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ABSTRACT
In this paper, we present a comparison of five differ-

ent approaches to extracting decision trees from diag-
nostic Bayesian nets, including an approach based on
the dependency structure of the network itself. With this
approach, attributes used in branching the decision tree
are selected by a weighted information gain metric com-
puted based upon an associated D-matrix. Using these
trees, tests are recommended for setting evidence within
the diagnostic Bayesian nets for use in a PHM applica-
tion. We hypothesized that this approach would yield
effective decision trees and test selection and greatly re-
duce the amount of evidence required for obtaining ac-
curate classification with the associated Bayesian net-
works. The approach is compared against three alter-
natives to creating decision trees from probabilistic net-
works such as ID3 using a dataset forward sampled from
the network, KL-divergence, and maximum expected
utility. In addition, the effects of using χ2 statistics and
probability measures for pre-pruning are examined. The
results of our comparison indicate that our approach pro-
vides compact decision trees that lead to high accuracy
classification with the Bayesian networks when com-
pared to trees of similar size generated by the other meth-
ods, thus supporting our hypothesis.

1. INTRODUCTION
Proper support of a system is wisely regarded as vital
to its function. In general, support of a system involves
both corrective and preventative maintenance. The pri-
mary goal of corrective maintenance is to repair faults
while preventative maintenance attempts to avoid faults
or improve the useful lifetime of parts. Satisfying these
goals requires isolating what faults have occurred or are
most likely to occur.

Decision trees have been used extensively in perform-
ing fault diagnosis during corrective maintenance. This
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procedure is a natural extension of the general process
used in troubleshooting systems. Given no prior knowl-
edge, tests are performed sequentially, continuously nar-
rowing down the ambiguity group of likely faults. Re-
sulting decision trees are called “fault trees” in the sys-
tem maintenance literature.

In recent years, tools have emerged that apply an al-
ternative approach to fault diagnosis using diagnostic
Bayesian networks. One early example of such a net-
work can be found in the creation of the the QMR knowl-
edge base (Shwe et al., 1991), used in medical diagno-
sis. Bayesian networks provide a means for incorpo-
rating uncertainty into the diagnostic process; however,
Bayesian networks by themselves provide no guidance
on which tests to perform when. Rather, test information
is applied as evidence whenever it becomes available. In
this paper, we compare approaches to using Bayesian
networks to derive decision trees to integrate the ad-
vantage of each approach.1 Our approach weights the
classes based on prior probability distributions and then
derives a weighted decision tree using the associated D-
matrix characterizing the structure of the Bayesian net-
work. We hypothesize that this method will yield com-
pact decision trees (thus reducing the amount of evidence
required to be evaluated) that result in high classification
accuracy relative to alternative methods that we evalu-
ated.

Historically, creating decision trees is usually based
around a static set of data (Casey & Nagy, 1984; Heck-
erman, Geiger, & Chickering, 1995; Martin, 1997;
Murthy, 1997; Quinlan, 1986). It has been noted by such
previous work that information theory and other methods
are based upon the assumption that the data set accu-
rately represents the true underlying distribution of the
data. To completely do so requires an infinitely large
data set. However, by using diagnostic Bayesian net-
works directly, it is possible to use the distributions and
information provided by the network to create a decision
tree directly. Without adequate stopping criteria, how-
ever, the resulting trees are likely to be extraordinarily

1While this paper focuses on deriving static decision trees,
the algorithms used can be adapted easily to an online setting
where tests are recommended dynamically.
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large. Another potential method for creating decision
trees from probabilistic networks is based upon using
the structure of the network. The work here uses a spe-
cialized adjacency matrix used for diagnostic networks,
called a D-matrix, to accomplish this task.

In describing the results of our study, this paper has
been organized as follows. Section 2 provides motiva-
tion behind the current study. Section 3 describes related
work with decision trees and Bayesian networks. Sec-
tion 4 provides background information on probabilistic
models and decision trees. Section 5 specifies the ap-
proach used in creating the decision trees. Sections 6
and 7 give the results and discussion, respectively. Fi-
nally, we conclude in section 8.

2. MOTIVATION
Recent trends in developing diagnostic tools have fo-
cused on providing online methods for selecting tests to
evaluate and on incorporating uncertainty into the rea-
soning process. Legacy diagnostic systems rely on static
fault trees to guide the test and diagnosis process. The
primary issue with using static trees is that they are not
able to adapt to changing conditions such as the loss of a
test resource. Even so, evaluating the performance of an
adaptive system is difficult in that the reasons for select-
ing certain sources of evidence may be unclear.

Our research is focused on developing Bayesian diag-
nostic systems that can be assessed through sound em-
pirical analysis. In an attempt to reduce the amount of
evidence to be evaluated and maintain control, we found
it beneficial to use static decision trees in the evaluation
process. Such trees can be used to control the amount
of evidence evaluated, can be examined to justify the
test choices, and can be applied consistently across all
methods studied. Unfortunately, as we started looking
for existing approaches to generate decision trees to be
used with Bayesian networks, we found very little direct,
comparative work had been done in this area. There-
fore, we sought to evaluate alternative approaches with
the goal of finding one that had minimal computational
burden (both in generating the tree and in using the tree)
and still yielded accurate results once evidence was eval-
uated.

In order to do so, three existing methods were se-
lected based upon information theory and value of in-
formation: forward sampling and ID3, maximum ex-
pected utility, and maximum KL-divergence. Due to
the structure of the network, a structure guided search
which was weighted by the probability of the classes
was also implemented. In order to provide a baseline for
this method, the DM-based approach was decided upon
followed by a simplification of the probability weighted
D-matrix approach, creating the marginal weighted D-
matrix method.

3. RELATED WORK
Considerable work has been performed in various meth-
ods for inducing decision trees from data as well as
creating probabilistic models from decision trees. As
described by Murthy (Murthy, 1997), many different
heuristic techniques have been applied to inducing deci-
sion trees. Most of the top-down methods for generating
decision trees fall into three categories: information the-
ory, distance measure, and dependence measures. Some

of these measures are used directly in the generation of
the decision trees in this paper. Specifically, information
theory is used in generating the decision tree from a D-
Matrix and by forward sampling the diagnostic network.

Much of the prior work in creating decision trees
and test selection from Bayesian networks focuses on
reducing the expected cost of performing a series of
actions, both tests and repairs (Heckerman, Breese, &
Rommelse, 1995; Mussi, 2004; Skaanning, Jensen, &
Kjærulff, 2000; Jensen et al., 2001; Vomlel, 2003). In
the SACSO system, tests and actions are recommended
based upon the expected cost of taking any action or per-
forming of tests using the probability the problem will
be corrected and a cost function. Given the nature of the
problem, the SACSO system relies on a set of networks
where each reported problem, e.g. spots on a page, is
the root of its own tree. A similar approach was used
by Mussi for the generation of sequential decision sup-
port systems. These approaches are similar to what is
defined by Koller for measures of maximum expected
utility (MEU) (Koller & Friedman, 2009). Given that
performing the inference for such measures is intractable
for large problems, Zheng, Rish, and Beygelzimer devel-
oped an algorithm for calculating approximate entropy
(Zheng, Rish, & Beygelzimer, 2005).

Use of probabilities in creating decision trees has been
analyzed before by Casey and Nagy for use in optical
character recognition (Casey & Nagy, 1984). Based
upon a data set, the probability of a single pixel having
a specific color was determined for each possible letter.
This information was then used in creating the decision
tree.

Additional work has been performed in optimal cre-
ation of AND/OR decision trees. Research by Patti-
pati and Alexandridis has shown that using a heuristic
search with AND/OR graphs and the Gini approach can
be used to create optimal and near-optimal test sequences
for problems (Pattipati & Alexandridis, 1990).

There has also been research performed in extract-
ing rules and decision trees from neural networks in an
attempt to provide context to learned neural networks
(Craven. & Shavlik, 1996). Additionally, combining the
two approaches, decision trees and Bayesian networks,
has been performed by Zhou, Zheng, and Chen (Zhou,
Zhang, & Chen, 2006). Their research associated a prior
distribution to the leaves of the decision tree and uti-
lized a Monte-Carlo method to perform inference. Jor-
dan also used statistical approaches in creating a proba-
bilistic decision tree (Jordan, 1994). Parameters for the
system were estimated by an expectation-maximization
algorithm. In addition to the work above, Liang, Zhang,
and Yan analyzed various decision tree induction strate-
gies when using conditional log likelihood in order to
estimate the probability of classes in the leaf nodes of a
tree (Liang, Zhang, & Yan, 2006).

Although their application did not specifically address
test selection, Frey et. al. used a forward sampling
method for generating decision trees from Bayesian net-
works for use in identifying the Markov blanket of a vari-
able within a data set (Frey, Tsamardinos, Aliferis, &
Statnikov, 2003).

Przytula and Milford (Przytula & Milford, 2005) cre-
ated a system for converting a specific kind of decision
tree, a fault tree, into a Bayesian network. Their imple-
mentation created an initial network of the same struc-
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ture as the original fault tree and inserted additional ob-
servation nodes. The conditional probability distribu-
tions of the system are calculated by a given prior or by
a specified fault rate.

Especially relevant for potential future work, Kim and
Valtorta performed work in the automatic creation of ap-
proximate bipartite diagnostic Bayesian networks from
supplied Bayesian networks (Kim & Valtorta, 1995).

4. BACKGROUND
The work in this paper primarily depends on principles
from top-down induction of decision trees and diagnos-
tic networks, a specialized form of a Bayesian network.
To fully understand the metrics used in developing the
decision trees, some information on both is required.

4.1 Bayesian Networks
Bayesian networks are a specific implementation of a
probabilistic graphical model (Heckerman, Geiger, &
Chickering, 1995; Koller & Friedman, 2009; Pearl,
1988). It takes the form of a directed, acyclic graph used
to represent a joint probability distribution. Consider a
set of variables X = {X1, . . . , Xn} with a joint proba-
bility P (X) = P (X1, . . . , Xn).
Definition 1 Given a joint probability distribution over
a set of variables {X1, . . . , Xn}, the product rule pro-
vides a factoring of the joint probability distribution by
the following

P (X1, . . . , Xn) = P(X1)

n∏
i=2

P (Xi | X1, . . . , Xi−1) .

The main issue with this representation is that each “fac-
tor” of the network is represented by a table whose size
is exponential in the number of variables. Bayesian net-
works exploit the the principle of conditional indepen-
dence to reduce the complexity.
Definition 2 A variableXi is conditionally independent
of variable Xj given Xk if

P (Xi, Xj | Xk) = P (Xi | Xk)P (Xj | Xk) .

Given these definitions, a more compact representa-
tion of the joint probability can be calculated by the set of
conditional independence relations. Bayesian networks
encapsulate this representation by creating a node in the
graph for each variable in X. For all nodes Xi and Xj
within the network, Xj is referred to as a parent of Xi
if there is an edge from Xj to Xi. In order to com-
plete the representation of the joint probability distribu-
tion, each node has an associated conditional probability
distribution denoted by P (Xi | Parents (Xi)). Thus a
Bayesian network represents the joint distribution as

P (X1, . . . , Xn) =
∏

Xi∈X

P (Xi|Parents(Xi)) .

As an example, consider a joint probability destribution
given by P (A, B, C, D) and suppose the conditional
independence relations allow it to be factored to

P(X) = P (A)P (B)P (C | A, B)P (D | C) .
Assuming binary variables, the full joint probability in
table form would require 24 = 16 entries whereas the
factored form only requires 20+20+22+21 = 8, halv-
ing the size of the representation. The Bayesian network
resulting from this factorization is shown in Figure 1.

Figure 1: Example Bayesian Network

4.2 Diagnostic Networks

A diagnostic network is a specialized form of a Bayesian
network which is used as a classifier for performing fault
diagnosis (Simpson & Sheppard, 1994). This network
consists of two types of nodes: class (i.e., diagnosis) and
attribute (i.e., test) nodes. When performing diagnosis,
each test performed is an indicator for a possible set of
faults. As a simple example, consider a simple test of
the state of a light bulb with the results on or off. With
no other information, this is an indicator for a number
of potential problems such as a broken filament or dam-
aged wiring. By this principle, every test node in the
network has a set of diagnosis nodes as parents. As in
the standard Bayesian network, every node has an asso-
ciated conditional probability distribution. For a specific
diagnosis node, this distribution represents the probabil-
ity of failure. For test nodes, this distribution represents
the probability of a test outcome given the parent (i.e.
causing) failures.

Constructing the network in this manner results in
a bipartite Bayesian network. Because of this feature,
it is possible to represent the structure of the network
with a specialized adjacency matrix referred to as a D-
Matrix. Consider a diagnostic network with the set
of diagnoses D = {d1, . . . , dn} and the set of tests
T = {t1, . . . , tm}. In the simplest interpretation, every
row of the D-Matrix corresponds to a diagnosis from D
while each column corresponds to an test from T. This
leads to the following definition.

Definition 3 A D-Matrix is an n × m matrix M such
that for every entry mi,j , a value of 1 indicates that di is
a parent of tj while a value of 0 indicates that di is not a
parent of tj .

One important concept from this is that of the equiva-
lence class. Given any two diagnoses, di and dj , the two
belong to the same equivalence class if the two rows in
the D-Matrix corresponding to the classes are identical.
In diagnostic terminology, such an equivalence class cor-
responds to an ambiguity group in that no tests exist ca-
pable of differentiating the classes. (Note that this is ac-
tually an over-simpification since structure in a Bayesian
network alone is not sufficient to identify the equivalence
classes. For our purposes, however, we will generate net-
works that ensure this property does hold.)

Figure 2 provides an example diagnostic network with
four classes labeled d1, d2, d3, and d4 as well as four test
attributes labeled t1, t2, t3, and t4. The corresponding
D-matrix for this network is shown in Table 1.
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Figure 2: Example Diagnostic Network

t1 t2 t3 t4
d1 1 0 1 0
d2 0 1 0 1
d3 0 1 1 1
d4 0 0 1 1

Table 1: D-Matrix of the example network

4.3 Decision Trees
Although there are multiple methods for creating deci-
sion trees, the method of interest for this paper is top-
down induction of decision trees such as Quinlan’s ID3
algorithm (Murthy, 1997; Quinlan, 1986). This type of
decision tree is very popular for performing classifica-
tion. Under ID3, the classification problem is based on a
universe of classes that have a set of attributes.

The induction task is to utilize the attributes to parti-
tion the data in the universe. ID3 performs this partition-
ing and classification by iteratively selecting an attribute
(i.e., evidence variable) whose value assignments impose
a partitioning on the subset of data associated with that
point in the tree. Every internal node in the tree rep-
resents a comparison or test of a specific attribute. Ev-
ery leaf node in the tree corresponds to a classification.
Thus, a path from the root of the tree to a leaf node pro-
vides a sequence of tests to perform to arrive at a classifi-
cation. Fault trees used in diagnosis follow this principle.
When creating the tree, the choice of attribute to use in
partitioning the data is determined in a greedy fashion by
some measure such as information gain.

For a more formal definition of the ID3 algorithm,
consider a labeled training set of examples D. Each
individual in the training set is given as the set of ev-
idence E = {e1, . . . , em} and a single class from the
set of classes C = {c1, . . . , cn}. For this discussion, it
will be assumed that the classification problem is binary
(i.e., examples are labeled either as positive or negative),
though this process is easily extended to multiple classes.
Based on information theory, the information contained
in the set of examples is given as

I (p, n) = − p

p+ n
lg

p

p+ n
− n

p+ n
lg

n

p+ n

where p is the number of positive classes and n is the
number of negative classes in the partition. At the root
of the tree, this value is calculated for the entire data set.
To determine the attribute to use to partition the data, the
information gain is calculated for each possible attribute.

To do so, the expected entropy of the partitions made by
performing the test is calculated as

E (e) =

arity(e)∑
i=1

pi + ni
p+ n

I (pi, ni)

where pi and ni are the number of positive and negative
classes in the partitions created by branching on the ith
value of e. From this, the information gained by this test
is given as

gain (e) = I (p, n)− E (e) .

As this is a greedy algorithm, the choice of attribute to
branch on is the attribute which provides the greatest in-
formation gain. Once this attribute is selected, each indi-
vidual in the data set that matches a specific value of that
attribute is placed into a separate child of the root. This
process is then repeated for the created partitions until
a stopping criterion is met. Frequently, this is based on
a minimum threshold of information gain, when a parti-
tion contains only one class, or when all attributes have
been used in a path.

5. APPROACH
In this work, five separate heuristics for generating de-
cision trees from diagnostic Bayesian networks were ex-
amined: information gain on a sampled data set, KL-
divergence, maximum expected utility, information gain
on the D-matrix, and a weighted information gain on the
D-matrix. These five methods are either based on stan-
dard practice for selecting evidence nodes dynamically
(e.g., maximum expected utility, or MEU) or are based
on historical approaches to inducing decision trees (e.g.,
information gain). One exception is the approach using
the D-matrix, which is a novel approach developed for
this study with the intent of reducing overall computa-
tional complexity.

For every method, the class attributed to the leaf nodes
of the decision tree is determined by the most likely fault
indicated by the Bayesian network given the evidence
indicated in the path of the tree. A direct consequence
of this is that large trees effectively memorize the joint
probability distribution given by the Bayesian network.
Finally, a pre-pruning process was applied to simplify
the trees. Pre-pruning was selected over post-pruning
due to the fact that the maximum expected utility and
KL-divergence methods create full trees, which are im-
practical in most situations. The pruning process aids
in reducing this issue of memorization. Pre-pruning the
trees created by this method relies on the multi-class
modification of Quinlan’s equations provided later in this
section.

5.1 Induction by Forward Sampling
Performing induction by forward sampling is directly
analogous to the method used in ID3. With forward
sampling induction, a database of training instances D
is created from the Bayesian network. Since this ap-
proach uses the ID3 algorithm, the database must con-
tain individuals with a set of tests T which are associ-
ated with a single diagnosis from D. This can be ac-
complished by assuming a single fault in the diagnostic
Bayesian network and sampling the attributes based on
the associated conditional probability distributions. To
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maintain the approximate distribution of classes, diag-
noses are chosen based upon the marginal probabilities
of the class nodes, assuming these correspond to failure
probabilities derived from failure rate information.

Forward sampling is straightforward in a diagnostic
Bayesian network. Once a single fault has been selected
(according to the associated failure distributions), that
diagnosis node is set to TRUE while all other diagnosis
nodes are set to FALSE. Since the network is bipartite,
all attributes can now be sampled based upon the condi-
tional probabilities given by the Bayesian network. Each
such sample is added to the database D to generate the
training set.

The data sets used here are not based upon binary clas-
sification; therefore, we needed to modify the basic ID3
algorithm to handle the multi-class problem. Given a set
of classes C = {c1, . . . , cn}, the information gain over
a set of samples can be determined using the equations

I (c1, . . . , cn) = −
n∑

i=1

ci
c1 + · · ·+ cn

lg
ci

c1 + · · ·+ cn

and

E (e) =

arity(e)∑
i=1

ci,1 + · · ·+ ci,n
c1 + · · ·+ cn

I (ci,1, . . . , ci,n)

where e is the evidence variable being evaluated.

5.2 Induction by KL-Divergence
The underlying principle of induction by KL-divergence
is to select attributes that greedily maximize the KL-
divergence of the resulting marginalized networks after
applying evidence. Calculating the KL-divergence of a
child node from its parent node requires performing in-
ference over the network based upon the evidence previ-
ously given in the tree to determine

KL (P ||Q) =
∑
c∈C

P (c | ek) lg
P (c | ek)
Q (c | ek)

where P (c | ek) is the conditional probability of a class
given evidence on the path to the parent node and
Q (c | ek) is the conditional probability of a class given
evidence on the path to the child node. The task then be-
comes to select the attribute that maximizes the average
KL-divergence of the resulting distributions, given by

KL =
KL (P ||QT ) +KL (P ||QF )

2

where QT is the conditional distribution where ek+1 =
TRUE and QF is the conditional distribution where
ek+1 = FALSE.

5.3 Induction by MEU
The heuristic of maximum expected utility closely fol-
lows the approach used by Casey and Nagy (Casey &
Nagy, 1984). In their work, the equation for information
was modified to

I (e) = −
∑
ci∈C

P (ci | e) lgP (ci | e) .

Modifying this to realize maximum expected utility, the
entropy of a system is calculated by multiplying the in-
formation of each partition by the conditional probabil-
ity P (ek+1 = FALSE | ek) and P (ek+1 = TRUE | ek)
where ek+1 is the evidence variable being evaluated, and
ek is the set of evidence collected so far along the path
in the tree to the current node. In addition, a utility is
associated with each attribute and class which are used
in the entropy and information calculations. This results
in

I (e) = −
∑
ci∈C

U (ci)P (ci | e) lgP (ci | e)

and

E(e) = cost (e) [P (e = FALSE | e) I (e ∪ {e})
+P (e = TRUE | e) I (e ∪ {e})]

where U (·) is the utility of a class and is assumed to
be inversely proportional to its cost. For the tests per-
formed here, it is also assumed that U (·) and cost (·) are
uniform for all tests and classes; however, given a more
realistic model, available utilities and costs can be used
directly.

5.4 Induction by D-Matrix
Creating decision trees based upon the D-matrix is very
similar to the approach taken by ID3. However, instead
of using a set of classified examples, the rows of the D-
matrix are treated as the dataset. Thus, there is only a
single instance of a class within the data set. Consider
again the example D-matrix in Table 1. By using every
row as an element in the data set, attributes are selected
that maximize the information gain using the same equa-
tion in forward sampling.

Since there is only one element of a class in each data
set, the equation for information used in ID3 can be sim-
plified to

I = −
n∑

i=1

ci
c1 + · · ·+ cn

lg
ci

c1 + · · ·+ cn

= −
n∑

i=1

1

n
lg

1

n

= − lg
1

n

Entropy is similarly modified to

E =

arity(e)∑
i=1

mi

n
I (ci)

where mi is the size of partition i, n is the size of the
original partition, and ci is the set of classes placed into
partition i. The result of this is that the algorithm at-
tempts to select attributes that will split the data set in
half, creating shallow trees with a single class in each
leaf node. Because of this, χ2 pre-pruning is unneces-
sary.

5.5 Induction by Weighted D-Matrix
The weighted D-matrix approach attempts to overcome
the obvious problems of the regular D-matrix approach.
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That is, the simple approach fails to consider the proba-
bility a class will occur in the resulting partitions. This
method attempts to improve on this slightly by estimat-
ing the probability-weighted information of each parti-
tion by the probability P (ci | e) using the equation

I (c1, . . . , cn) = −
n∑

i=1

P (ci | e) lgP (ci | e) .

We looked at two different approaches to determin-
ing P (ci|e). In one case, we used the SMILE infer-
ence engine to infer the probability based on evidence
applied so far. In the second, as evidence was selected,
we partitioned the class space as we do with the simple
D-matrix approach and renormalized the marginals over
the smaller space. We refer to these two approaches as
probability-weighted D-matrix and marginal-weighted
D-matrix respectively.

5.6 Pre-Pruning the Trees
For the first three methods below, a pre-pruning pro-
cedure is used based upon a χ2 test (Quinlan, 1986).
Since there is no natural stopping criteria for the KL-
divergence and MEU based induction rules, some form
of prepruning is necessary to prevent creating a fully
populated decision tree. Such a tree would be expo-
nential in size with regard to the number of tests, and
is thus infeasible. To ensure comparisons between the
methods are fair, prepruning is used for the forward sam-
pling induction rule as well. Furthermore, chi2 was se-
lected due to its basis for Quinlan’s original original al-
gorithms. Under Quinlan’s adaptation of the χ2 statis-
tic from (Hogg & Craig, 1978), given an attribute under
consideration e, a set of positive and negative examples p
and n, and the partitions p1, . . . , pk and n1, . . . , nk with
k = arity (e), the χ2 statistic is calculated by

χ2 =

arity(e)∑
j=1

(
pj − p′j

)
p′j

+

(
nj − n′j

)
n′j

where
p′j = p

pj + nj
p+ n

.

The value for n′i is calculated in a similar manner. Ex-
tending this for multiple classes results in the equations

χ2 =

arity(e)∑
j=1

n∑
i=1

(
ci,j − c′i,j

)2
c′i,j

and

c′i,j = ci

∑n
i=1 ci,j∑n
i=1 ci

.

This χ2 statistic can be used to test the hypothesis that
the distribution within the partitions is equivalent to the
original set of examples. Unfortunately, this equation
requires modification when dealing with the parameters
of the networks directly. The change occurs in the cal-
culation of ci and ci,j where ci = P (ci | ek), ci,j =
P (ci | ek, ek+1), ek is the set of evidence leading to the
root node, and ek+1 is the evidence gathered by applying
the next attribute.

Another issue with this approach is that the χ2 statistic
is dependent upon the size of the example set. Partitions
of large sets are likely to be deemed significant by this
test. However, by using probabilities, the values which
correspond to the size of the set are only in the range of
[0, 1]. Therefore, tests are performed such that the χ2

statistic is tested against a threshold parameter τ . By
supplying a threshold τ , the new branch is created only
if χ2 > τ . In order to perform the same experiment with
the sampling based approach, the χ2 value is normalized
by the size of the data set in the partition. Originally,
the methods were tested based on the classical use of χ2

under the approximate 5 percent significance test with
k = 10 − 1 = 9 degrees of freedom from the classes.
However, the resulting decision trees were significantly
larger than the D-matrix based methods, motivating the
threshold method.

Another potential method for performing pre-pruning
is based on the probabilities themselves. Specifically,
nodes in the tree are not expanded if the probability
of reaching the node is less than a specific threshold.
This procedure lends itself easily to the KL-divergence
and maximum expected utility methods since they al-
ready perform inference over the network. Calculating
the probability of reaching a node is straightforward. At
the root node, prior to any branching, the probability of
reaching the node is set to 1.0. Once an attribute ek+1
has been selected for branching, inference is performed
to determine

P (ek+1 = TRUE | ek)

and
P (ek+1 = FALSE | ek)

where ek is the set of evidence gathered in the path to
the parent node. For the children nodes, this value is
multiplied by the probability of the parent node which is
given by P (ek). For the child created for the ek+1 =
TRUE partition, this yields the equation

P (ek+1 = TRUE | ek)P (ek)

by the rules of probability, giving the probability of
reaching the child node. This provides a simple method
for iteratively determining the probability as nodes are
created. In the experiments, this method was applied to
both KL-divergence and maximum expected utility.

These procedures are not necessary for the last two
methods since the limitations on branching imposed by
the structure provide pre-pruning. Early results using
χ2 pre-pruning in addition to the structure requirements
failed to provide any benefit for those two methods.

Simple post-pruning was also applied to the decision
trees in order to reduce their size. Since it is possible for
these trees to branch by an attribute where the resulting
leaves indicate the same most-likely fault as the parent,
these leaf nodes in the tree are unnecessary for the pur-
poses of matching the most-likely fault. Therefore, once
the trees have been created, any subtree where all nodes
within that subtree indicate the same most-likely fault is
pruned to just include the root of that subtree. This pro-
cedure does not modify the accuracy of any tree, only
reducing its size.
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BN FS KL MEU PWDM MWDM DM FS (pruned) KL (pruned) MEU (pruned)

BN01 01 0.991 0.987 (45) 0.989 (271) 0.991 (512) 0.984 (22) 0.984 (43) 0.983 (10) 0.983 (23) 0.988 (137) 0.987 (151)

BN02 01 0.999 0.999 (63) 0.999 (535) 0.998 (544) 0.984 (17) 0.984 (35) 0.982 (10) 0.988 (21) 0.996 (219) 0.996 (203)

BN03 01 0.999 0.999 (53) 0.997 (420) 0.999 (575) 0.988 (18) 0.991 (36) 0.986 (10) 0.991 (19) 0.995 (197) 0.995 (238)

BN04 01 1.000 0.998 (56) 0.998 (467) 1.000 (585) 0.988 (25) 0.987 (38) 0.983 (10) 0.995 (25) 0.997 (213) 0.996 (290)

BN05 01 0.935 0.935 (61) 0.935 (385) 0.935 (499) 0.924 (20) 0.927 (41) 0.919 (9) 0.927 (21) 0.930 (114) 0.930 (164)

BN06 10 0.924 0.924 (194) 0.910 (300) 0.924 (458) 0.854 (20) 0.826 (47) 0.795 (10) 0.800 (20) 0.681 (21) 0.743 (21)

BN07 10 0.969 0.969 (113) 0.959 (368) 0.969 (452) 0.930 (25) 0.938 (40) 0.867 (10) 0.945 (25) 0.872 (25) 0.596 (33)

BN08 10 0.838 0.838 (83) 0.834 (298) 0.838 (377) 0.785 (31) 0.669 (41) 0.639 (8) 0.824 (34) 0.771 (49) 0.731 (32)

BN09 10 0.957 0.959 (146) 0.954 (349) 0.957 (533) 0.868 (19) 0.892 (43) 0.827 (10) 0.918 (23) 0.877 (20) 0.900 (19)

BN10 10 0.986 0.986 (106) 0.972 (491) 0.986 (548) 0.937 (25) 0.954 (42) 0.908 (10) 0.955 (25) 0.660 (40) 0.658 (36)

BN11 20 0.939 0.946 (145) 0.907 (196) 0.939 (498) 0.832 (27) 0.844 (35) 0.761 (10) 0.892 (27) 0.778 (29) 0.822 (28)

BN12 20 0.897 0.902 (307) 0.894 (411) 0.897 (458) 0.769 (30) 0.767 (40) 0.690 (10) 0.802 (30) 0.776 (35) 0.653 (39)

BN13 20 0.895 0.895 (204) 0.889 (374) 0.895 (432) 0.769 (29) 0.751 (36) 0.721 (10) 0.836 (29) 0.767 (39) 0.653 (29)

BN14 20 0.860 0.866 (169) 0.855 (375) 0.860 (451) 0.779 (26) 0.769 (41) 0.683 (10) 0.782 (26) 0.719 (27) 0.715 (39)

BN15 20 0.875 0.876 (104) 0.868 (177) 0.875 (240) 0.818 (27) 0.760 (48) 0.666 (10) 0.857 (28) 0.827 (27) 0.749 (27)

BN16 30 0.787 0.787 (308) 0.778 (306) 0.787 (319) 0.665 (37) 0.669 (45) 0.615 (8) 0.676 (39) 0.518 (43) 0.710 (42)

BN17 30 0.887 0.891 (257) 0.877 (416) 0.887 (542) 0.731 (33) 0.743 (44) 0.654 (9) 0.812 (55) 0.746 (33) 0.748 (33)

BN18 30 0.813 0.814 (198) 0.788 (267) 0.813 (339) 0.692 (27) 0.653 (41) 0.590 (9) 0.775 (32) 0.639 (32) 0.674 (28)

BN19 30 0.814 0.822 (253) 0.807 (404) 0.814 (491) 0.653 (37) 0.608 (51) 0.563 (10) 0.786 (37) 0.677 (42) 0.648 (47)

BN20 30 0.850 0.849 (318) 0.840 (340) 0.850 (414) 0.660 (35) 0.540 (44) 0.512 (10) 0.800 (40) 0.699 (39) 0.708 (42)

BN21 40 0.646 0.647 (225) 0.632 (404) 0.647 (320) 0.459 (43) 0.466 (52) 0.409 (9) 0.623 (65) 0.564 (108) 0.587 (46)

BN22 40 0.742 0.742 (253) 0.740 (222) 0.742 (250) 0.550 (44) 0.663 (42) 0.613 (8) 0.651 (46) 0.645 (48) 0.647 (48)

BN23 40 0.616 0.617 (320) 0.614 (374) 0.616 (415) 0.525 (29) 0.500 (43) 0.481 (9) 0.548 (30) 0.482 (36) 0.491 (32)

BN24 40 0.739 0.745 (161) 0.694 (297) 0.739 (399) 0.607 (35) 0.571 (43) 0.565 (10) 0.683 (36) 0.605 (35) 0.632 (37)

BN25 40 0.651 0.655 (94) 0.611 (145) 0.651 (210) 0.576 (31) 0.584 (33) 0.512 (10) 0.603 (34) 0.553 (37) 0.569 (31)

Table 2: Accuracies for each individual network with χ2 pruning with the values in paranthesis representing the
number of leaf nodes, or classification paths, in the resulting tree

5.7 Data Sets
To test these five methods for deriving the decision
tree from the Bayesian network, simulated diagnostic
Bayesian networks were created with varying degrees of
determinism. In total, twenty-five networks were gener-
ated each with ten diagnoses and ten tests. Construct-
ing the topologies for these networks involved multiple
steps. First, for every diagnosis node in the network,
a test (i.e., evidence node) was selected at random and
added as a child node to that diagnosis node. Afterwards,
any test that did not have a parent diagnosis node was
given one by selecting a diagnosis node at random. Fi-
nally, for every pair of diagnosis and test nodes di and tj
that were currently not connected, an edge di → tj was
added to the network with probability P ∈ [0.2, 0.4].

Once the 25 network topologies were generated, five
different types of probability distributions were gener-
ated, each with an associated level of determinism in the
tests. In other words, given a diagnosis di that we assume
to be true, the probability of any test attribute tj = TRUE
with di as a parent would be required to be within the
range [0.001, 0.40]. The actual values for these parame-
ters (i.e., probabilities) were determined randomly using
a uniform distribution over the given range. Following
this, to better illustrate the effects of determinism, the
networks were copied to create 100 additional networks
with their parameters scaled to fit into smaller ranges:
[0.001, 0.01], [0.001, 0.10], [0.001, 0.20], [0.001, 0.30].
In the following, each network is referred to by the num-
ber representing the order in which it was created, as
well as the largest value the parameters can receive:
BN## 01, BN## 10, BN## 20, BN## 30, and BN## 40.

6. RESULTS
To test the five approaches to deriving decision trees, a
dataset of 100,000 examples was generated by forward
sampling each Bayesian network. This dataset was sub-
divided into two equal-sized partitions, one for creating
the forward sampling decision tree, and the other for use
in testing accuracy of all the methods. For each network,
the ID3 algorithm was trained on its partition while the
other decision trees were built directly from the network.
Every resulting tree was tested on the test partition. Test-
ing pre-pruning was performed by repeating the above
procedure for multiple threshold levels. Initial tests on
χ2 pruning set the threshold to 0.0. Each subsequent test
increased the threshold by 0.01 up to and including a fi-
nal threshold level of 2.0. For the probability-based pre-
pruning, the initial threshold was set to 0.0 and increased
to 0.2 by intervals of 0.005. Accuracy from using the
evidence selected by the trees is determined by applying
the evidence given by a path in the tree and determining
the most-likely fault. The accuracy was then calculated
as follows:

Accuracy =
1

n

n∑
i=1

I(d̂i = di)

where n is the size of the test set, d̂i is the most-likely
fault as predicted by the evidence, di is the true fault as
indicated by the test set, and I(·) is the indicator func-
tion.

The best (over the various χ2 thresholds) average ac-
curacy achieved over all tests, regardless of size, is given
in Table 2. Instead of providing results for all 125
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trials, a subsection of the results is given. To ensure
the data selection is fair, the original 25 topologies are
grouped in the order they were created. The results for
parameters in the [0.001, 0.01] range are shown for the
first five networks, [0.001, 0.10] for the next five, and
so on. Included in the first column of Table 2 are the
accuracies obtained by performing inference with the
Bayesian network (BN) using all of the evidence.2 This
was done to provide a useful baseline since it provides
the theoretical best accuracy for the given set of evi-
dence and the given set of examples generated. The
results of applying all evidence are shown in the first
column. The next six columns refer to forward sam-
pling (FS), KL-divergence (KL), maximum expected
utility (MEU), probability-weighted D-matrix (PWDM),
marginal-weighted D-matrix (MWDM), and D-matrix
(DM) methods. As can be seen, forward sampling, KL-
divergence, and MEU all perform similarly to the orig-
inal Bayesian network. As indicated earlier, this is due
to the trees with no pruning being large and memorizing
the Bayesian network.

In all cases, without pruning, the trees created by DM
and PWDM are significantly smaller than the other two
methods. In some cases, MWDM is somewhat larger
than PWDM but still tends to be quite a bit smaller
than the other methods. To better illustrate the efficacy
of each method when constrained to similar sizes, the
last three columns in Table 2 show the accuracies of the
methods when the trees are pruned to a similar size as the
trees created by PWDM. We noticed that there were sev-
eral cases where directly comparable trees were not gen-
erated. Therefore, in an attempt to maximize fairness,
we selected the trees for each pre-pruning threshold as
close as possible but no smaller than the trees generated
by PWDM. Doing this in an active setting is unlikely to
be practical, however, as tuning the prepruning thresh-
old to a fine degree is a costly procedure. Regardless,
the best accuracy of the pruned networks is bolded in
the table. In the table, the number in parentheses rep-
resents the number of leaf nodes, or possible classifica-
tion paths, in the tree. As can be seen from the table, in
most cases PWDM and forward sampling have similar
performance. However, in networks with low determin-
ism, forward sampling performs significantly better than
PWDM.

In all but the near-deterministic networks, the perfor-
mance of KL-divergence and MEU is drastically lower
than the other methods. However, using the probability-
based pruning method improves the accuracy of more
compact trees and is shown in Table 3. Once again, re-
sults applying all evidence to the Bayesian network are
shown in the first column (BN).

As the amount of evidence supplied in PHM settings is
frequently fewer than 50,000, additional tests were per-
formed to determine the sensitivity of this method to the
sample size. The results of some of these experiments
are shown in Table 4. For comparison, the results from
the previous table for PWDM are repeated here. The
remaining columns represent the results of training the
decision tree with 75, 250, 1000, and 50,000 samples
respectively. Like before, the trees created by forward

2We used the SMILE inference engine developed by the
Decision Systems Laboratory at the University of Pittsburgh
(SMILE, 2010).

BN KL MEU

BN01 01 0.991 0.924 (22) 0.917 (22)
BN02 01 0.999 0.886 (17) 0.982 (17)
BN03 01 0.999 0.896 (21) 0.895 (18)
BN04 01 1.000 0.869 (26) 0.986 (29)
BN05 01 0.935 0.880 (20) 0.925 (19)
BN06 10 0.924 0.742 (20) 0.812 (20)
BN07 10 0.969 0.880 (25) 0.911 (25)
BN08 10 0.838 0.760 (32) 0.748 (31)
BN09 10 0.957 0.842 (21) 0.849 (20)
BN10 10 0.986 0.925 (27) 0.909 (26)
BN11 20 0.939 0.844 (27) 0.862 (27)
BN12 20 0.897 0.778 (30) 0.812 (31)
BN13 20 0.895 0.755 (30) 0.775 (32)
BN14 20 0.860 0.747 (28) 0.740 (26)
BN15 20 0.875 0.805 (28) 0.815 (28)
BN16 30 0.787 0.663 (37) 0.712 (39)
BN17 30 0.887 0.763 (35) 0.779 (36)
BN18 30 0.813 0.704 (30) 0.753 (28)
BN19 30 0.814 0.715 (38) 0.698 (37)
BN20 30 0.850 0.738 (35) 0.741 (35)
BN21 40 0.646 0.543 (48) 0.600 (43)
BN22 40 0.742 0.701 (44) 0.713 (52)
BN23 40 0.616 0.491 (31) 0.524 (29)
BN24 40 0.739 0.634 (36) 0.673 (35)
BN25 40 0.651 0.570 (33) 0.604 (31)

Table 3: Accuracies for networks using KL-divergence,
MEU, and probability-based pruning with the values in
paranthesis representing the number of leaf nodes, or
classification paths, in the resulting tree

sampling were pruned to a similar size as that obtained
by PWDM. However, with so few samples, some of the
trees were smaller without any prepruning required, ex-
plaining the small tree sizes shown in the table. As
can be seen in the results, for many of the networks,
PWDM outperforms forward sampling when few sam-
ples are available for training. The addition of train-
ing samples usually increases performance, but it can be
seen on many networks that the addition of training sam-
ples can cause a decrease in performance.

To better show the performance of the resulting trees
with respect to the pre-pruning process, Figures 3–7
show the average accuracy over each network series rel-
ative to the size of the trees when averaged by thresh-
old level. Since PWDM, MWDM, and DM trees are
not pruned, there is only a single data point for each of
these methods in the graphs to represent the results from
that method. These graphs incorporate χ2 pruning for
forward sampling and the probability pruning for KL-
divergence and MEU. As can be seen from these graphs,
across all networks, the simple D-matrix based approach
performs quite well in strict terms of accuracy by size of
the network. Additionally, PWDM and MWDM perform
similarly across all ranges of determinism, with the gap
narrowing as determinism decreases.

While the size of the tree helps determine its com-
plexity, the average number of tests selected is also an
important measure. Similar to the graphs relative to size,
the graphs in Figures 8–12 show the accuracy in com-
parison to the average number of tests recommended for
evaluation. Under this measure, forward sampling per-
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PWDM FS (75) FS (250) FS (1000) FS (50000)

BN01 01 0.984 (22) 0.974 (9) 0.975 (9) 0.988 (23) 0.983 (23)

BN02 01 0.984 (17) 0.963 (9) 0.981 (10) 0.983 (12) 0.988 (21)

BN03 01 0.988 (18) 0.987 (10) 0.985 (12) 0.992 (18) 0.991 (19)

BN04 01 0.988 (25) 0.984 (10) 0.989 (11) 0.967 (15) 0.995 (25)

BN05 01 0.924 (20) 0.920 (11) 0.919 (11) 0.922 (16) 0.927 (21)

BN06 10 0.854 (20) 0.812 (14) 0.855 (20) 0.765 (20) 0.800 (20)

BN07 10 0.930 (25) 0.881 (11) 0.937 (21) 0.951 (26) 0.945 (25)

BN08 10 0.785 (31) 0.775 (12) 0.813 (23) 0.822 (31) 0.824 (34)

BN09 10 0.868 (19) 0.885 (13) 0.905 (22) 0.922 (22) 0.918 (23)

BN10 10 0.937 (25) 0.902 (9) 0.910 (12) 0.968 (28) 0.955 (25)

BN11 20 0.832 (27) 0.840 (19) 0.893 (27) 0.889 (29) 0.892 (27)

BN12 20 0.769 (30) 0.729 (17) 0.768 (30) 0.841 (30) 0.802 (30)

BN13 20 0.769 (29) 0.723 (27) 0.802 (29) 0.815 (32) 0.836 (29)

BN14 20 0.779 (26) 0.760 (19) 0.814 (26) 0.785 (29) 0.782 (26)

BN15 20 0.818 (27) 0.848 (21) 0.849 (31) 0.825 (28) 0.857 (28)

BN16 30 0.665 (37) 0.664 (21) 0.708 (37) 0.671 (43) 0.676 (39)

BN17 30 0.731 (33) 0.764 (20) 0.793 (33) 0.819 (47) 0.812 (55)

BN18 30 0.692 (27) 0.707 (21) 0.752 (34) 0.767 (31) 0.775 (32)

BN19 30 0.653 (37) 0.706 (21) 0.767 (39) 0.771 (50) 0.786 (37)

BN20 30 0.660 (35) 0.738 (28) 0.783 (43) 0.742 (38) 0.800 (40)

BN21 40 0.459 (43) 0.526 (30) 0.579 (44) 0.541 (47) 0.623 (65)

BN22 40 0.550 (44) 0.663 (21) 0.702 (50) 0.702 (52) 0.651 (46)

BN23 40 0.525 (29) 0.518 (27) 0.480 (33) 0.405 (25) 0.548 (30)

BN24 40 0.607 (35) 0.623 (26) 0.692 (38) 0.693 (53) 0.683 (36)

BN25 40 0.576 (31) 0.551 (28) 0.601 (33) 0.601 (33) 0.603 (34)

Table 4: Accuracy for differing sample sizes for for-
ward sampling and ID3 over individual networks with
χ2 pruning where the numbers in parentheses indicate
the number of leaf nodes in the tree
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Figure 3: Average accuracy for networks with parame-
ters in the range [0.001,0.01] with respect to size
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Figure 4: Average accuracy for networks with parame-
ters in the range [0.001,0.10] with respect to size
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Figure 5: Average accuracy for networks with parame-
ters in the range [0.001,0.20] with respect to size
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Figure 6: Average accuracy for networks with parame-
ters in the range [0.001,0.30] with respect to size
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Figure 7: Average accuracy for networks with parame-
ters in the range [0.001,0.40] with respect to size
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Figure 8: Average accuracy for networks with parame-
ters in the range [0.001,0.01] with respect to the number
of recommended tests
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Figure 9: Average accuracy for networks with parame-
ters in the range [0.001,0.10] with respect to the number
of recommended tests
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Figure 10: Average accuracy for networks with parame-
ters in the range [0.001,0.20] with respect to the number
of recommended tests
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Figure 11: Average accuracy for networks with parame-
ters in the range [0.001,0.30] with respect to the number
of recommended tests
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Figure 12: Average accuracy for networks with parame-
ters in the range [0.001,0.40] with respect to the number
of recommended tests
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forms quite well across all levels of determinism. Also,
while both PWDM and MWDM are similar in overall
size, MWDM tends to recommend more tests for evalua-
tion. Once again, in strict terms of accuracy compared to
the number of recommended tests, the simple D-matrix
approach performs well.

7. DISCUSSION
In networks with high determinism, all of the methods
perform similarly when pruned to compact trees. In net-
works with low determinism, the performance of PWDM
and MWDM degrades in comparison to the other three
methods. Across all levels of determinism, forward sam-
pling performs well, provided it is given an adequate
training set size. With smaller training sets, the accuracy
of the trees can be erratic. We also note that the decision
trees generated by the DM algorithm are consistently
much smaller than those generated by all other methods.
Given the nature of the algorithm, this is not a surprise.
What is particularly interesting, however, is that, while
the accuracy was typically less than both PWDM and
MWDM, in many cases it was still comparable. Thus,
the DM approach could provide an excellent “first ap-
proximation” for a decision tree, to be refined with the
more complex PWDM- or MWDM-generated trees, or
other methods, if higher accuracy is necessary.

When accuracy is compared to the number of tests
recommended by a method, forward sampling performs
quite well across all of the networks. Additionally, in this
measure PWDM and MWDM are significantly different
with PWDM recommending fewer tests. However, both
number of tests and the size measurement for forward
sampling is highly dependent on the size of the data set.
As the size of the data set increases, the size of the trees
created by the method increases, until reaching a point
where the data set accurately represents the underlying
distribution. This introduces yet another parameter to be
optimized in order to maximize the performance of for-
ward sampling.

Finally, we note that the processes by which the de-
cision trees are generated vary considerably in compu-
tational complexity. While we do not provide a formal
complexity analysis here, we can discuss the intuition
behind the complexity. Forward sampling first requires
generating the data (whose complexity depends on the
size of the network) and then applying the ID3 algorithm.
ID3 requires multiple passes through the data, so com-
plexity is driven by the size of the data set. The complex-
ity of all other methods depend only on the size of the
network. Both the KL-divergence method and the MEU
method are very expensive in that they each require per-
forming multiple inferences with the associated network,
which is NP-hard to perform exactly. Suitable approxi-
mate inference algorithms may be used to improve the
computational complexity of this problem, but the accu-
racy of the method will suffer. PWDM likewise requires
inference to be performed during creation of the deci-
sion tree. However, since determination of an appropri-
ate pruning parameter is not required in order to limit the
size of the network, PWDM requires fewer inferences to
be performed over the network, resulting in higher per-
formance in regards to computation speed over MEU and
KL-divergence. Neither DM nor MWDM require data to
be generated or inference to be performed. Instead, the

trees are generated from a simple application of the ID3
algorithm to a compact representation of the network.
Due to this, the trees generated by these networks can
be created very quickly, even for larger networks. Like
PWDM, these two methods also do not require learn-
ing parameters for sample size or prepruning in order to
generate compact trees, resulting in these two methods
having the smallest computational burden.

In addition to the computational complexity, forward
sampling, KL-divergence, and MEU all require signifi-
cant pruning of the resulting trees. However, early re-
sults showed that performing a χ2 test at the 5% signif-
icance level failed to significantly prune the trees. Since
KL-divergence and MEU do not have set data sizes, par-
tition sizes were estimated based upon the probability of
reaching a node. Thus, pruning to a size that is com-
petitive with PWDM and MWDM requires an additional
parameter to be learned, adding complexity to the sys-
tem. Pruning to a level where the average number of
recommended tests is as low as PWDM and MWDM is
similarly difficult, though can be guided by calculating
the probability of reaching nodes in the network.

The results indicate that, while PWDM and MWDM
are not necessarily the most accurate methods, PWDM
and MWDM yield compact trees with reasonably accu-
rate results, and they do so efficiently. The difference in
performance between the two is negligible in most cases,
suggesting that MWDM is most likely the most cost-
effective approach in complexity. PWDM is however
more cost-effective in the number of tests performed.

8. CONCLUSION
Comparing accuracy in relation to the size of the tree as
well as number of tests evaluated, forward sampling per-
forms well across all levels of determinism tested when
given adequate samples. However, in terms of com-
plexity, PWDM and MWDM yield compact trees while
maintaining accuracy. The unweighted D-matrix based
method provides the best results when comparing com-
plexity, size, and number of tests evaluated when com-
pared to the level of accuracy from trees with similar
properties created by other methods. This indicates that
the D-matrix based methods are useful in determining
a low-cost baseline for test selection which can be ex-
panded upon by other methods if a higher level of accu-
racy is required. Further work in this area will compare
these methods against networks specifically designed to
be difficult to solve for certain inference methods, as
noted by Mengshoel, Wilkins, Roth, Ide, Cozman, and
Ramos (Mengshoel, Wilkins, & Roth, 2006; Ide, Coz-
man, & Ramos, 2004).
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