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ABSTRACT

Probabilistic latent component analysis (PLCA) is
applied to the problem of gearbox vibration source
separation. A model for the probability distribution of
gearbox vibration employs a latent variable intended to
correspond to a particular vibration source, with the
measured vibration at a particular sensor for each
source the product of a marginal distribution of
vibration by frequency, a marginal distribution of
vibration by shaft rotation, and a sensor weight
distribution. An expectation-maximization algorithm is
used to approximate a maximum-likelihood
parameterization for the model. In contrast to other
unsupervised source-separation methods, PLCA allows
for separation of vibration sources when there are fewer
vibration sensors than vibration sources. Once the
vibration components of a healthy gearbox have been
identified, the vibration characteristics of damaged
gearbox elements can be determined. The efficacy of
the technique is demonstrated with an application on a
gearbox vibration data set.*

1. INTRODUCTION

In a wide variety of mechanical systems, gearboxes
transfer power from a rotating power source to other
devices and provide speed and torque conversions.
Complex gearbox designs are used in order to
maximize efficiency, minimize volume, and
accommodate automatic transmission designs. An
example of a particularly complex gearbox design is
the main gearbox in a turboshaft-engine helicopter.
This gearbox may have several dozen gears, as many
bearings, and five or more shafts rotating at different
speeds.

* This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

A single-point failure in a gearbox often disables the
mechanical system, creating a need for gearbox health
monitoring using vibration measurements. Vibrations
cannot usually be measured directly at the source, so
the exterior of a gearbox may be equipped with one or
more accelerometers to measure the composite
vibration spectrum of the gearbox. Generally, the
number of accelerometers is less than the number of
vibration sources on non-experimental machinery.

The capability to separate a measured vibration signal
into components corresponding to sources allows for
the characterization of the vibration of a healthy
gearbox and for the development of condition
indicators that are sensitive to component degradation
but robust to the normal vibration characteristics of the
healthy gearbox.

The development of a new technique for vibration
source separation is motivated by the fact that existing
techniques for gearbox vibration source separation have
important limitations. Consider five characteristics
that are desirable features for a gearbox vibration
source separation technique: 1) a source separation
method should be applicable to cases where there are
fewer accelerometers than vibration sources, 2) it
should identify the vibration resonance spectrum
characteristic of various structural elements in the
gearbox, 3) it should allow for the separation of the
vibration features of damaged gearbox components
from features characteristic of undamaged gearbox
components, 4) it should characterize the physical
proximity of the vibration source to each of the gearbox
accelerometers, and 5) it should identify the periodicity
of a vibration features. By identifying the resonance
spectrum, the physical proximity, and periodicity of a
vibration source, the determination of the physical
source is facilitated.

In this work, we apply a technique called Probabilistic
Latent Component Analysis (PLCA) to the problem of
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gearbox vibration source separation. The proposed
technique satisfies the five criteria established above.
The technique applies to instances where there are
fewer sensors than vibration sources. The PLCA
technique explicitly estimates the frequency spectra and
rotational location characteristics associated with
estimated vibration sources. This is not true of the time
synchronous average or principal component analysis
techniques for vibration source separation.

The paper is organized as follows. Section 2 is a
survey of prior work on gearbox vibration source
separation. Section 3 describes a model and an
algorithm for gearbox vibration source separation using
PLCA. Section 4 describes the application of the
method to a gearbox data set. Section 5 describes
limitations and extensions of PLCA for gearbox
vibration source separation.

2. PRIOR WORK ON GEARBOX VIBRATION
SOURCE SEPARATION

Vibration-based methods are the most common
diagnostic techniques used in gearbox health
monitoring for distinguishing the nature of damage in
helicopter transmissions. The potential benefits of
effective gearbox monitoring have motivated the
development of source separation techniques and
application to the gearbox domain.

A key feature of gearbox vibration source separation
exploited by most techniques is the fact that gearbox
vibration typically has one or more cyclostationary
components. A basic source separation technique
long employed for gearbox health monitoring is the
time synchronous average. The time synchronous
averaging extracts periodic waveforms from additive
noise by averaging vibration signals over several
revolutions of the shaft (Stewart, 1977). This can be
done in either the time or frequency domains. The time
synchronous average technique amplifies vibration
features that are synchronous with a particular shaft,
and attenuates features that are not synchronous with
the shaft. The technique has proved to be useful for
monitoring of gear and shaft health. However, a time
synchronous average cannot isolate a vibration
component among the various components on a
particular shaft. Also, the time synchronous average
obscures vibration characteristic of bearing degradation
that are not cyclostationary.

Specialized techniques for the separation of bearing
vibration from other gearbox vibration sources are
available. The methods include the high-frequency
resonance technique and adaptive filtering. The

techniques are not applicable to the more general
problem of unsupervised vibration source separation.

Independent component analysis has been applied to
separate signals from two independent vibration
sources recorded at two separate locations on a gearbox
(Zhong-sheng et al., 2004). The utility of this
technique is limited to cases where the number of
sensors is equal to or greater than the number of
vibration sources, a condition that does not generally
hold.

Principal component analysis has also been used to
identify the number of gearbox vibration sources (Gelle
et al., 2003, Serviere et al., 2004). The utility of this
dimensionality-reduction technique is limited by the
fact that the reduced-dimension vibration features may
not have physical significance and thus may not be
used to create a mapping between features and physical
vibration sources.

3. LATENT COMPONENT MODEL

Latent component models enable one to attribute the
observations as being due to hidden or latent factors.
The main characteristic of these models is conditional
independence – multivariate data are modeled as
belonging to latent classes such that the random
variables within a latent class are independent of one
another. Several models have been proposed that fit this
general framework and in this paper, we use
Probabilistic Latent Component Analysis (PLCA) as
proposed by (Smaragdis et al., 2007).

The model has been used in analyzing image and audio
data among other applications (eg: Smaragdis et al.,
2007b). Specifically, it has been successfully used in
separating audio signals (Smaragdis et al., 2006) which
is analogous to the problem addressed in this paper.

3.1 PLCA for gearbox data

The model employed here is probabilistic; the objective
is to develop a structured representation for an
empirically developed probability mass function
(ݏǡߠǡ߱)ݒ characterizing the probability distribution for
vibration amplitude “quanta” as a function of vibration
frequency�߱ , gearbox rotational coordinateߠ�, and
sensor identity .ݏ

In a gearbox with a single shaft, the rotational
coordinate ߠ א ሾͲ�ʹߨሿ corresponds to the rotational
angle of the single shaft. In a gearbox with multiple
shafts, the coordinate ߠ א ሾͲ�β] can correspond to the
rotational position of the slowest shaft, and the
maximum value β should be chosen such as the
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smallest value ߠ  ʹ ߨ� such that every shaft in the
gearbox is at the same position at ߠ ൌ Ͳ�and ߠ ൌ β.

The first key aspect of the latent component model is
the introduction of the dependence of the vibration
distribution on a latent componentݖ� taking a finite
number of values, small relative to the number of bins
for ߱�and ߠ

(ݏǡߠǡ߱)ݒ ൌ ܲ(߱ǡߠǡݏǡݖ) = ∑ ሺ߱ܲ(ݖ)ܲ ǡߠǡݏȁݖሻ௭ . (1)

It is further assumed that, given a certain latent
vibration ,ݖ the distribution of vibration as a function of
frequency is independent of the shaft rotational
coordinate ߠ� and the sensorݏ�:

(ݏǡߠǡ߱)ݒ = ∑ ௭(ݖ|ݏǡߠǡ߱)ܲ(ݖ)ܲ (2)
= ∑ ߱)ܲ(ݖ)ܲ ௭(ݖ|ݏ)ܲ(ݖ|ߠ)ܲ(ݖ| ,

with ܲ(߱ (ݖ| the marginal distribution for vibration
over the frequency domain and (ݖ|ߠ)ܲ the marginal
distribution for vibration over the rotational coordinate.
(ݖ|ݏ)ܲ is a marginal distribution for vibration
component by sensor, in effect a “mixing weight” to
describe how each vibration component is represented
in each sensor measurement.

The intent of the latent component model is that each
value of ݖ corresponds to a different vibration source,
and that the frequency spectrum (ݖ|߱)ܲ for that source
is independent of the rotational coordinate and the
sensor at which the vibration is measured.

To illustrate the intent of this model, consider how it
would apply to the characterization of the vibration of a
music box. A typical music box has a set of pins
arranged on a rotating cylinder that pluck the tuned
teeth of a steel comb. The tune repeats with a period
corresponding to one rotation of the cylinder. When
applying the PLCA methodology to a music box, the
number of latent components should be set equal to the
number of teeth on the steel comb; the frequency
marginal for a given component would correspond to
the tone of a particular plucked tooth; and the rotational
marginal for the component would correspond to the
location on the cylinder of the pins aligned to pluck the
particular tooth.

3.2 Data Pre-processing

To develop parameterizations for the latent variable
models, the starting point is to develop the empirical
distribution for .(ݏǡߠǡ߱)ݒ One method for developing
the distribution (ݏǡߠǡ߱)ݒ is to apply the Hilbert-Huang
transform to time-domain accelerometer data. The first
step is to adaptively decompose the signal into a finite

set of empirical mode functions, and then apply the
Hilbert transform to compute the instantaneous
amplitude and frequency for each intrinsic mode
function. The amplitude, frequency, and time data is
binned to create a probability mass function
(ݏǡݐǡ߱)ݒ in the time domain. The Hilbert-Huang
transform may permit better localization of time and
frequency features than alternative techniques such as
the short-time Fourier transform (Huang, et. al. 1998).

Once (ݏǡݐǡ߱)ݒ has been parameterized, it is converted
to a distribution by(ݏǡߠǡ߱)ݒ using a tachometer signal
to compute a one-to many mapping from time to the
rotational coordinateߠ�ሺݐሻא ሾͲߚ�ሿ. Note that this
procedure for calculating the empirical distribution
(ݏǡߠǡ߱)ݒ is not the same as calculating the time
synchronous average. Whereas the time synchronous
average is the mean vibration signal over multiple
rotations, (ݏǡߠǡ߱)ݒ is a probability mass function fully
characterizing the distribution of vibration amplitude as
observed over multiple rotations.

3.3 Algorithm

Given the empirical distributionݒ�(߱ǡߠǡݏ), an
expectation-maximization algorithm can be used to
estimate the maximum-likelihood parameterization for
the probabilistic latent component model (ݏǡߠǡ߱)ݒ =
∑ ௭(ݖ|ݏ)ܲ(ݖ|ߠ)ܲ(ݖ|߱)ܲ(ݖ)ܲ .

Expectation-maximization is an iterative procedure
widely used in a variety of contexts (Dempster et al.,
1977, Neal et al., 1998). For example, an expectation-
maximization algorithm for parameterization of Hidden
Markov models is known as the Baum-Welch
algorithm.

Each iteration of the expectation-maximization
algorithm has two phases. The expectation phase
calculates the probability of a latent component
conditioned on frequency, rotation, and sensor, and the
current parameterization for the marginal distributions:

(ݏǡߠǡ߱|ݖ)ܲ =
(ݖ|ݏ)ܲ(ݖ|ߠ)ܲ(ݖ|߱)ܲ(ݖ)ܲ

∑ ߱)ܲ(ݖ)ܲ ሻ௭ݖȁݏሺܲ(ݖ|ߠ)ܲ(ݖ|

. (3)

For the first iteration, the marginal distributions can be
initialized with randomly generated probability mass
functions.

The maximization phase updates the marginal
distributions and the total probability of each latent
component based on the result of the expectation phase:

ܲ(߱ (ݖ| =
∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ (ݏǡߠǡ߱|ݖ)ܲ

∑ ∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ ఠ(ݏǡߠǡ߱|ݖ)ܲ

, (4)



Annual Conference of the Prognostics and Health Management Society, 2010

4

(ݖ|ߠ)ܲ =
∑ ∑ ௦ఠ(ݏǡߠǡ߱)ݒ (ݏǡߠǡ߱|ݖ)ܲ

∑ ∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ ఠ(ݏǡߠǡ߱|ݖ)ܲ

,

(ݖ|ݏ)ܲ =
∑ ∑ ఏఠ(ݏǡߠǡ߱)ݒ (ݏǡߠǡ߱|ݖ)ܲ

∑ ∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ ఠ(ݏǡߠǡ߱|ݖ)ܲ

,

(ݖ)ܲ =
∑ ఠǡఏǡ௦(ݏǡߠǡ߱)ݒ ȁ߱ݖ)ܲ ǡߠǡݏ)

∑ ௭ǡఠǡఏǡ௦(ݏǡߠǡ߱)ݒ ȁ߱ݖ)ܲ ǡߠǡݏ)
.

Expectation-maximization produces monotone
convergence to a locally optimal solution, and the
convergence towards a fixed point can be monitored by
calculating the log-likelihood associated with the
parameterization for each iteration.

3.4 Characterizing healthy and damaged gearboxes

A gearbox with one or more damaged components
operated at the same condition as a healthy gearbox,
identical with the exception of the damaged
components, should have the vibration components of
the healthy gearbox plus some additional vibration
components corresponding to the damaged. Principal
latent component analysis can be used to identify the
vibration components associated with damaged gearbox
elements. To do so, the set of latent variables�ܼ is
defined as the union of a set of latent variables ܼ

corresponding to vibration components of healthy
gearbox elements with another set of latent variables
with ௗܼ corresponding to vibration components of
damaged gearbox elements, ܼ ൌ ܼ� ௗܼ.

The frequency marginal distribution (ݖ|߱)ܲ is
initialized to that learned for the healthy case for all
אݖ ܼ. The expectation phase of the algorithm is
unchanged. The maximization phase is modified so that
the frequency marginals are iteratively updated only for
אݖ ܼ, while the marginals for rotation and sensors are
updated for all latent components:

ܲ(߱ (ݖ| =
∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ (ݏǡߠǡ߱|ݖ)ܲ

∑ ∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ ఠ(ݏǡߠǡ߱|ݖ)ܲ

ǡא�ݖ� ௗܼ;

(5)

(ݖ|ߠ)ܲ =
∑ ∑ ௦ఠ(ݏǡߠǡ߱)ݒ (ݏǡߠǡ߱|ݖ)ܲ

∑ ∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ ఠ(ݏǡߠǡ߱|ݖ)ܲ

ǡאݖ� ܼǢ

(ݖ|ݏ)ܲ =
∑ ∑ ఏఠ(ݏǡߠǡ߱)ݒ (ݏǡߠǡ߱|ݖ)ܲ

∑ ∑ ∑ ௦ఏ(ݏǡߠǡ߱)ݒ ఠ(ݏǡߠǡ߱|ݖ)ܲ

ǡאݖ� ܼǢ

(ݖ)ܲ =
∑ ఠǡఏǡ௦(ݏǡߠǡ߱)ݒ ȁ߱ݖ)ܲ ǡߠǡݏ)

∑ ௭ǡఠǡఏǡ௦(ݏǡߠǡ߱)ݒ ȁ߱ݖ)ܲ ǡߠǡݏ)
ǡאݖ� ܼǤ

3.5 Implementation Notes

Let �denoteݎ the number of latent variables selected.
Let the number of bins along ߱ǡݏ�����ߠ be ݉ ǡ݊ �����݈
respectively. Let ܲ(߱ ǡܲ(ݖ| ǡܲ(ݖ|ߠ) (ݖ|ݏ) and (ݖ)ܲ be
represented by multi-dimensional tensors ࢃ  ൈଵൈଵൈ,
ଵൈൈଵൈࢀ , ଵൈଵൈൈࡿ and ଵൈଵൈଵൈࢆ respectively.

Let the ݉ �ൈ ݊�ൈ ݈ tensor ࢂ denote the preprocessed
data where the entries correspond to the empirical
distribution .(ݏǡߠǡ߱)ݒ Let the ݉ �ൈ ݊�ൈ ݈ tensor ࢄ
denote the approximation of this distribution given by
∑ ௭(ݖ|ݏ)ܲ(ݖ|ߠ)ܲ(ݖ|߱)ܲ(ݖ)ܲ . Let the operators “.*”
and “./” represent elementwise multiplication and
elementwise division respectively.

The algorithm can be summarized as follows using the
matrix multiprod notation (de Leva, P., 2005) and
MATLAB conventions. Below, mprod refers to the
multiprod function of de Leva that allows matrix
multiplications between arrays of matrices.

Initialize ࢃ ǡࢀ , ࡿ and .ࢆ
Iterate until convergence

ࢆ ൌ�repmat(ࢆ,[m 1 1 1]);
ࢆ ൌ�repmat(1],ࢆ n 1 1]);
1],ࢆ)ൌ�repmatࢆ 1 l 1]);
ࢄ ൌ�mprod( mprod(ࢃ , ,(ࢀ ,ࢆ�*.ࡿ 4, 4);

nW=(ࢃ Ǥࢆכ ).*mprod(ࡿ,mprod(2,2,ࢀ�,ࢄ�/.ࢂ),3,3);
nT=(ࢀǤࢆכ).*mprod(ࢃ ,mprod(3,3,ࡿ�,ࢄ�/.ࢂ),1,1);
nS=(ࡿǤࢆכ).*mprod(ࢀ,mprod(ࢃ�,ࢄ�/.ࢂ ,1,1),2,2);
nZ=sum(nW);

W=nW; T=nT; S=nS; Z=nZ;
Normalize ࢃ ǡࢀ , ࡿ and ࢆ appropriately.

Effective application of the PLCA model requires the
selection of a proper number of latent variables. A
good starting point is to set the number of latent
variables equal to the number of locations where
moving surfaces come in contact. Once algorithm
results have been produced, the results can be examined
to validate the initial choice.

Evidence that there are too few latent components
include the absence of any rotational marginals that are
strongly periodic, and frequency marginals that include
multiple peaks not in a harmonic sequence. Evidence
of the use of too many latent variables is two or more
latent components with strongly similar rotational
marginal distributions.
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4. EXPERIMENTS AND RESULTS

4.1 Data

The use of probabilistic latent component analysis for
gearbox vibration source separation is illustrated on
gearbox data from the 2009 PHM challenge
(http://www.phmsociety.org/competition/PHM/09).
The gearbox has three shafts, an input shaft, an idler
shaft, and an output shaft, each with an input side and
output side bearing, and a total of six gears, one on the
input shaft, two on the idler shaft, and one on the output
shaft. The frequency ratio of the input, idler, and
output shafts is 15:5:3. The helical gear configuration,
illustrated in Figure 1, was tested under six different
health configurations, as indicated in Table 1.

Table 1: Component health by case
24-tooth
gear

Input
shaft
output
side
bearing

Idler
shaft
output
side
bearing

Input
shaft

Case 1 Good Good Good Good

Case 2 Chipped Good Good Good

Case 3 Broken Defect Inner Bent

Case 4 Good Defect Ball Imbalance

Case 5 Broken Good Inner Good

Case 6 Good Good Good Bent

4.2 Experimental set-up

The PLCA algorithm was applied to the helical gear
high torque cases run at an input shaft frequency of 30
Hz. To apply the PLCA algorithm, empirical mode
decomposition was performed on each accelerometer
signal. The Hilbert transform was applied to each
intrinsic mode function to generate a probability mass
function .(ݏǡݐǡ߱)ݒ Tachometer data was used to
generate a many-to-one mapping from ݐ to ߠ to
generate a mapping .(ݏǡߠǡ߱)ݒ The rotational
coordinate ߠ was defined as the rotational angle at the
output shaft, with the domain ሾͲǡߨሿ covering three
rotations. Three rotations of the output shaft
corresponds to an integer number of rotations for the
idler shaft (5 rotations) and for the input shaft (15
rotations), and thus vibration features for all three shaft
should be cyclostationary over the interval [Ͳ�ߨ].

For the healthy gearbox, case 1, PLCA was used to
identify 7 vibration components. Once the frequency
marginal distributions for the healthy gearbox had been
identified, the PLCA model was applied to each of the

five damaged gearbox cases in order to identify the
vibration components associated with the damage. For
each of the five damaged cases, the seven frequency
marginals for the healthy gearbox were retained and
three additional vibration components were identified.
The frequency marginals for these seven vibration
components were fixed and used as inputs to identify
new rotational marginals and three additional vibration
components for cases 2-6.

4.3 Results and Interpretation

As described and illustrated below, the source
separation results produced by PLCA are plausible and
provide insight on the vibration characteristics
associated with the gearbox and its degradation modes.
The results of the PLCA algorithm for each of the six
gearbox conditions are displayed in Figures 2-7.

A number of characteristics of the separated vibration
components may be used in interpreting the component
and making an assignment of a vibration component to
a particular physical source in the gearbox.

The first characteristic that is useful for result
interpretation is the sensor mixing weights. If the
mixing weight of a component is much stronger for
sensor 1 than for sensor 2, then the physical source of
the vibration is likely to be on the input side of the
gearbox. Conversely, if the mixing weight of a
vibration component is stronger for sensor 2 than for
sensor 1, then the physical source of the vibration is
likely to be on the output side of the gearbox.

The second characteristic that is useful for result
interpretation is the appearance of known forcing or
resonant frequencies in a frequency marginal. For the
gearbox analyzed in this study, known forcing
frequencies include the frequency of the input shaft
rotation (30 Hz), the gear mesh frequency of the
input/idler gear pair (480 Hz), and the gear mesh
frequency of the idler/output gear pair (240 Hz).
Resonant frequencies in this case were not known a
priori.

The third characteristic that is useful for result
interpretation is the nature of the rotational marginal.
The appearance of the marginal may be impulsive,
sinusoidal, or nearly constant. Impulsive rotational
marginals are likely to be due to the impacts associated
with bearing or gear defects. Nearly constant rotational
marginals are likely to be associated with constant
forcing, such as the rotation of a shaft.

The fourth characteristic that is useful for result
interpretation is the periodicity of the rotational
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marginal. If the periodicity of a rotational marginal
coincides with the periodicity of a particular shaft, then
the vibration source is likely to be associated with that
shaft.

Figure 1: Configuration of the gearbox used to generate vibration data

Table 2: Characteristics of vibration components and source assignments for the no
# Peak

Frequency,
Hz

Strongest
Sensor
Mixing
Weight

Content at
forcing

frequencies

1 2
30
Hz

480
Hz

1 212 X

2 2089 X

3 985 X X

4 347 X

5 271 X

6 171 X X

7 8710 X

*The electronic version of this document has embedded
separated vibration components.

ce of the Prognostics and Health Management Society, 2010

of a rotational marginal
coincides with the periodicity of a particular shaft, then
the vibration source is likely to be associated with that

The four characteristics discussed above were used to
interpret the source separation results and make so
assignments, as shown in Table 1 and Table 2.

Configuration of the gearbox used to generate vibration data

Characteristics of vibration components and source assignments for the nominal gearbox condition
Content at

frequencies

High
frequency
resonance

Frequency marginal characteristic Periodicity of
rotational
marginal,

periods per
rotational

period

240
Hz

Impulsive Sinusoidal Sustained 15

X

X X

X

X

X X

X X X

*The electronic version of this document has embedded sound files which are audio reconstructions of the source

10

6

The four characteristics discussed above were used to
interpret the source separation results and make source

in Table 1 and Table 2.

minal gearbox condition*
Periodicity of

rotational
marginal,

periods per
rotational

period

Source
Assignment

5 3

Idler/output
gear mesh

X Idler shaft
input side
bearing

X Input/idler
gear mesh

Idler/output
gear mesh

Idler/output
gear mesh
Input shaft

induced
resonance
Input shaft
output side

bearing

sound files which are audio reconstructions of the source-
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Table 3: Characteristics of vibration components and source assignments for seeded fault conditions*
# Peak

Frequency,
Hz

Strongest
Sensor
Mixing
Weight

Content at
forcing

frequencies

High
frequency
resonance

Frequency marginal characteristic Periodicity of
rotational
marginal,

periods per
rotational

period

Source
Assignment

1 2
30
Hz

480
Hz

240
Hz

Impulsive Sinusoidal Sustained 15 5 3

Case 2: Chipped 24-tooth gear

8 845 X X X Input/idler
gear mesh

9 255 X X Chipped 24-
tooth gear

10 369 X Chipped 24-
tooth gear

Case 3: Broken 24-tooth gear, input shaft output side bearing defect, idler shaft output side bearing inner race damage, bent input shaft

8 985 X X X Input shaft
output
bearing

9 233 X X Broken 24-
tooth gear

10 341 X X X Idler shaft
output
bearing

Case 4: defect in input shaft output side bearing, ball fault in idler shaft output side bearing, imbalanced input shaft

8 331 X X Imbalanced
input shaft

9 437 X X Input / idler
gear mesh

10 240 X X Idler shaft
output side

bearing
Case 5: broken 24-tooth gear, inner race defect on idler shaft output bearing

8 31 X X Input shaft

9 244 X X Broken 24-
tooth gear

10 8844 X X Idler shaft
output
bearing

Case 6: bent input shaft

8 8844 X X X Input shaft
output side

bearing
9 222 X X Idler/output

gear mesh
10 3067 X Unknown

*The electronic version of this document has embedded sound files which are audio reconstructions of the source-
separated vibration components.
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Figure 2: Source separation results for the baseline gearbox condition
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Figure 3: Source separation results for case 2, which has a chipped gear tooth on the 24-tooth gear on the idler shaft
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Figure 4: Source separation results for case 3, which has a broken gear tooth on the 24-tooth gear on the idler shaft,
a bent input shaft, and bearing faults on the output side of the input and idler shafts
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Figure 5: Source separation results for case 4, which has an imbalanced input shaft and bearing faults on the output
side of the input and idler shafts
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Figure 6: Source separation results for case 5, which has a broken 24-tooth gear and an inner-race defect on the idler
shaft output side bearing
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Figure 7: Source separation results for the cyclostationary spectra for case 6, which includes a bent input shaft
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5. LIMITATIONS AND EXTENSIONS

The PLCA method has been illustrated as a technique
for source separation of the cyclostationary component
of gearbox vibration, but could be extended for analysis
of the non-stationary vibration components. This may
be useful for additional characterization of bearing
defects which are not cyclostationary. There are least
two possible methods for integrating cyclostationary
spectrum analysis with time-spectrum analysis. The
first method is to identify vibration components
associated with cyclostationary spectrum, fix the
frequency marginals of these components and use these
as inputs for analysis of the time spectrum, and identify
additional vibration components unique to the time
spectrum. A second potential method is to 1) use the
frequency marginals of cyclostationary vibration
components to attempt to reconstruct the time
spectrum, 2) subtract the reconstructed time spectrum
from the original time spectrum, and 3) apply PLCA to
the residual time spectrum to identify new vibration
components.

The model employed here for the mixing of vibration
components in a sensor signal is simple, and more
complicated models could be employed for better
fidelity at the cost of increased complexity. For
example, one could formulate a convolutive mixing
model that allows for delays in the propagation of
vibration from source to sensor.

Finally, although the experimental results presented
here make plausible the efficacy of PLCA as a
technique for vibration source separation, further
validation of the technique could be obtained
experimentally using laser Doppler vibrometery to
measure gearbox component vibrations at the source.

6. CONCLUSIONS

Probabilistic latent component analysis has been
developed as a technique for gearbox vibration source
separation. Unlike independent component analysis,
the method is applicable when there are fewer sensors
than vibration sources. The method identifies the
frequency spectrum and rotational marginal distribution
associated with vibration components. Experimental
results make plausible the effectiveness of the source
separation performance, and it was shown that the
technique could be used to identify the characteristics
of a healthy gearbox, and then used to isolate vibration
components associated with gearbox damage.

NOMENCLATURE

ܲሺڄሻ Probability

ݏ Sensor
ሻڄሺݒ Probability distribution for vibration

amplitude
ݖ Latent variable
ߚ Period for cyclostationary vibration component
ߠ Rotational coordinate
߱ Frequency
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