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ABSTRACT
In this paper, effects preceding a latch-up fault in insu-
lated gate bipolar transistors (IGBTs) are studied as they
manifest within an electric motor drive system. Primary
failure modes associated with IGBT latch-up faults are
reviewed. Precursors to latch-up, primarily an increase
in turn-off time and junction temperature, are examined
for the IGBT. In addition, the relationship between junc-
tion temperature and turn-off time is explained by ex-
amining the semiconductor properties of an IGBT. To
evaluate the effects preceding latch-up, seeded fault test-
ing is conducted using aged transistors induced with a
fault located in the die-attach solder layer. Since junc-
tion temperature cannot be directly measured, the tran-
sistor turn-off time is used as a measured system param-
eter to correlate between healthy and fault conditions.
The experimental results provide statistically significant
evidence (within 99% confidence) that an IGBT latch-
up event, caused by elevated junction temperatures, can
be detected by monitoring the transistor turn-off time in-
situ.

1. INTRODUCTION
In recent years, significant efforts have been put into de-
veloping fault-tolerant motor drive systems. Standard ar-
chitectures follow two main principles, fault detection
and fault compensation through active reconfiguration.
In the first fault-tolerant motor drive reported by Janhs,
the fault-tolerance was introduced by using multiple in-
dependent phase-drive units to feed a five phase ma-
chine (Janhs, 1980). A rule-based expert system based
on the operator’s response has been proposed by De-
bebe et al. for determining the fault devices in PWM-VSI
drives (Debebe, Rajagopalan, & Sankaran, 1991). Other
use of knowledge based systems for fault detection in
motor drives has been presented in (Peuget, Courtine,
& Rognon, 1998; Mendes & Marques, 1999). Inverter
reconfiguration achieved by isolating and disconnecting

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

the faulty switching component has been proposed in (Fu
& Lipo, 1993; Bolognani, Zordan, & Zigliotto, 2000).

In all of these studies, reconfiguration is considered
only after a hard fault has occurred, such as an open cir-
cuit or short circuit condition (Kastha & Bose, 1994).
There is a lack of integrating detection, identification,
isolation and fault reconfiguration into the design of the
fault-tolerant motor drive system (Araujo Ribeiro, Ja-
cobina, Silva, & Lima, 2004). Part of this is due to an
absence of early indicators available during the design
phase. If a fault mode can be predicted, or at a min-
imum anticipated, before it manifests into a hard fault
(i.e. open / short circuit), then system reconfiguration
can be achieved during normal operation. Reconfigura-
tion under such conditions allow for safer mode transi-
tioning.

The remainder of this paper is organized as follows.
Section 2 investigates the device structure of IGBT de-
vices and their associated failure mechanisms leading
to the dominant mode of failure, latch-up. Section 3
presents an aging procedure used to generate and eval-
uate damaged IGBT devices corresponding to the latch-
up fault mode. Section 4 describes a seeded fault exper-
iment used to evaluate the effects of degraded IGBTs in
a three-phase power inverter. Section 5 analyzes the data
collected from the seeded fault experiment conducted on
a three-phase power inverter using healthy and faulty
transistors. Finally, Section 6 discusses the findings of
this study and future work.

2. IGBT FAILURE ANALYSIS
The importance of IGBT module reliability has signif-
icantly increased due to the widespread use of these
devices with a growing number of target applications,
which includes power conversion and motor drives.
IGBT modules are key components for current switching
and, in particular, they can be used to control AC mo-
tors from DC supplies for urban and high-speed traction
applications (Shammas, Rodriguez, Plumpton, & New-
combe, 2002). Large IGBT modules have very high cur-
rent handling and blocking voltage capabilities in the or-
der of hundreds of amperes and thousands of volts, re-
spectively. In a typical IGBT-based motor drive, 4% of
the controlled power is dissipated as heat within the de-
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vice (He, Morris, Shaw, Mather, & 297., 1998). Thus
thermal and thermal–mechanical management is criti-
cal for power electronics modules. The failure mecha-
nisms that limit the number of power cycles are caused
by the coefficient of thermal expansion (CTE) mismatch
between the materials used in the IGBT modules (Ye,
Lin, & Basaran, 2002).

2.1 Device Structure
An IGBT module is a four-layer structure, shown in Fig-
ure 1 (a). The common symbol used to represent an
IGBT is illustrated in Figure 1 (b). The structure is sim-
ilar to a metal-oxide semiconductor field effect transis-
tor (MOSFET) except a heavily doped p-type layer is
added. A pnp-type bipolar junction transistor (BJT) is
formed with its emitter at the substrate and its collec-
tor, the p-type body region, connected to the top-layer
metal. A parasitic npn-type BJT is also formed with its
collector in the n-type epitaxial (epi) region and its emit-
ter terminated at the top-layer metal (Russel, Goodman,
Goodman, & Neilson, 1983). An equivalent circuit for
the IGBT is also provided in Figure 1 (c). The combina-
tion of the two transistors produces a structure similar to
that of a thyristor (“IGBT Characteristics”, n.d.; Lidow
& Herman, 1981).

During normal IGBT operation, when a positive po-
tential is applied across the gate-emitter and collector-
emitter terminals, represented as Vge and Vce in Fig-
ure 1 (c), the MOSFET biases the BJTs to allow cur-
rent to flow from the collector-to-emitter, denoted as Ic.
However, when the IGBT is turned off abruptly by set-
ting Vge = 0, the turn-off current, Ic(off), decays slowly
with a long tail. This is because excess holes in the epi-
layer can only be removed by recombination (Huang,
Gong, & Chen, 2002). Although the IGBT is superior
to traditional power devices, the latch-up phenomenon
arises which may occur due to the inherent thyristor
structure (Huang et al., 2002).

2.2 Latching Failure Mode
As described earlier, the four-layer structure of the IGBT
resembles that of a thyristor. The thyristor is prevented
from operating by limiting the gain of the two transistors
and reducing the value of the parasitic resistance, r′b. Un-
der fault conditions, excess current can flow through r′b
as the MOSFET channel is reduced when attempting to
turn-off the IGBT. This excess current can cause a volt-
age across r′b that drives part of the IGBT structure into
a latch condition (Chokhawala, Catt, & Kiraly, 1995).
The collector current at which latch-up occurs is called
the latching current. The magnitude of the collector cur-
rent required to induce latch-up reduces with increasing
device temperature. Hence, the susceptibility to latch-
up is greater at higher device temperatures (Aoki, 1993).
Once a latch-up event occurs, control of the IGBT from
the gate is not possible.

2.3 Failure Modes
Mechanical construction of a semiconductor device de-
termines its inherent reliability, not the electrical spec-
ification of the silicon, provided it is not operated out-
side its design limits. The mechanical construction in-
cludes the die, its mounting to the lead frame or module
base, the connections from the die electrode pads to the
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Figure 1: Overview of an IGBT illustrating its (a) silicon
cross section, (b) symbol and (c) equivalent circuit.

output leads or terminals and any molding compounds
or infill materials used to protect the silicon from en-
vironmental contamination (Industrial Level Qualifica-
tion Requirements for Discrete Product, 2010). During
temperature cycling, the various mechanical parts mak-
ing up the device expand and contract at different rates.
Although every effort is used to select materials having
closely matched CTEs, small differences are inevitable.
Repeated temperature cycling eventually causes a device
to fail through mechanical fatigue. The failure modes of
IGBT modules are dependent on the mounting technol-
ogy used. Common IGBT failure modes frequently re-
ported in the literature are bond lifting (Malberti, Ciappa,
& Cattomio, 1995; Sankaran, Chen, Avant, & Xu, 1997;
Metrotra, He, Dadkhah, Rugg, & Shaw, 1999), and
thermo-mechanical deterioration of the die attach layer
(B. J. Baliga, 1996; Lambilly & Keser, 1993).

Wire Bond Lifting
For wire bonding IGBT modules, the emitter bonding
wire lifting is reported as the leading failure mode (Ye
et al., 2002). A cross section of a wire bonding package
is shown in Figure 2 (a). Bonding wires are subjected
to tensile stress due to the temperature excursions ∆Tj
during power cycling (Somos, 1993). This is because the
Al wire has a much larger CTE and expands during heat-
ing. Cova and Fantini cite degradation of the die attach
layer as a driving factor for bond lifting (Cova & Fantini,
1998). Their conclusion is similar to that of Auerbach
and Lenniger’s (Auerback & Lenniger, 1997), that ∆Tj
is the cause for damage of the soldering layers and bond
wires and the power cycling lifetime is exponentially re-
lated to ∆Tj . According to Held et al. , the number of
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Figure 2: Cross section of (a) wire bonding and (b) press-
pack IGBT modules.

cycles to failure, Nf , of the wire bonds is a function of
Tj and ∆Tj (Held, Jacob, Nicoletti, Scacco, & Poech,
1999),

Nf ∝ (∆Tj)
α
ekT /Tj , (1)

where α and kT are real-valued constants.

Solder Die Detachment
For press-pack IGBT modules, degradation of the die at-
tach solder layer is reported as the primary failure mode.
The mechanical construction includes the silicon die, its
mounting to the lead frame or module base, the connec-
tions from the die electrode pads to the output leads or
terminals and any molding compounds or infill materials
used to protect the silicon from environmental contami-
nation (B. J. Baliga, 1996). The silicon die is soldered
to the direct copper bonding (DCB) substrate, and the
DCB is soldered to the copper heat sink, shown in Fig-
ure 2 (b). The substrate and heat sink have a much larger
CTE than the silicon die. Cyclic temperature shifts dur-
ing operation produce cyclic shear strains in the die bond
due to the CTE mismatch between layers. This eventu-
ally produces cracking due to fatigue, which lower the
critical capability of the bond to transfer heat generated
in the die (Olson & Berg, 1979; Pecht, Dasgupta, Evans,
& Evans, 1994). The loss of die bonds will increase
the die temperature and effectively reduce the minimum
latching current of the IGBT. Thus, the power transistor
will eventually fail by catastrophic burn-out or secondary
breakdown.

2.4 Aging Factors
It’s accepted that real-life testing on IGBT devices shows
their life expectancy to be related to Tj , ∆Tj and the
case temperature Tc (Somos, 1993). Cova and Fantini
advocate the use of power cycling as a stress test be-
cause the devices are operated in conditions similar to
those encountered in the field (Cova & Fantini, 1998).
Wu et al. recommend against power cycling citing its
bias of a particular fault mode, bond wire detachment
(Wu, Held, Jacob, Scacco, & Birolini, 1995). Instead Wu
et al. prepared cross-sectional samples of several IGBT

packages and applied thermal cycling stress. After ag-
ing, the samples were analyzed and shown to have de-
veloped voids and cracks in the solder layers. They con-
clude the damaged caused by thermal stress degrades the
heat dissipation of the IGBT module. An alternative ap-
proach presented by Ginart et al. introduce a way to in-
duce damage by applying power cycling until latch-up
occurs (A. E. Ginart, Brown, Kalgren, & Roemer, 2009;
A. Ginart, Brown, Kalgren, & Roemer, 2007). However,
instead of continuing to induce short-circuit stress, the
device is allowed to cool to room temperature before an-
other latch-up event is induced. Under these stress con-
ditions Ginart et al. were able to induce damage in the
solder die layer in a shorter amount of time, as verified
by Patil et al. (Patil, Celaya, Das, Goebel, & Pecht, 2009;
Patil, Das, Goebel, & Pecht, 2008).

2.5 Aging Effects
Wire bond lifting and solder die detachment are a direct
consequence of thermal degradation. Ginart et al. indi-
cate the IGBT latching current reduces with the accumu-
lation of thermal damage (A. Ginart, Roemer, Kalgren,
& Goebel, 2008). They conclude this occurs as a result
of an overall increase in Tj , which is consistent with (Ye
et al., 2002). Its explained by Patil et al. that the overall
increase in Tj is caused by increased thermal impedance
as a result of the degraded die attach (Patil et al., 2009,
2008). Consequently, this change in temperature causes
intrinsic device properties of the transistor to change.
According to Hallen et al. , the thermal junction tem-
perature is related to the lifetime of the minority carri-
ers, τHL, injected into the N- region of the device during
forward conduction (Hallen, Keskitalo, Masszi, & Nagl,
1996). The relationship between Tj and τHL is related by
the following expression (Engström & Alm, 1978),

τHL = τ0

(
Tj
300

)κ
, (2)

where τ0 > 0 is the high-injection lifetime at Tj =
300 ◦K and κ > 0. According to Baliga et al. , the in-
creased minority carrier lifetime causes an increase in
the transistor turn-off time, toff, defined as (J. Baliga,
1985),

toff = t90% − t10%, (3)
where t10% and t90% correspond to the time when Vce is
10% and 90% of its final value accordingly.

3. ACCELERATED AGING
3.1 Hardware Setup
During the aging process, the transistor’s case temper-
ature is controlled in a feedback loop to induce dam-
age. This is achieved using a DAQ computer, current
controller and an IGBT gate driver, shown in Figure 3.
The DAQ computer regulates the junction temperature,
Tj , of the IGBT by measuring temperature, and adjust-
ing the applied collector current, Ic. The temperature is
measured along the front and back surfaces of the semi-
conductor package, represented by Tc(front) and Tc(back),
to estimate Tj using the thermal model provided by the
manufacturer (“IRG4BC30KD datasheet”, 2000). A cur-
rent sensor is used as feedback for the current controller
to regulate the PWM output to the gate driver. The gate
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driver is used as a buffer between the IGBT and current
controller. The aging process is accelerated by removing
the heat sink from the transistor in order to elevate the
junction temperature for lower set-point currents. Dur-
ing each test, the DAQ computer acquires measurements
for Tc(front), Tc(back), Vge, Vce, Ic, and Ig .

Gate Driver
Ig

Ie

Ic

Current
Controller

Vs

TcDAQ
Computer

Temperature
Sensor

Figure 3: Block diagram of the accelerated aging plat-
form.

3.2 Aging Procedure
The IGBT aging procedure consists of five stages: ini-
tialization, data acquisition and control, latch-up obser-
vation, latch-up recovery and repeat. An overview of the
aging procedure is illustrated in Figure 4.

Start

Initialize Tset(1) to 125% of

Tj(max); Set k = 1.
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c(front), T

c(back),

Vge, Vce, Ic, and Ig.

Estimate T̂j (t) from Tc(front)
and T
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apply to the current controller.

Is Ic > 0A
when Vge = 0V?

No

Yes

Perform another
iteration of latching?
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No
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Set k = k + 1;
Tset(k) = Tset(k−1) −∆Tset

Figure 4: Flowchart of the accelerated aging procedure.

Initialization
The reference temperature is initially set at Tset(1). In
practice, Tset(1) is established at 125% of the maximum
operational junction temperature defined by the manu-
facturer.

Data Acquisition and Feedback Control
Measurements for Tc(front), Tc(back), Vge, Vce, Ic, and Ig
are acquired using sensors connected to the DAQ com-
puter. Estimates for T̂j are computed from the measure-
ments Tc(front) and Tc(back) using the thermal model pro-
vided by the manufacturer (“IRG4BC30KD datasheet”,
2000). The set-point error e (t) = Tset(k) − T̂j(t) is used
in a proportional gain feedback control to arrive at a set-
point to adjust the PWM applied to the IGBT. Measure-
ments for Vge, Ic, Vce and Ig are acquired to detect a
latch-up event.

latch-up Observation
When a latch-up condition occurs, the transistor is stuck
in a permanent on-state. This is detected when Vge = 0V
and Ic (t) > 0A. During this event, the PWM signal
applied to the transistor is disabled (Vge = 0V). How-
ever, due to latching, the transistor cannot be success-
fully turned off and the temperature continues to rise.

latch-up Recovery
Manual interruption occurs to turn-off the collector cur-
rent, Ic, to the transistor. During this phase the transistor
is given sufficient time to cool allowing for a reduction
in Tj .

Repeat
A decision is made to continue aging the transistor for
another iteration of latching. If another latching event
is desired, a new reference temperature is set for the kth

latching iteration where the change in reference temper-
ature, ∆Tset, typically ranges from 10◦C to 20◦C.

3.3 Ringing Attenuation

The ringing feature, discussed in previous papers by Gi-
nart et al. was used as a metric to verify permanent
changes in the transistor after exposure to accelerated
aging (A. E. Ginart et al., 2009; A. Ginart et al., 2007).
Samples of previously aged components studied by Vi-
tal et al. indicated a correlation between damage of the
solder-die attach layer and ringing attenuation (Patil et
al., 2009, 2008).1

4. SEEDED FAULT TESTING

The seeded fault testing platform, designed as a small-
scale electric power-drive system, was used to evaluate
the performance of the power inverter when inserting
faulty transistors.

1For additional information regarding the ringing attenua-
tion metric and its correspondence to physical device damage,
please refer to the papers by Ginart et al. and Patil et al. as cited
in this section.
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Table 1: Statistics of toff for baseline and fault conditions. The mean and variance are provided for each data set along
with the corresponding 90%, 95% and 99% confidence intervals.

Data set Mean [µs] Variance [µs2] CI (90%) [µs] CI (95%) [µs] CI (99%) [µs]

Baseline 0.1782 7.9210× 10−5 (0.1635, 0.1929) (0.1604, 0.1960) (0.1552, 0.2012)
Fault #1 0.2517 1.0816× 10−4 (0.2345, 0.2689) (0.2309, 0.2725) (0.2249, 0.2785)
Fault #2 0.2983 1.3689× 10−4 (0.2790, 0.3176) (0.2749, 0.3217) (0.2681, 0.3285)

4.1 Hardware Setup
A picture of the testing platform identifying the core
components is provided in Figure 5. A laptop com-
puter acquires test data from a data acquisition (DAQ)
module and an oscilloscope using LabVIEW. The laptop
computer also controls the digital motor controller and a
programmable DC load using an RS232 interface. The
digital motor controller interprets speed commands from
the laptop computer and translates them into pulse-width
modulation (PWM) signals. These PWM commands
are sent to a three-phase power inverter connected to a
115VAC power source. The power-inverter modulates
the PWM signals on the lines of a three-phase AC motor
by using internal power transistors, more specifically IG-
BTs, to draw up to 6A of current at 115VAC. The shaft
of the three-phase AC motor is mechanically coupled to
a DC synchronous motor acting as a mechanical load. A
load torque is applied by placing a programmable elec-
tric load on the output of the DC motor. Hall effect cur-
rent sensors and voltage transducers are used to record
current and voltage measured at the three-phase AC mo-
tor and DC motor.

(a) Laptop Computer (b) Data Acquisition
Module

(c) Programmable
Power Load

(e) Motor
Controller

(f ) Power
Inverter

(g) Switching
IGBTs

(h) 3-Phase Motor (i) DC Generator

(d) Oscilloscope

Figure 5: Photo of the experimental seeded fault test
setup. The testing platform consists of: (a) laptop com-
puter, (b) data acquisition module, (c) programmable
power load, (d) oscilloscope, (e) motor controller, (f)
power inverter, (g) switching IGBTs, (h) three-phase mo-
tor and (i) a DC generator.

4.2 Testing Procedure
Seeded fault testing was conducted by replacing selected
components with degraded IGBTs in a power inverter.
An electrical schematic of the power inverter connected
to a three-phase induction machine is shown in Figure 6.
The three-phase power inverter includes six IGBT com-
ponents (Q1–Q6) used as switching transistors for DC-
to-three-phase AC power conversion. In this setup, tran-
sistors Q1–Q5 are healthy (out of box) IGBT compo-
nents and Q6 is replaced with either a healthy or faulty
IGBT device.

Each test was conducted using the platform shown
in Figure 5. During testing, the three-phase power in-
verter was operating within its normal operating con-
ditions while driving a three-phase motor connected to
a DC generator with an electric load. The experiment
was conducted for a series of predefined static operat-
ing points by varying the speed of the motor and the
load on the generator. The speed was evaluated at
800, 1000 and 1200RPM with a fixed motor current
of 1 A− RMS. During this particular experiment the
dead-time between each transistor switching cycle was
increased from 2µs (the default) to 4µs to prevent po-
tential switching failures from occurring. Measurements
for the transistor turn-off time were acquired by measur-
ing Vce across transistor Q6 using a Tektronix TBS2024
oscilloscope. The measurement was synchronized on the
negative edge of the control signal driving the gate of
transistor Q6. The turn-off time was computed from the
acquired waveforms using (3).

Q1

+
Vs

−
Q2

Q3

Q4

Q5

Q6

Cs

A
B

C

A
B

C

+

Vce

−

(a) Three-phase power inverter with five stock IGBTs Q1–Q5. (b) Three-phase induction machine

(c) Transistor Q6 replaced with
an IGBT with an induced fault.

Figure 6: Electrical schematic of the seeded fault testing
platform. Shown is the (a) three-phase power inverter
wired to a (b) three-phase induction machine where (c)
transistor Q6 is replaced with either a healthy or faulty
transistor.

5. EXPERIMENTAL RESULTS
A set of eight transistors was evaluated during seeded
fault testing. Of the eight transistors, two transistors
were aged by following the procedure in Section 3. The
remaining six transistors were in a presumably healthy or
(out-of-box) condition. After aging two of the eight tran-
sistors, the fault status of each transistor was evaluated
using the ringing attenuation metric discussed in Sec-
tion 3.3. Samples H01–H06 correspond to healthy tran-
sistors while Fault #1 and Fault #2 correspond to faulty
transistors accordingly. The ringing response for eight
distinct transistors is shown in Figure 7. The plot labeled
’Healthy (baseline)’ was generated from the mean value
of six healthy transistors. The remaining two plots la-
beled ’Fault #1’ and ’Fault #2’ were acquired from two
distinct IGBTs after undergoing accelerated aging. The
ringing attenuation metric confirmed the six transistors
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presumed to be new showed no indication of damage,
whereas the two aged transistors produced indications of
a fault in the die-attach layer.
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Figure 7: Time-series plots comparing Vce measured for
six healthy transistors (baseline) and after accelerated
aging of two faulty IGBTs.

After fault verification, each transistor was subjected
to seeded fault testing as described by the testing pro-
cedure in Section 4.2. According to the data, there is
no statistical significance between the turn-off times of
different healthy transistors. Therefore, this was used as
baseline data to compare healthy and faulty transistors.
The computed baseline values for toff followed a nor-
mal distribution as illustrated in Figure 8, with a mean
of 0.1782µs and standard deviation 0.0089µs. In addi-
tion, the computed toff values for the faulty transistors
also followed a normal distribution. The mean, variance
and confidence intervals of toff are presented in Table 1
for each data-set. According to the data, it can be shown
with 99% confidence that toff is greater for the faulty
transistors under the same operating conditions.
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Histogram of transistor turn-off time for baseline and fault conditions
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Figure 8: Histogram of toff for six healthy transistors
(baseline) and two faulty transistors.

6. CONCLUSION
This paper studied the effects preceding a latch-up fault
in IGBTs for an electric motor drive system. Precursors
to the primary failure mode, latch-up, were identified and
modeled for the IGBT. Experimental seeded fault testing
demonstrated the ability to distinguish between aged and
healthy transistors using on-line measurements of tran-
sistor turn-off time during switching cycles. Statistical
results were provided to verify these claims. Future work
includes the development of an integrated diagnostic cir-
cuit module to monitor the turn-off time of each individ-
ual transistor as early fault indicator for latch-up.
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NOMENCLATURE
Ic IGBT collector current A
Ie IGBT emitter current A
Ig IGBT gate current A
Im Motor current A
Nf Cycles-to-failure –
Tc Case temperature ◦K
Tj Junction temperature ◦K
Vce IGBT collector-to-emitter voltage V
Vge IGBT gate-to-emitter voltage V
Vs DC bus voltage V
kT Thermal model constant ◦K
r′b Parasitic resistance Ω
t Time s
toff IGBT off-time s
α Thermal cycling parameter –
κ Thermal modeling parameter –
τHL High-level injection lifetime s

τ0
High-level injection lifetime at
Tj = 300 ◦K s
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