
21
st
 International Workshop on Principles of Diagnosis, 2010

 1

OPBUS: Automating Structural Fault Diagnosis for

Graphical Models in the Design of Business Processes

A. J. Varela-Vaca
1
,

R. Martínez Gasca

1
, L. Parody

1

1
Departamento de Lenguajes y Sistemas Informáticos,

Universidad de Sevilla, Sevilla, España, 41012, España

{ajvarela, gasca, lparody}@us.es

ABSTRACT

When quality is considered in the design stages of
business processes, fault diagnosis must be taken into
account. In the business process modeling area there
exist several proposed graphical languages. These
languages have many different graphical elements
that could contain structural fault modes in
accordance with the corresponding standard used. It
is essential to aid designers to diagnose faults within
the graphical models for the business processes
before they are put into execution; this is a major
factor in risk avoidance. The graphical models must
satisfy their associated graphical structural
constraints. For organizations compliance is of major
importance. Automation of the diagnosis in the
design stage is necessary in order to diagnose the
non-compliance to the graphical structural constraints
of a business process as soon as possible. This article
presents a framework with automatic diagnosing
capabilities. It provides an early diagnosis of badly
designed business processes. This paper describes the
proposed general framework and focuses on fault
diagnosis where the compliance to graphical
structural constraints can be analyzed using various
approaches of business processes.

1 Introduction

Business process analysis is a critical step which must
be taken into account, since faults in the design of
processes could result in profit losses or system
failures, thereby rendering it essential to diagnose faults
in the early design phase before the processes are put
into the production phase.

Business process modeling remains an important
factor in the areas of information systems development
and business process management. The most widely
known modeling techniques are: Flowcharts, Petri Nets
(Salimifard, 2001), Event-driven Process Chain (EPC)
(Aalst, 1999), UML Activity Diagram (Dumas, 2001),
Data Flow Diagram (DFD) (Penny, 1996), Business
Process Management Notation (BPMN) (BPMN, 2009),
and IDEF3 (Bosilj, 2001).

Once the modeling technique is selected then graphical
business process specification can be defined. The
designer can then subject the designed process to analysis,
whereby automatic approaches to comply to the different
standards and logical properties are desirable. Our
proposal must be able to represent graphical business
process entities that are relevant within management

domains. The selection of an adequate graphical method
has become an important issue for both academic
researchers and business professionals, since each
individual process modeling method features has its own
characteristics. As a consequence, there are many research
efforts dedicated to comparing and transforming these
process modeling methods. In (Huang, 2008), a
comparison of these major graphical process modeling
methods is presented in accordance with a review of the
literature review. Extensive literature research regarding
another type of business process compliance has been
presented (Sadiq, 2007; Namiri 2007).

In various studies, process models have been
analyzed in order to prevent structural faults in the form
of: Petri Nets (Aaslst, 2000); a set of graph reduction
rules to indentify structural conflicts in process models
(Sadiq, 2000); and an improved version of the latter
method (Lin, 2002). Several process analysis strategies
are then used to detect the syntactical, semantic and
performance conflict which are discussed in (Huang,
2008), in order to guarantee executable properties.

Validation analysis methods are focused on
discovering whether the designed business processes
can be automatically enacted as expected. Through this
analysis, any possible constraints violations should be
detected. Verification analysis methods are concerned
with semantic or logical conflicts, hidden in the design
processes, which and could lead to unsuccessful
execution. These kinds of analysis methods have been
widely discussed in various reviews of the literature
(Sadiq, 2000; Aalst, 1999; Marjanovic, 2000; Huang.
2008).

The automation of validation analysis is a very
desirable capability from the point of view of the different
stakeholders involved in the life cycle of business
processes. Validation in the form of fault diagnosis
provides a mechanism to identify where and what
components in the business process model are failing. The
main aims of this article are: (1) the formalization of key
concepts of graphical elements of a business process; (2)
the analysis of the different graphical elements and
possible fault modes using structural constraints; (3) the
design of a framework that, according to the previous
items, is able to carry out the automatic validation analysis
of the graphical specification of a determined instance of a
business process and to report its fault modes. The
contributions of this article include: automatic fault mode
diagnosis using a meta-model of business process and a
more efficient algorithm (linear with respect to path size)
for the diagnosis.

 2

Figure 1: Meta-model for BPMN

The structure of the paper is as follows. In Section
2, the definition of the main concepts in fault diagnosis
and business processes are introduced. Section 3
presents the types of structural constraints. Section 4
describes an illustrative example. Section 5 presents the
framework and focuses on the validation algorithms
and their implementation. As a conclusion, the paper
finalised by discussing related work and future lines of
research.

2 Fault Mode Diagnosis of graphical business process
models

BPMN presents a graphical representation, Figure 2,
for the specification of business processes in a BPM
paradigm. A meta-model for BPMN is defined based
on the BPMN Standard (BPMN, 2009), Figure 1.

Figure 2: BPMN introduction of main elements

A meta-model is a representation which gathers the
concepts and the relations between these concepts to a
very high level of abstraction. This meta-model provides a
finite set of structural constraints. These constraints
referred to implicit constraints imposed by the
construction of the meta-model. For instance, one
structural constraint is: a Sequence flow must link two
Activities (see in Figure 1 the association target and source
from SequenceFlow to Vertex). A Vertex is an Activity and
it could be a Start Event type, Task type, and so. But it is
not possible to link a Data Object and an Activity with a
Sequence flow due to the lack of any relation in the meta-
model which includes this action. The following
definitions have been adapted from the conflict based
approach to model-based diagnosis (Hamscher, 1992).

Definition 1. Meta-model Structural Constraints.
The set of the constraints which imposes the structure
of the meta-model.

Although the meta-model introduces structural
constraints, there are other constraints that cannot be
expressed within the meta-model due to the
diagrammatic form of the meta-model and its own lack
of expressivity itself. For instance, in a business
process model which integrates two participants (two
Pool), the communication between them must be
carried out with a Message and never with a Sequence
flow. That constraint is not implicit in the meta-model
shown in Figure 1. For this reason, it is necessary to use
a specific language to describe other kind of
constraints. An example of these is Object Constraint
Language (OCL) used to define constraints in models
Unified Model Language (UML).

Definition 2. Non-Meta-Model Structural
Constraints. The set of the structural constraint that are
not in the meta-model.

Definition 3. System of Structural Constraints.
This is a set of constraints compounded by SCm and SCn.

Definition 4. Business Process Model. A business
process model is a tuple (BPG, SC) where: BPG is an
instance of the meta-model and represents the graphical
model of the business process.

For instance, in Figure 8, we can observe a specific
instance (from here BPG1) of the meta-model of Figure
1, and for example, this instance is compounded of two
pools (Tutor and Student). Those are specific instances
of the meta-class Pool of the meta-model.

Definition 5.Graphical Context. gC is an element
of a graphical business model that contains an
identification name and an finite set of associated
structural constraints. This concept could be considered
as a component in the model-based diagnosis.

21
st
 International Workshop on Principles of Diagnosis, 2010

 3

BPG1 is compounded of two pools (Tutor and
Student) taking these as example, they represent two
different graphical contexts gC1(Tutor) and
gC2(Student).

Definition 6. Abnormal Graphical Context. A
graphical context is abnormal when the AB literal
is hold since an associated constraint of a determined
graphical context gC is not satisfied.

Definition 7. Fault Mode of Abnormal Graphical
Context. This is the label associated with the
constraints of a graphical context. The AB(gC,
modei,…modej) literal represents the graphical context
gC which has fault modes labeled as (modei … modej)
since the corresponding associated constraints of these
modes are not satisfied. The fault modes could also be
scopes that are labels enriched with information about
possible faulty graphical contexts.

For instance, in BPG1 a Message Flow is used to
link the activities Inform Dept. and Begin Project, a
constraint is not satisfied and it produces a fault mode
mode1 that is related with the label: “Message flow only
link activities from different pools”. Therefore, in
gC2(Student) has associated the fault modes mode1

corresponding to the constraints that is not satisfied.
The literal of abnormal graphical context is AB(gC1,
mode1). In case of gC1 has n different fault modes, then
AB(gC1, mode1 … moden).

A diagnosis specifies every fault modes of the
abnormal graphical context of the graphical model and
every normal graphical context. A diagnosis could be
defined as follows:

Definition 8. Fault Diagnosis. Given two sets of

graphical contexts gCp and gCn of a graphical diagram,

define D(gCp,gCn) is defined as the conjunction:

3 Types of structural constraints

Before automating the fault diagnosis, we have applied a
selection procedure on the structural constraints that have
clear semantics. The lack of well-defined semantics of
structural constraints affects their ability to achieve good
automatic fault diagnosis of the graphical components. In
the following section the most significant constraints to be
satisfied while modeling a business process model are
satisfied. The BPMN components referred to this section
are described in more detail in (BPMN, 2009).

3.1 Connecting objects

Connecting objects represent different edges which
could be used in the graphical model. There are three
kinds of edge:

1. Sequence Flow defines the order of flow objects
(activities, events and gateways) in a process. A
sequence flow cannot cross the boundary of one pool to
connect different objects of different pools. Let SF be a
set of sequence flows which belong to a determined pool
p of a business process diagram.

2. Message Flow defines the order of a flow
communication between two participants. In our case,
participants are represented by means of pools. Therefore,
a message flow can only connect two different objects
from different participants, and hence it is not possible to
connect an object within a single pool. Let MF be a set of
message flows belong to a business process diagram, and
p1 and p2 be two different pools belonging to the same
business process diagram.

3. Association Flow is mainly used to link tasks and
artifacts. The most important and useful association is
between a data object and a task. This link shows that the
data object is an input and output from the task. This kind
of object does not affect the structure and flow of
processes. Association is supported mainly between data
objects and tasks, pools, sequence flows and message
flows, with some restrictions. A data object is linked with
a task for only one association connector at a time. Let AF
be a set of association flows belonging to a determined
business process diagram. Let OB be a set of all objects of
the diagram minus the set of Artifacts.

3.2 Swim lanes

These represent major participants in a process, and
typically separate different organizations. In this case, we
can suppose that there is at least one participant (one pool)
in a diagram and the different participants always take
different names each other. We also suppose every pool
contains at least one process and begins with at least one
Start Event and finishes with at least one End Event. Let P
be the set of pools of a business process diagram, and
vertices be a property of a pool. A swim lane contains the
set of objects that can belong to a business process.

3.3 Activity

A task describes the kind of work which must be carried
out. None Task Activity is supported by our framework,
although all types of activities can easily be adapted or
simulated. Other special activities such as Sub-processes
have not yet included in our framework, although they
may easily be simulated by means of other elements
already included in the editor. In our editor the None Task
does not introduce any conflicts, but no Activity can be
isolated. Let A be the set of activities which belong to a
determined business process diagram, and SF the set of
sequence flows belonging to the same diagram.

3.4 Events

An event is something that happens during the course of a
business process. These events affect the flow of the
process, and they can start, delay, interrupt or end the flow
of the process. There are three categories of event: (1)
Start Events show where a process can begin; (2) End

21
st
 International Workshop on Principles of Diagnosis, 2010

 4

Events mark where a process, o more specifically, a path
(referred to as execution thread) within the process ends;
(3) Intermediate Events indicates where something
happens after a process has started and before it has ended.

For each category, various different kinds of events
exist: None Start, Message Start, Message End, etc. A set
of possible faults have been identified:

1. Start Event only supports outgoing sequence flows.
Let SE be the set of Start Events which belong to a
business process diagram, and incomings is a specific
property which provides a set of sequence flows that
arrive to the event.

2. End Events only support incoming sequence flows.
Let EE be the set of End Events belonging to a business
process diagram, and is a specific property
which provides a set of sequence flows that leave the
event.

3. Start/End/Intermediate Timer Event is triggered
through a time condition, in our proposal this condition
(time) is specified by a positive integer greater than zero.
Let STE be the set of Start Timer Events, ETE the set of
End Timer Events, and ITE the set of Intermediate Timer
Events belonging to a business process diagram.

4. Start/End Message Event is triggered through a
message arriving/sending to/from another pool. Let SME
be the set of Start Message Events, EME the set of End
Message Events, and IME the set of Intermediate Message
Events belonging to a business process.

5. End/Intermediate Compensation Event.
Compensation does not just happen automatically.
Another Activity is required to undo the work of the
original Activity (to compensate). Therefore, this event
either has to be linked to a specific activity or it can be left
as general in which case it applies globally. Let ICE be the
set of Intermediate Compensation Events, and ECE the set
of End Compensation Events belonging to a business
process diagram.

3.5 Gateways

Gateways are modeling elements which control how the
process is executed. They can split or merge the flow of a
process. There are various ways of controlling the process
flow, of which the most important of them are: (1)
Exclusive Gateway, which splits the path only for one
outgoing paths depending on the evaluation of a condition.
Acting as merge gateway, it waits for one path to finish
and then continues for any incoming paths; (2) Inclusive
Gateway, which splits the path for one or more outgoing
path depending on the evaluation of a condition. Acting as

a merge gateway, it waits to all incoming paths to finish;
(3) Event Gateway, which splits the path for only one
outgoing path depending on a specified Event. Acting as a
merge gateway, it waits for one path to finish and
continues for any incoming paths; (4) Parallel Gateway,
which splits the path for all outgoing paths (in parallel).
Acting as a merge gateway, it has to wait for all incoming
paths to finish. We differentiate between a gateway for
splitting and that for merging. In the case of the splitter
gateway, it has only one incoming flow and two or more
outgoing flows. A merge gateway works the opposite
way, since it has two or more incoming flows and only
one outgoing flows. Let G be the set of Gateways
belonging to a business process diagram; incomings is a
specific property which provides a set of sequence flows
that enter the gateway, and is a specific
property which provides a set of sequence flows that leave
the gateway.

Another interesting constraint for a parallel gateway
is that the number of the outgoing paths has to be
closed by another parallel gateway, in this case a merge
gateway, with the same number of incoming paths. An
example of this fault is shown in Figure 3.

Figure 3: Example of parallels error

Let PG be the set of Parallel Gateways belonging to
a business process diagram; pair is a predication that
indicates if given g1 and g2 parallel gateways, then g2
closes the paths (threads) opened for g1.

3.6 Non-meta-model constraints

Lack of synchronous activities produces a fault is when
there is an inclusive gateway such as that which splits
paths ending with an exclusive gateway, Figure 4.

Figure 4: Example of lack in synchronization fault

Let G be the set of Gateways belonging to a business
process diagram; pair is a predicate that indicates if given
g1 and g2 parallel gateways, g2 closes the paths (threads)
that were previously opened by g1; and
isExclusiveGateway / isInclusiveGateway is a predicate
that indicates if a particular gateway is of the type of
Exclusive/Inclusive Gateway.

21
st
 International Workshop on Principles of Diagnosis, 2010

 5

Starvation (Huang, 2008) is the same case of lack
synchronization but with an exclusive gateway as splitting
which the path of the process and an inclusive gateway as
ending of the process. In this case, the splitting gateway
divides the execution in two parallel threads but the
inclusive gateway is only waiting for the first thread finish
to continue the execution.

Livelock, without an appropriate end condition in
the design process, can contain loop logic which would
fall into an infinite state, Figure 5.

Figure 5: Example of a livelock fault

Let cycle be a predicate that indicates whether, given

c1 an activity, there is a cycle between c1 and c1.

4 Illustrative example

In this section, we present a practical example of the
design of a process, Figure 8. The process shows the
procedure where a Student begins to search for a final
degree project until the project starts. This process
involves two participants a Student and a University
Tutor. The tutor’s department has decided to define the
process using BPMN notation. The design contains a set
of deliberate structural faults.

5 OPBUS: Framework description

The proposed framework has been developed based on
the main ideas of Model-Driven Development (MDD)
(MDD, 2006) and Model-Driven Architecture (MDA)
(MDA, 2009). Model-Driven Development is a software
engineering approach where models become key elements
in software development. One of the main goals of MDA
is to improve the software adaptation to several
different technological scenarios, thereby providing a
structural separation in the architecture. The solution
proposed is an architecture composed of various
different levels of modeling. This separation enables
the specification of models to a very high level for a
particular domain but with non-specific information
about the platform where the model will be deployed.
MDA introduces the concept of transformation which
allows one model to be obtained in one level (target
model) from another model or a set of models from
another level (source model). Transformations are a
conflictive point because if a model is not validated in
one level, then when this model is transformed into
another of the different level; any faults could be
dragged into the different models. For this reason it is
crucial to validate the models in the development of a
first step in order to prevent further faults in the
subsequent steps in the framework.

5.1 OPBUS: Framework architecture

The framework has been structured (Figure 6) in
several layers: Presentation, Modeling, Validation and
Application.

Presentation Layer

Modeling Layer

Validation Layer

Application Layer

Constraints:

 distance <=100 => dist == 0.1 * distance

 distance >100 => dist == 0.05 * distance

 days <=7 => t == 20 * days

 days <7 && days <= 15 => t == 18 * days

 days >15 => t == 20 * days

 res == dist + t

 owr => tot = res * 2 * 0.8

 !owr => tot = res

 …

Figure 6: Framework architecture

1. The Presentation Layer provides the user with an
integrated development environment for BPMN design.
The user interface is composed of four main parts: an
edition zone, a palette, properties and problem tabs, and a
project workspace zone with the basic menus.

2. The Modeling layer integrates the power of
graphically designing BPMN models together with the
model-driven ideas. Thus, while modeling a BPMN in a
diagram at the same time a XML-based model is
constructed in background. The editor provides two
different zones: the edition zone and the palette. The
palette provides a graphical definition of BPMN elements
which can be then selected and dropped to the edition
zone. The editor automatically checks the structural
constraints of the meta-model. For example, the possibility
of inserting some elements inside others, whereby if this is
impossible, and then the editor automatically forbids this
option. This is based on the implicit structural constraints
of the meta-model, and hence the model is being built
while conforming to a meta-model.

3. The Validation layer integrates the framework
with other tools that provide model validation capabilities;
Epsilon framework (Epsilon, 2010). This framework is
verified with a specific language for models validation,
EVL. This language allows specifying constraints to be
checked throughout the model in live mode. These
constraints can be defined for a specific set of elements
(contexts) in the model. The constraints defined in this
layer correspond with the non-Meta-Model structural
constraints. Thus, when the model is saved it is checked
throughout the validation model. A scheme of the
validation process is shown in the Figure 8.

Graphical BPMN Editor

BPMN Model

Structural

Faults

Validation

Model

Epsilon Framework

Epsilon Validation

Language

+

Validation tools

Figure 7: Validation process

 6

T
u

to
r

S
tu

d
e

n
t

Ask for

Offer

Offer

Projects

List

Projects

Select

Project

Inform

Tutor

Begin

Development

Pre

Assign

Inform

Student

Assign

Project

Begin

Project

Inform

Dept.

P1

P2

P3

Figure 8: Example of business process with several structural faults

Constraints are composed of three main parts: (1) the

‘context‟ where the constraints will be applied; (2) the

‘check‟ part where the specific code for the constraint is

specified, and where a constraint is satisfied if a true value

is returned, false, in otherwise; (3) a ‘message‟ which, in the

case where the constraint remains unsatisfied, is presented

in the editor. The section message has been introduced in

the definitions of Section 2 as a label. The syntax of

validation constraints in EVL is shown as follows:

5.2 Validation of Non-Meta-Model structural constraints

In this section, a set of Non-Meta-Model structural
validation constraints are presented. The algorithms
presented are associated with the context of Pool. A
previous step to apply the algorithms is necessary to
construct an auxiliary structure of the business process
diagram. This structure represents an adjacency list of
the business process diagram. The construction of this
structure is considered as pre-processed work.
 Livelock algorithm
The main idea, subjacent in this algorithm is the

detection of cycles in a model. The algorithm makes an
in depth of traverse of the business process diagram, as
if there is re-visited node detection. A path in reverse
order is constructed from the parent of this node. If this
path includes the node in question, then there is a cycle,
otherwise there is no cycle. In the Figure 9, we show a
trace of the algorithm applied to the example.

Figure 9: Livelock determination trace

 Starvation algorithm
In this case the same idea of traversing of the diagram

is implicit in the algorithms of Starvation and Lack of
synchronization. The most significant variation between
these algorithms is focused on the detection of particular
gateways (inclusive or exclusive). Each gateway acting as
splitter of the paths has been associated with a ‘scope’.
This scope saves the gateway (merger gateway) that
closed the paths opened before, as shown in Figure 4.
Therefore, when if we find two pairs of gateways whereby
the first one is a splitter and the second one is a merger,
then if the first is an exclusive gateway and the second is
an inclusive gateway then Starvation has been located. In
the case of an inclusive gateway as the splitter and an
exclusive gateway as the merger, then Lack of
synchronization is found. Figure 10 shows the trace of
how the algorithms work.

Offer

Projects

List

Projects

Pre

Assign

Inform

Student

Assign

Project

Begin

Project

Inform

Dept.

Pre

Assign

LiveLock

Cycle

pathAuxiliar { }
Inform

Student

Pre

Assign

1.constraint liveLock do

2.check do

3. var path:=new OrderedSet;

4. var visited, neighborings :=new List;

5. //For each Start Event included in the pool

6. for(s Start) do
7. if(self.vertices.includes(s)) then

8. // A path is build dynamically

9. // while the graph is traversed

10. path.add(s);

11. i:=0;

12. // Traversing the path

13. while(i < #path) do

14. //Obtain a node

15. neigh:= path.at(i);

16. // Obtain node’s neighborings

17. neighborings:= graph.get(neigh);

18. visited.add(neigh);

19. // For each new neighboring

20. for(v neighborings) do
21. if(visited.includes(v))then

22. //update pathAuxiliar with

23. // reverse path from neigh

24. if(pathAuxiliar.includes(v))do

25. return fault

26. end if

27. else

28. path.add(v);

29. end if

30. end for

31. i:=i+1

32. end while

33. end if

34. end for

35. // Otherwise algorithm finishes without fault

36. end check

37. message: "Livelock fault [Activity]”

38. end constraint

1. // Where the constraint will be applied

2. context BPMN_Diagram {

3. // Number of pools has to be more than 0

4. constraint havePools{

5. check{

6. return self.pools.size()>0;

7. }

8. message: 'There is no pools defined in

9. } the diagram'

10.}

21
st
 International Workshop on Principles of Diagnosis, 2010

 7

Figure 10: Lack of synchronization determination trace

 Lack of synchronization in closing parallels algorithm
This algorithm is based on the same ideas as those of

the starvation algorithm: the traversing of the diagram is
similar but it uses the concept of scope. However another
intrinsic problem appears in form of the nesting of parallels.
In the case of several parallels being opened and then not
closed correctly, the detection of the subjacent fault it causes
is not a trivial problem. A clear example is shown in Figure
8 where it is possible to observe three faults: (1) the parallel
P1 splits the execution of the business process into two
threads but this parallel is matched with P3 with three
incoming arrows (there should be two to match up with P1);
(2) the parallel P2 splits the execution of the business
process into two threads but this parallel is matched with P3
with three incoming arrow (there should be two to match up
with P1); (3) the parallel P3 closed the threads opened by P1
and P2 and this is not correct way to do it (another gateway
should exist to first close P2).

6 Results of validation

The example has been modeled in the editor of our
framework. Structural faults are presented as shown in
Figure 11. The editor shows the faults over the particular
symbols and every fault messages is collected in a specific
tab of the IDE called Problems. The fault modes identified
in the design are:

 The Student pool has no End Event and Start Event.
 The „Inform Tutor‟ task uses a Sequence flow to

communicate between two different pools.
 The „Inform Department‟ uses a Message to

communicate two different tasks within the same pool.
 There is an Intermediate Event which indicates that

time is not specified correctly.
 The first parallel (P1) splits the path into two threads,

but the number of incoming paths, in the parallel merge
(P3), do not match. The same occurs with the second
parallel split (P2).

 A Livelock has been introduced between the Timer
Event and ‘Pre Assign‟ Task.

Figure 11: Faults identified in the editor

7 Related Work

In other studies a classification of anomalies is described
(Kim, 2009). These anomalies are similar considered in the
same way as a fault in this work. No new research
contribution is made since the anomalies are already studied
(Huang, 2008) and therefore a tool is proposed for EPC.

Lack of
synchronization

{} { }

Scope Scope

1.constraint parallelLackSynchronization do

2.check do

3. // Same variables as other algorithms

4. //For each Start Event included in the pool

5. for(s Start) do
6. if(self.vertexs.includes(s))then

7. // Same from line 9 to 25 as Starvation

8. // constraint, with the variation

9. // changing if to isParallelGateway and

10. // not necessary lines (28-30).

11. // Different scopes are analyzed

12. for(s1 Scope) do
13. // Where s is a pair <Key,Value>

14. if(isNotClosed(s.getKey())then

15. return fault

16 end if

17. if(#outcomings(s.getKey())<>

18. #outcomings(s.getValue()))then

19. return fault

20. end if

21. for (s2 Scope)do
22. if(s2.getValue())

23. includes(s1.getValue())then

24. return fault

25. end if

26. end for

27. end for

28. end if

29. end for

30. end check

31. message: "Parallel fault {Gateways}”

32. end constraint

1. constraint starvation do

2. check do

3. var path:=new OrderedSet;

4. var visited, neighborings:=new List;

5. var neigh;

6. //For each Start Event included in the pool

7. for(s Start) do
8. if(self.vertexs.includes(s)) then

9. // A path is built dynamically

10. // while the graph is traversed

11. path.add(s);

12. i:=0;

13. if(isExclusiveGateway(neigh))do

14. //Initialize scope of neigh

15. end if

16. // Traversing the path

17. while(i < #path) do

18. //Obtain a node

19. neigh:= path.at(i);

20. // Obtain node’s neighborings

21. neighborings:= graph.get(neigh);

22. visited.add(neigh);

23. // For each new neighboring

24. for(v neighborings) do
25. if(isInclusiveGateway(v)))then

26. // update pathAuxiliar with

27. // reverse path from neigh

28. if(pathAuxiliar.includes(neigh) and

29. isExclusiveGateway(neigh)do

30. return fault

31. end if

32. else

33. path.add(v);

34. end if

35. end for

36. i:=i+1

37. end while

38. end if

39. end for

40. //Otherwise the algorithm finishes without fault

41. end check

42. message: ‘Starvation fault {Gateways}’

43. end constraint

21
st
 International Workshop on Principles of Diagnosis, 2010

 8

In the products of the business process arena, most
application based on the design of process do not support
validation in BPMN standard and in particular do not
support automatic validation (in-live). A comparison of
commercial products can be found in (Huang, 2008), where
validation is a parameter of classification. Most validation
methods for faults related to non-meta-model constraints
proposed make a transformation of business processes to a
graph and then carry out the analysis on this graph (Sadiq,
2000). The solutions provided in most of cases have a very
high order of complexity. Other research tries to improve
this complexity (Touré, 2008; Mukherjee, 2007).

Although our paper is focused on the validation of
BPMN models in design time, most revised literature try to
diagnose processes in run-time (Mayer, 2006; Yan, 2009;
Li, 2007). (Mayer, 2006) diagnoses a composition of
services in sense of the correct coordination of services
involved in an orchestration. (Yan, 2009) transforms BPEL
models into formal models, as automaton, to analyze them.
(Li, 2007) transforms BPEL models to enriched Petri Nets
notation (BPEL Petri Nets). These models are used to
derivate diagnosis models that could be used to apply some
diagnosis algorithm. Other works are focused on the
diagnosis of BPEL models in run-time using decentralized
diagnosers (Console, 2007; Ardissono, 2009).

8 Conclusion and future work

This paper focuses on the improvement of quality in the
design of business processes and the need to provide a
validation of business processes at the same time as the
design stage. Fault diagnosis has been formalized by means
of validating structural constraints. Constraints have been
classified into two sets: meta-model structural constraints
and non-meta-model structural constraints. Once the
formalization has been carried out, it is necessary to
consider the need for a tool that provides mechanisms to
validate in design time. At the same time, it has to enable
the visualization of structural design faults in an automatic
way. For this reason, the proposed framework, OPBUS,
provides an editor based on the BPMN standard and its
main characteristic is the automatic validation (in-live). In
our proposal for validation, we apply the constraints directly
to the business process diagram and the complexity in all
proposed algorithms in all cases is linear with respect to the
path size.

For future work we propose an improvement in the
framework with other new validation capabilities and the
introduction of the validation of models in every layer of the
life cycle of MDA in order to validate all different stages
until correct business processes are achieved.

 ACKNOWLEDGMENT

This work has been partially funded by Consejería de Innovación,
Ciencia y Empresa of the Regional Government of Andalusia
project under grant P08-TIC-04095, and by the Spanish Ministerio
de Ciencia e Innovación project under grant TIN2009-13714, and
by FEDER (under ERDF Program).

REFERENCES

(Ardissono, 2009) L. Ardissono, S. Bocconi L. Console, R. Furnari, A.
Goy, G.Petrone, C. Picardi, M. Segnan, D. T. Dupré. Diagnosis of
Enhancing Web Services Composition by means of Diagnosis.
Business Information Processing, 2009, Volume 17, 468-479, 2009.

 (Aalst, 2000) W.M.P. van der Aalst and A.H.M. ter Hofstede.
Verification of Workflow Task Structures: A Petri-Net-based

approach. BPM Center Report BPM-00-03, BPMcenter.org, 2000.
(Aalst, 1999) W. M. P. van der Aalst, Formalization and verification of

Event-driven process chains, Information and Software Technology,
Vol. 41, pp. 639-650, 1999.

(Bosilj, 2001) V. Bosilj-Vuksic, V. Hlupic, Petri Nets and IDEF:
applicability and efficacy for business process modeling, Informatica
25 (1), pp.123– 133, 2001.

(BPMN, 2009) OMG Standard Business Process Model and Notation.
Available: http://www.omg.org/spec/BPMN/1.2

(Console, 2007) L. Console, C. Picardi, D. T. Dupré. A framework for
descentralized qualitative Model-Based Diagnosis. 20th International
Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,
India, 2007.

(Dumas, 2001) M. Dumas, M., A.H.M. ter Hofstede, UML Activity
Diagrams as a workflow specialization language, in: Proceedings of
the 4th International Conference on the Unified Modeling Language,
UML, pp. 76–90, 2001.

(Epsilon, 2010) Epsilon, Available: http://www.eclipse.org/gmt/epsilon/
(Hamscher, 1992) W. Hamscher, L. Console, and J. de Kleer. Readings

in model-based diagnosis. Morgan Kaufmann Publishers Inc, 1992.
 (Huang, 2008) S. Huang, Y. Chu, Shing-Han Li, D. C. Yen, Enhancing

conflict detecting mechanism for Web Services composition: A
business process flow model transformation approach, Information
and Software Technology, Vol. 50, pp. 1069-1087, 2008.

(Kim, 2009) Gun-Woo Kim, Jeong Hwa Lee, Jin Hyun Son,
Classification and Analyses of Business Process Anomalies,
Communication Software and Networks, International Conference
on, pp. 433-437, 2009.

 (Li, 2007)Y. Li, T. Melliti, P. Dague. Modeling BPEL Web Services for
diagnosis: Towards Self-Healing Web Services. 3rd International
Conference on Web Information Systems and Technologies
WEBIST'07, Barcelona , Spain , March 2007.

 (Marjanovic, 2000) O. Marjanovic, Dynamic Verification of Temporal
Constraints in Production Workflows, Agile Development
Conference, Australasian Database Conference, pp. 74, 2000.

(Mayer, 2006)W. Mayer and M. Stumptner. Debugging Failures in Web
Services Coordination. 17th International Workshop on Principles of
Diagnosis (DX’06), 2006.

(MDA, 2009) Model-Driven Architecture, Available:
http://www.omg.org/mda/

(MDD, 2006) Model-Driven Software Development, T. Stahl, M.
Völter, Ed. Wiley, ISBN 0-470-03570-0, 2006.

(Mukherjee, 2007) A. Mukherjee, Anup Kumar Sen and Amitava
Bagchi. The representation, analysis and verification of business
processes: a metagraph-based approach. Information Technology
and Management, 2007.

(Penny, 1996) A.K. Penny, Introduction to systems analysis & design: a
structure approach, IRWIN, 1996.

(Namiri, 2007) K. Namiri, N. Stojanovic Using Control Patterns in
Business Processes Compliance, Web Information Systems
Engineering – WISE 2007 Workshops, pp. 178-190, 2007.

(Sadiq, 2000) Sadiq, W. and Orlowska, M. E. Analyzing process models
using graph reduction techniques. Inf. Syst. 25, 2, pp.117-134, 2000.

(Sadiq, 2007) S. Sadiq, G. Governatori, K. Namiri, Modeling Control
Objectives for Business Process, Compliance, Business Process
Management, pp. 149-164, 2007.

(Salimifard, 2001) K. Salimifard, M. Wright, Petri net-based modeling of
workflow systems: an overview, European Journal of Operational
Research, 134, pp. 664–676, 2001.

(Touré, 2008) F. Touré , K. Baïna and K. Benali, An Efficient Algorithm
for Workflow Graph Structural Verification. Lecture Notes in
Computer Science Springer Volume 5331, 2008.

 (Yan, 2009) Y. Yan, P. Dague, Y. Pencole, M-O Cordier. A Model-
Based approach for diagnosising faults in Web Service Processes.
International Journal of Web Services Research JWSR, 2009.

