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ABSTRACT 

This paper is concerned with the development 

of a health monitoring system for a pneumatic 

valve employed in pressure regulation 

systems. The proposed method is based on the 

statistical analysis of deviations of the 

controlled pressure signal from a baseline 

behavior. For this purpose, the Probability 

Integral Transform is employed to calculate an 

index of dissimilarity between the 

distributions of monitored and baseline data. 

The proposed method was applied to field 

records of 15 units, which were monitored 

during eight months. In the case of failed 

units, the degradation index showed an 

increasing trend prior to the failure 

occurrence. It is worth noting that the failure 

level was similar in all cases, which is an 

important characteristic for the future 

development of prognostic solutions. In 

addition, no false alarms were observed for the 

healthy units. The results found in the case 

study are realistic and fit within practical 

requirements to support maintenance decision
*
 

1 INTRODUCTION 

Health monitoring has been rapidly evolving in the 

latest years and many different applications of this 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

technology are being pursued for industrial and vehicle 

components and systems. Many benefits can potentially 

be provided by such kind of technologies, such as the 

reduction of maintenance costs and increase in safety. 

Applications on health monitoring techniques involve 

many types of systems such as pneumatic (Demetgul et 

al, 2009), hydraulic (Byington et al, 2007) and 

electronic (Kalgren et al, 2007).  

 This paper presents a health monitoring 

methodology for a pneumatic valve in a pressure 

control system. The proposed method is based on the 

statistical analysis of the controlled pressure signal, 

which deviates from normal behavior in the presence of 

valve degradation. For this purpose, the Probability 

Integral Transform (Ihida,  2005), (Chen et al, 2007), 

(Leão et al, 2010) is employed to quantify alterations of 

the probability distribution of the measured data with 

respect to a reference distribution. The proposed 

methodology differs from classical methods like the 

Statistical Probability Ratio Test (SPRT) proposed by 

(Wald A., 1945) because it estimates only the 

distribution of the normal data, working as a novelty 

detection algorithm. 

 The paper is organized as follows. Section 2 

describes the pressure control system under 

consideration. Section 3 presents the proposed health 

monitoring technique. Results for actual field data are 

discussed in Section 4. Finally, concluding remarks are 

given in Section 5. 

2 SYSTEM DESCRIPTION 

The pressure control system consists of a pneumatic 

actuated valve, a torque motor, a pressure transducer 

and a torque motor controller. Its purpose is to keep the 

downstream pressure at a controlled set point value. 
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A pneumatic actuator controlled by a torque motor 

servo pressure signal provided by a remotely located 

controller drives the valve flap. Duct pressure is ported 

directly to the supply area of the actuator piston. This 

pressure force, along with the actuator spring force, 

provides the closing force for the butterfly disc. The 

opening force is provided by the torque motor servo 

pressure acting on the larger portion of the actuator 

piston. Servo pressure is controlled remotely by a 

controller output current generated from the difference 

between the set point and the measured downstream 

pressure at the pressure transducer. If the servo pressure 

is low, the valve remains closed. As the servo pressure 

increases, the opening force increases, until the point 

where the net opening force exceeds the combined 

closing force, which causes the valve to open. A 

connecting link translates the axial motion of the 

actuator piston into rotational motion of the valve flap. 

 The valve will regulate downstream pressure until 

the servo pressure increases to fully open the valve. 

Figure 1 shows an overview of the system described 

above. 

 

 

Figure 1: Pressure control system. 

 The most common failure modes on this system are 

related to the pneumatic valve itself. Examples include 

friction increase due to shaft bearings degradation, 

spring ageing and internal chamber leakages due to seal 

degradation. Over the last five years of operation, 

maintenance teams have reported a large number of 

failures in this pressure control system, mostly related 

to the pneumatic valve. Such reports motivated the 

development of the health monitoring solution 

presented in this paper. 

3 HEALTH MONITORING METHODOLOGY 

Field observations indicate that downstream pressure 

signals exhibit a slight increase in amplitude before an 

event of failure. This deviation from nominal behavior 

is illustrated in Figure 2. The left plot presents the 

pressure signal of a normal system, whereas the right 

plot shows the pressure signal a few days before a 

failure.  

 

 

Figure 2: Pressure signal of a normal (left) and a 

degraded valve (right). 

 The change in the pressure signal can be 

characterized in a more appropriate manner by using 

histogram representations, as shown in Figure 3.  As 

can be seen, the pressured data from the degraded 

system exhibit a distribution with a longer tail, as 

compared to the distribution for the new (non-

degraded) system.  

 

 

Figure 3: Histograms for the pressure signals presented 

in Figure 2. 

 Such a difference between distributions motivated 

the health monitoring methodology proposed in this 

work. The main idea consists of creating a metric for 

the dissimilarity between the distributions of a baseline 

dataset and the dataset generated by the monitored 

system. For this purpose, a method based on the 

Probability Integral Transform (PIT) was developed. 

 The proposed method estimates the distribution of 

the data in a non-parametric manner and computes an 

index of dissimilarity between a baseline dataset and 

the monitored data. 



Annual Conference of the Prognostics and Health Management Society, 2010 

 3  

3.1 Probability Integral Transform 

Given a probability space {Ω, F, P} and a random 

variable X: Ω → ℜ, the cumulative distribution 

function (CDF) of X is defined as 

 ℜ∈≤Ω∈= xxXPxF }),)(|({)( ωω     (1) 

 Assuming that F(.) is continuous, a new random 

variable Z can be defined by using X as the input for the 

CDF function F(.): 

 )(XFZ =  (2) 

 This new random variable is uniformly distributed 

over the range (0,1). Figure 4 illustrates such 

transformation. 

 

Figure 4: Obtaining random variable Z using PIT. 

3.2 Using PIT for Health Monitoring 

The transformation of a given random variable into a 

random variable with uniform distribution has many 

applications. Examples can be found in econometrics 

(Ihida,  2005), state estimation (Chen et al, 2007) and 

failure prognostics (Leão et al, 2010). In the present 

work, PIT is used for health monitoring. The proposed 

procedure can be described by the following steps: 

 

1. Calculate an empirical CDF using measured 

values of the monitored variable under 

baseline (i.e. non-degraded) operating 

conditions. 

2. Define F(ּ) according to equation (1) using the 

CDF calculated in step 1. 

3. Apply F(ּ) to every new measurement of the 

monitored variable. 

4. Evaluate the resulting distribution by 

comparison to an ideal distribution U(0,1).  

 

 In this work, two approaches for performing step 4 

are proposed, a graphical and a quantitative approach. 

Both are based on the works of (Chen et al, 2007) and 

(Leão et al, 2010). The first approach is based on the 

empirical CDF of the transformed variable. If the data 

under analysis have the same distribution of the 

baseline data used to generate function F(ּ), the CDF of 

the transformed variable should be similar to the CDF 

of a U(0,1) distribution, as illustrated in Figure 5. 

 

Figure 5: Graphical representation of the PIT-based 

evaluation. 

 

 In Figure 5 the “ideal CDF” line represents a U(0,1) 

distribution. The curve “ECDF 1” is an example of a 

empirical CDF resulting from a set of data with the 

same distribution of the data used to generate the 

function F(ּ).  The curve “ECDF 2” is an example of a 

empirical CDF resulting from a set of data with a 

distribution that is different from the distribution of the 

data used to generate F(ּ).  

 The quantitative approach consists of calculating the 

following measure of dissimilarity from the CDF plot, 

as proposed by (Leão et al, 2010):  

 ∑
=

−=
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m

B
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 (3) 

where m is the number of points used to construct the 

discrete empirical CDF, yj is the value assumed by each 

of these points in a CDF U(0,1) and Pe(ּ) is the 

empirical CDF value. The resulting B-index was 

termed “Badness Indicator” in (Leão et al, 2010). In the 

present work, the B-index will be intepreted as an 

indicator of degradation.  

 

4 RESULTS 

The proposed health monitoring method was applied to 

actual field data of the pressure regulation system, 

according to steps 1 – 4 described in the previous 

section. 



Annual Conference of the Prognostics and Health Management Society, 2010 

 4  

In steps 1 and 2, a baseline record containing 17500 

pressure data points was acquired. The empirical CDF 

of these data were used to define F(ּ). 

 Steps 3 and 4 comprise the evaluation of the system 

condition over time. For this purpose, a set of 15 units 

of the system were monitored during eight months. The 

B index was calculated for each new data record 

acquired during this period. 

 During the monitoring period, three failure 

occurrences were reported by the maintenance team. A 

detailed inspection indicated that such failures were 

caused by the pneumatic valve.  

 Figure 6 presents the B-index obtained for one of 

the pressure regulation systems that did not fail during 

the monitoring period. As can be seen, the time series 

of 

 B-index values does not exhibit a trend that could be 

interpreted as an increase in degradation. Such a 

finding is consistent with the fact that no failures were 

reported in this period. Similar results were obtained 

for the other monitored units that remained operational 

throughout the monitoring period. 

 

 

Figure 6: B-index for a system that did not fail during 

the monitoring period. 

    

 Figure 7, Figure 8 and Figure 9 present the B-index 

values for the units that did fail. As can be seen, these 

figures a clear trend of increasing degradation prior to 

the failure. It is also important to notice that all three 

failures occurred when the B-index was at a similar 

level. These are desired characteristics when 

establishing a threshold for component removal or even 

in the development of prognostic solutions. 

 After the maintenance actions, it is possible to see 

an abrupt reduction in the B-index level for each unit. 

The level reached is similar to those of the units 

without degradation.  

 

Figure 7: B-index for the monitored system near a 

failure occurrence (occurrence 1) 

 

Figure 8: B-index for the monitored system near a 

failure occurrence (occurrence 2). 

 

Figure 9: B-index for the monitored system near a 

failure occurrence (occurrence 3). 
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5 CONCLUSION 

This paper presented a methodology of health 

monitoring for a pneumatic valve in a pressure control 

system by analyzing the regulated pressure behavior. 

 The proposed health index was capable to identify 

an increasing degradation that lead to failure 

occurrences. No health index increasing behavior was 

observed for healthy units. 

 In the case of failed units, the degradation index 

showed an increasing behavior until a critical level, 

which was similar for all failure occurrences. These are 

very important characteristics in the development of 

prognostic solutions. The results found in this case 

study are realistic and fit within practical requirements 

to support maintenance decision. 
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