints in Ki come together in a
minimal testable subsets. Such sets with cardi-
nality greater than one are named linked blocks in
Yassine et al. [2008].

To compute the equivalent classes from a set of
detectable constraints Kdet it suffices to see which
constraints are not in the over-constrained part
at removing one constraint, k ∈ Kdet. Due to
Kdet is an over-constrained set (it has no under
and just-constrained parts), the equivalent equa-
tions appear to the just-constrained part when k
is removed. Therefore, an equivalent class can be
computed as

Ki = (Kdet \ {k})
0 ∪ {k} (9)
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Algorithm 1 computes the detectable con-
straints set, Kdet, the discriminable constraint
sets, Kdisc, and the diagnosable constraint set,
Kdiag, within a structural system model K. The
algorithm first determines the set of detectable
constraints Kdet. Once the detectable set is found,
then all the equivalent classes are computed from
Kdet. The equivalent classes (K1, . . . , Kn) are
computed by applying (9). Then, the computed
equivalent class Ki is inserted into the Kdisc or
the Kdiag according to the number of constraints
involved in it.

Algorithm 1
(Kdet, Kdisc, Kdiag) = decompose(K)
Find the different subsets of constraints in K ac-
cording to definitions 1, 2 and 3

Require: A structural model K
Kdet ← K+

Kdisc ← ∅
Kdiag ← ∅
K ′ ← Kdet

i← 1
while K ′ 6= ∅ do

Select k ∈ K ′

Ki ← (Kdet \ {k})0 ∪ {k}
if |Ki| > 1 then

Kdisc ← Kdisc ∪ {Ki}
end if
if |Ki| = 1 then

Kdiag ← Kdiag ∪ {Ki}
end if
K ′ ← K ′ \Ki

i← i + 1
end while

Note that when an equivalent class is found by
removing a constraint it is not necessary to re-
peat the procedure with the remaining constraints
in the equivalent class since the same set would
be found more than once. This is avoided with
the variable K ′ which contains possible constraints
that can be removed. When an equivalent class Ki

is found, its constraints are removed from K ′, thus
no repeated equivalent classes are found. Algo-
rithm 1 is motivated from Krysander et al. [2008]
where equivalent classes are computed using a sim-
ilar procedure.

4 TESTING DIAGNOSIS
SPECIFICATIONS

Consider a system modelled by a constraint set
K, where Kdet, Kdisc and Kdiag represent the di-
agnosis performance of the system, while Kspec

det ,
K

spec
disc and Kspec

diag are the required specifications. It

is obvious that if Kspec
det = Kdet, K

spec
disc = Kdisc and

Kspec
diag = Kdiag, then it can be stated that diagno-

sis specifications are fulfilled. However, there are
other cases where diagnosis specifications are also
fulfilled. For instance, when the system has more
detectable constraints than the ones specified, i.e.

Kspec
det ⊆ Kdet (10)

the detectability specifications are also fulfilled
since there is no inconvenience for having extra
detectable constraints.

Similar reasoning can be applied for the diag-
nosable constraints, therefore if

Kspec
diag ⊆ Kdiag (11)

the diagnosability specifications are fulfilled.
The case concerning discriminable constraints is

a bit more complex since sets of non-discriminable
constraints are handled. Given a set of non-
discriminable constraints K ∈ Kdisc, this set ful-
fils specifications if there exists at most one set
K ′ ∈ K

spec
disc such that it shares constraints with

K. Otherwise, it would mean that specified dis-
criminable constraint are non-discriminable. This
can be extended to all the set in K

spec
disc , thus dis-

criminability specifications are fulfilled if

|{K ′ ∈ K
spec
disc | K ∩K ′ 6= ∅}| ≤ 1 (12)

for each K ∈ Kdisc.
According to the expressions in (10), (11) and

(12), the diagnosis specifications are not fulfilled
as long as specified detectable constraints be-
come non-detectable, or specified diagnosable con-
straints become non-diagnosable (i.e. they are
non-detectable or belong to any set K ∈ Kdisc),
or two specified discriminable constraints become
non-discriminable (i.e. they are non-detectable
or both constraints belong to the same set K ∈
Kdisc). Otherwise the diagnosis specifications are
fulfilled and expressions in (10), (11) and (12)
hold.

Example 1 Assume a system model with 10 con-
straints, K = {k1, . . . , k10} with the following di-
agnosis specifications

Kspec
det = {k1, k2, . . . , k6}

K
spec
disc = {{k1, k2, k3}, {k4, k5}}

Kspec
diag = {k6}

After computing diagnosis performance by means
of Algorithm 1, the following sets are obtained:

Kdet = {k1, k2, . . . , k10}

Kdisc = {{k2, k3}, {k4, k8}, {k5, k9}, {k7, k10}}

Kdiag = {k1, k6}

which, according to (10), (11) and (12) the speci-
fications are fulfilled.

Algorithm 2 tests whether the diagnosis specifi-
cations are fulfilled for a possible set of sensors to
be installed in the system. The set S of candidate
sensors contains the system variables in V that
will be measured. Therefore, given the set S, it is
straightforward to construct the model of the sys-
tem with the sensors installed in it by just adding
the corresponding sensor constraints (see (1)) to
the original model. Once the model with the sen-
sor is obtained, the diagnosis properties are com-
puted by means of Algorithm 1. Then detectabil-
ity, diagnosability and discriminability specifica-
tions are verified according to (10), (11) and (12),
respectively.
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Algorithm 2
isFeasible(K, S, Kspec

det , Kspec
disc , Kspec

diag)
Check whether the sensor placement satisfies the
specifications

Require:
1. A structural model K.
2. A set of candidate sensors S ⊆ V .
3. The diagnosis specifications, Kspec

det , K
spec
disc ,

Kdiag in K.

Construct the sensor constraints KS from S
(Kdet, Kdisc, Kdiag) = decompose(K ∪KS)
if (Kspec

det 6⊆ Kdet) then
return false

end if
if (Kspec

diag 6⊆ Kdiag) then
return false

end if
for K ∈ Kdisc do

if |{K ′ ∈ K
spec
disc | K ∩K ′ 6= ∅}| > 1 then

return false
end if

end for
return true

If the diagnosis specifications are verified then
the set of candidate sensors S is a feasible solution
for the sensor placement problem. Algorithm 2
returns a boolean value indicating whether S is a
feasible configuration.

5 OPTIMAL SENSOR SEARCH

5.1 Search requirements

The sensor placement problem is addressed by
searching the optimal sensor configuration such
that diagnosis specifications are fulfilled when
these sensors are installed in the system. The cost
of sensor can be motivated by several factors, e.g.
the purchase price, the installation difficulties or
the measurement performances. Moreover, the na-
ture of the problem is combinatorial which means
that exhaustive search are not feasible when the
number of sensors to be considered grows. Here,
to carry out efficiently the optimal search, two req-
uisites are imposed:

• requisite 1: Given two sensor candidates S1

and S2 such that S1 ⊂ S2, the cost of S1

must be lower than the cost of S2. This is
summarised in the next expression

S1 ⊂ S2 ↔ C(S1) < C(S2) (13)

where C(S) denotes the cost of sensor set S.

• requisite 2: If the sensor set S does not fulfil
diagnosis specifications, then no subset of S
can fulfil diagnosis specifications, i.e.

S is not a solution→ S′ is not a solution
(14)

for any S′ ⊆ S.

It is assumed, for the sake of simplicity, that the
cost C(s) of installing a sensor s ∈ S is a positive

real number. The cost of a sensor configuration S
is defined as

C(S) =
∑

s∈S

C(s) (15)

Therefore, using the cost function in (15), requisite
1 is satisfied.

Concerning the requisite 2, in Travé-Massuyès
et al. [2006] it is shown that given the family of
minimal testable subsets generated with S sen-
sors installed in the system, any sensor configu-
ration S′ such that S′ ⊂ S produces a subfamily
of such minimal testable subsets, i.e. all the min-
imal testable subsets generated with S′ are also
generated with S. Hence, it results that when S
does not fulfil diagnosis specification, neither ful-
fils S′ since no new minimal testable subset can
be generated. Therefore expression in (14) holds
and requisite 2 is satisfied.

It is important to point out that expression in
(14) does not hold for fault in sensors since the
existence of this kind of faults depends on the
installed sensors. For instance, consider a sen-
sor such that its corresponding constraint must
be detectable. Then, it may happen that when
the sensor is installed, its corresponding sensor
constraint is non-detectable (diagnosis specifica-
tions are not fulfilled), however when the sensor
is not installed the diagnosis are fulfilled since no
sensor constraint, detectable or non-detectable, is
expected. Therefore, the present approach is re-
stricted to not handle faults in sensors in order to
preserve requisite 2.

As it will be shown in next section, requisites
1 ans 2 play a fundamental roll to perform the
optimal sensor search efficiently.

5.2 Search strategy
First, the search space containing all the possible
sensors configurations is represented by a graph-
tree. To facilitate the comprehension of how the
optimal search is performed, a small example with
four sensors measuring four system variables, S =
{v1, v2, v3, v4}, is used. The cost of each sensor
in S is respectively [1, 5, 7, 2]. The search space
for this example is depicted in figure 1, where the
sensors are ordered according to decreasing costs,
i.e. {v3, v2, v4, v1}.

The concept of node which contains two vectors
of sensors is introduced, i.e.

node.S

node.R

node.S contains the candidate sensor configura-
tion and node.R contains the sensors of node.S
not yet removed in previous nodes of the same
level. In other words, node.R contains the sensors
that can be removed to create sub-nodes.

Furthermore, an upper bound, B̄, and a lower
bound, B

¯
, are defined for each node. The B̄ is the

cost of the sensor configuration in the node, while
the B

¯
is the lowest cost reachable by exploring sub-

nodes. The upper bound of a node is computed
by

B̄(node) = C(node.S)

5



21st International Workshop on Principles of Diagnosis

Figure 1: Search tree for 4 sensors

and the lower bound by

B
¯
(node) = C(node.S)− C(node.R)

Following, the construction of the tree in Fig-
ure 1 is detailed. Given a node, its sub-nodes are
obtained by removing the sensors in node.R one
by one according to decreasing cost order, i.e. the
sensor with the highest cost is firstly removed from
the node, then the next sensor with the highest
cost and so on until the sensor with the lowest
cost is removed from the node. The circled num-
bers in Figure 1 show the sequence to obtain the
whole tree.

The search strategy is based on a depth-first
search by choosing first the nodes with lowest
costs and back-tracking to other not already ex-
plored node when a branch exploration is stopped.
Throughout the search, the best solution is up-
dated in S∗ when a feasible solution with lower
cost than the current best one is found.

The depth-first search is stopped at some node
when

1. the node is not a feasible solution for the
sensor placement problem according to Algo-
rithm 2

2. or the lower bound B
¯

of the node is greater
than the cost of the current best solution.

These two conditions are motivated by requi-
sites 1 and 2. According to (14) in requisite 2, if a
node is not a feasible solution then its sub-nodes
can not be feasible solutions, therefore the search
is stopped.

On the other hand, the lower bound B
¯

is an
indicator of the best node cost in the branch (see
leaf nodes in Figure 1). If condition 2 is fulfilled,
i.e. B

¯
(node) > C(S∗), then it can be ensured that

there is no better sub-node in the branch than S∗.

Therefore, no better solution can exist in the sub-
nodes and the search is also stopped.

Algorithm 3 performs recursively the optimal
search for the sensor placement. The algorithm
generates child nodes by removing, according to
the costs, sensors in node.R. The depth-first
search is performed by choosing first the child
node with the lowest cost. If this child node does
not fulfil conditions 1 and 2 then the depth-first
search is not stopped and the algorithm recur-
sively searches in deeper sub-nodes. Otherwise,
the depth-first search is stopped (all the sub-nodes
are rejected) and the algorithm moves to the next
child node with the lowest cost and so on until all
the child nodes have been tested. Note that Algo-
rithm 2 is used to verify specifications. In order
to make the algorithm more readable, the three-
sets (Kspec

det , Kspec
disc , Kspec

diag) is condensed in the spec

variable, i.e spec = (Kspec
det , Kspec

disc , Kspec
diag).

Let S be the set of all sensors that can be in-
stalled in the system, then the algorithm is ini-
tialised with node.S = S and node.R = S. It
is also assumed that diagnosis specifications are
fulfilled with all the possible sensors installed in
the system, thus the best solution is initialised as
S∗ = S. Note that if this assumption does not
hold then there is no possible solution, according
to (14), for the sensor placement problem.

Since all the possible branches in the search are
investigated and stopping operations ensure that
no better solution is missed, the global optimal
solution is ensured. To clarify the strategy of Al-
gorithm 3, next example shows how the search is
carried out by the algorithm.

Example 2 Assume the set of four sensors
{v1, v2, v3, v4} with the cost mentioned above. In
order to follow the search, sensor configurations

6
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Algorithm 3
S∗ = searchOpt(node, S∗, K, spec)

for all s ∈ node.R ordered in decreasing cost
do

childNode.S ← node.S \ {s}
node.R← node.R \ {s}
childNode.R← node.R
if B

¯
(childNode) < C(S∗) and

isFeasible(K, childNode.S, spec) then
if C(childNode.S) < C(S∗) then

S∗ ← (childNode.S)
end if
S∗ ← searchOpt(childNode, S∗, K, spec)

end if
end for
return S∗

Table 1: Optimal search example
current stopping best

iteration node cost condition node cost
0 0 15 — 0 15
1 1 8 — 1 8
2 2 3 (1) 1 8
3 6 6 (1) 1 8
4 8 7 — 8 7
5 9 10 (2) 8 7
6 13 13 (2) 8 7
7 15 14 (2) 8 7

fulfilling specifications are known beforehand:

{v1, v2, v3, v4}, {v1, v2, v4}, {v2, v4},

{v1, v2, v3}, {v2, v3}, {v2, v3, v4}

which corresponds, respectively, to nodes 0, 1, 8,
13, 14 and 15 in Figure 1. Table 1 shows the se-
quence that the algorithm uses to find the optimal
solution. After completing the sequence, the algo-
rithm returns node 8, {v2, v4}, with a cost of 7 as
the optimal solution.

6 APPLICATION

The algorithm for sensor placement introduced in
section 5 has been applied to an electronic circuit
(see Figure 2).

This electronic circuit is modeled by 13 con-
straints and 14 unknown variables. The cor-
responding bi-adjacency matrix which represents

Figure 2: Scheme of the electronic circuit

the structural model (Blanke et al. [2006]) is given
in Table 2. For this example, it is assumed that
all the variables can be measured, however differ-
ent sensor costs are assigned in order to represent
preferences at installing sensors. Next table shows
the cost of installing each sensor:

v0 v1 v2 v3 v4 i1 i2 i3 i4 v1a v1b v1c v4a v4b

cost 1 4 4 4 2 1 8 8 8 4 4 4 4 4

Table 2: Structural model of the electronic circuit

v0 v1 v2 v3 v4 i1 i2 i3 i4 v1a v1b v1c v4a v4b

k1 × ×

k2 × × ×

k3 × ×

k4 × ×

k5 × ×

k6 × × ×

k7 × × ×

k8 × × ×

k9 × × ×

k10 × ×

k11 × ×

k12 × ×

k13 ×

Let consider, for this example, the following di-
agnosis specifications:

Kspec
det = {k1, k6, k7, k8, k9, k10, k13}

K
spec
disc = {{k6} , {k7} , {k8} , {k9} , {k10} , {k13}}

Kspec
diag = {k1}

In order to find the cheapest sensor placement
that satisfies specifications, Algorithm 3 is used
and it returns the following result:

S∗ = {v0, v2, v3, v4, i1, i4, v1c}

with a minimal cost C(S∗) = 24. The diagnosis
capabilities obtained by measuring S∗ in the elec-
tronic circuit are:

Kdet = {k1, k2, k3, k5, k6, . . . , k20}

Kdisc ={{k2, k9, k12}, {k3, k7}, {k8, k11},

{k10, k19}}

Kdiag ={k1, k5, k6, k13, k14, k15, k16, k17, k18, k20}

where k14, · · · , k20 are the sensor constraints of S∗,
respectively.

Algorithm 3 was implemented in Matlab and it
lasts 0.7 seconds to find the solution. The number
of possible sensors configuration is 214 = 16384,
however the algorithm only visits 190 nodes. 62
nodes out of these 190 need to be tested whether
diagnosis specifications are fulfilled, i.e. the Algo-
rithm 2 receives 62 calls. Only 28 visited nodes do
not stop the depth-first search.

7 CONCLUSION

An optimal approach for sensor placement satis-
fying diagnosis specifications has been proposed.
In contrast to other approaches, diagnosis specifi-
cations concern fault detectability, discriminabil-
ity and diagnosability which are attained by

7
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means of the Dulmage-Mendelsohn decomposi-
tion. The computational complexity order of the
Dulmage-Dulmage-Mendelsohn decomposition is
n2.5 [Murota, 2000], for n constraints in the model.
Thereby, Algorithm 2, developed to test specifica-
tions, does not present computational time prob-
lems.

Furthermore, a simple but efficient algorithm
based on heuristic rules has been developed in
order to carry out the optimal solution search.
Thanks to the proposed algorithm, cost opti-
mal sensor placements satisfying diagnosis spec-
ifications are possible without designing minimal
testable subsystems a priori. Algorithm 3 has, the-
oretically speaking, a computational exponential
time. However, compared to the other existing
method, it is able to rapidly find an optimal solu-
tion.

Given a set of n candidate sensors, the worst
case appears when the algorithm has to traverse
all the nodes in the upper half part of the lattice
of all the sensor combinations, i.e. 2n/2 nodes
are visited. This case is present when the optimal
solution involves n/2 (or (n−1)/2 if n is odd) sen-
sors. Furthermore, this situation implies that the
sensor cost is the same for all the n sensors and,
any sensor set involving more that n/2 sensors is a
feasible solution (condition 1 is not met), whereas
the remaining set of sensors involving less that
n/2 sensors are not feasible solutions (condition
2 is never applied to stop the depth-first search).
Hence, the efficiency of the algorithm strongly de-
pends on how the sensor costs are set.

To take advantage of stopping condition 2, it
is recommended to set the sensor cost as differed
as possible among them. In this way, once a
lower cost solution is found, large branches of sub-
nodes can be pruned from the search tree, leading
to a more efficient search. Therefore, the algo-
rithm can handle, in general, situations where the
number of possible sensors is large. For instance,
the proposed algorithm has been tested in a sys-
tem with 45 possible sensors where a solution has
been found in 15 minutes approximately, whereas
such system is insolvable with other existing ap-
proaches.

To make simpler the approach, it is assumed
that each fault can only effect one constraint. If
this is not the case, the approach is still valid,
however Definitions 1, 2 and 3 should be refor-
mulated in order to handle several constraints for
each fault.

The proposed approach is not able to handle
faults in the sensors that may be introduced to
fulfil diagnosability specifications. A future ex-
tension will be an improvement of the presented
method in order to extend the approach to diagno-
sis specifications related to possible added sensors.
Moreover, other search strategies will be investi-
gated in order to obtain better performances.
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