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ABSTRACT 

In comparison with a traditional planetary gearbox, the 
split torque gearbox (STG) potentially offers lower 
weight, increased reliability, and improved efficiency.  
These benefits have driven helicopter OEMs to develop 
products using STG.  However, the effect of multiple 
gears meshing simultaneously with the central gear and 
a large number of synchronous components (gears or 
bearing) in close proximity creates a problem on how to 
detect the gear fault location in a STG.  As of today, 
only limited research on STG fault detection using 
vibration sensors and acoustic emission sensors has 
been conducted. 
 In this paper, an effective methodology on gear fault 
location detection using AE sensors for STG is 
presented.  The methodology uses wavelet transform to 
process the AE sensor signals to determine the arrival 
time of the AE bursts at different locations.  By 
analyzing the arrival times of the AE bursts, the gear 
fault location can be determined.  The parameters of the 
wavelet transform are optimized by using an ant colony 
optimization algorithm.  Real seeded gear fault 
experimental tests on a notational STG are conducted.  
AE sensor signals at the locations of healthy and 
damaged output driving gears are collected 
simultaneously to determine the location of the 
damaged gear.  Experimental results have shown the 
effectiveness of the presented methodology.* 

                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 

1 INTRODUCTION 

The requirement for higher energy density 
transmissions (lower weight) in helicopters has led to 
the development of the split torque gearbox (STG) to 
replace the traditional planetary gearbox by the drive 
drain designer (White, 1982).  A typical split torque 
gearbox transmission system is shown in Figure 1.  In 
STG, there are a number of identical gears meshing 
simultaneously with the central gear.  This unique 
behavior makes the traditional vibration signal based 
gear fault detection algorithms, for one example, time 
synchronous average (TSA) ineffective in separating 
the interested gear fault signal.  In particular, it is 
difficult to locate the fault inside the gearbox by 
analyzing the vibration signal.  
 
 
 
 
 
 
 
 

Figure 1: Comanche STG 
Generally speaking, gear faults can be classified as 

distributed faults, such as wear, and localized faults, 
such as crack, chipping and so on.  The distributed 
faults increase the transmission errors. The localized 
faults not only affect the transmission accuracy but also 
                                                                                           
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 
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cause catastrophic failure of the transmission system.  
For that reason, the research on detecting the localized 
faults is more important than those on detecting the 
distributed faults.  In this paper, the gear faults refer to 
gear localized faults.  The most commonly used 
techniques for gear transmission system fault detection 
are vibration based and acoustic emission (AE) based.  
The vibration signal of a gearbox carries the signature 
of the fault in the gears. Many signal processing 
methods on analyzing vibration signals to obtain the 
gear fault information are reported.  These methods 
include cepstrum analysis (Dalpiaz et al., 2000), TSA 
(McFadden, 1987; Halim et al., 2008), Wigner-Ville 
distribution (Naim and Andrew, 2001), wavelet 
transform (WT) (Chen, 2002), empirical mode 
decomposition (EMD) (Liu et al., 2006).  Among these 
methods, time-frequency techniques, such as WT, EMD 
and so on are proven to be the most powerful tools on 
handling the non-stationary property in the vibration 
signal generated by the gear transmission system.   

AE technique is widely used in the field of 
nondestructive testing (NDT).  According to 
Eftekharnejad and Mba (2009), AE is defined as the 
range of phenomena that result in generation of 
structure-borne and fluid-borne (liquid) propagating 
waves due to the rapid release of energy from localized 
sources within and /or on the surface of a material. The 
use of AE techniques can be found in many successful 
applications, such as, engine fault detection 
(Nivesrangsan, 2005), precession manufacturing 
monitoring (Lee et al., 2006), and wear monitoring and 
control (Hanchi and Klamechi, 1990).  Recently, AE 
based approaches are beginning to attract the 
researchers’ attention on the machine healthy 
monitoring.  Elforjani and Mba (2009) presented a 
method on quantifying the crack growth in a shaft 
operating under slow speed.  Ghamd and Mba (2006) 
successfully applied AE techniques to bearing fault 
detection.  In their paper, they presented an effective 
methodology to determine the crack size of the bearing 
by measuring the width of the AE bursts.  He et al. 
(2008) and Couturier and Mba (2008) showed the 
influence of the operational conditions on the AE based 
features.  Eftekharnejad and Mba (2009) utilized AE 
signals for gear fault detection.  Hamzah and Mba 
(2009) investigated the influence of the operational 
conditions, such as load, rotational speed and so on, on 
AE based gear faults diagnosis.  According to Li (2002), 
and Abdullah and Mba (2006), typical sources of AE 
waveforms generated in a rotational machinery include: 
(1) plastic deformation, (2) micro-fracture, (3) wear, (4) 
bubble, (5) friction, and (6) impacts.  In comparison 
with vibration signals, AE signals have following 
advantages: (1) insensitive to structural resonances and 
unaffected by typical mechanical background noise, (2) 
more sensitive to activity from faults, (3) provides good 

trending parameters.  According to Elforjani and Mba 
(2009), normally, the frequency range of these sources 
is between 100 kHz and 1 MHz.  

In some industrial applications, detecting fault 
itself is not enough.  For example, in addition to 
locating the source of the fault in the gear transmission 
system, knowing which part of the system has the fault 
would help planning the maintenance action more 
effectively thus that would increase the efficiency of the 
maintenance and reduce the cost of the maintenance 
especially for those expensive parts.  However, up to 
today, most of the research papers are concentrated on 
gear fault detection instead of gear fault location 
detection.  Some papers have reported research on gear 
fault location detection on general gearbox.  By 
applying TSA technique, the single gear vibration can 
be extracted from the vibration generated from the 
whole gear transmission system.  Through separation, 
the source of the gear fault can be located.  In 
(McFadden, 2000), the TSA was applied to identify 
which gear has fault.  In (Blunt and Keller, 2006), TSA 
was utilized to separate the vibration signal for each 
planetary gear and sun gear of a planetary gear 
transmission system in the black hawk helicopters.  
However, in the case of STG where there are identical 
gears meshing simultaneously, TSA technique cannot 
be used effectively in separating the vibration signal of 
the identical gears.  For AE based gear fault location 
detection, Toutountzakis et al., (2005), attached AE 
sensors directly on the damaged gear for gear fault 
location detection.  In their experiments, the sampling 
rates were set to be 10 MHz.  In many practical 
applications, attaching the sensor directly on the 
rotational parts is impractical.  Also, a sampling rate of 
10 MHz will add huge burdens to both the data 
acquisition system and the signal processing system.  Li 
et al. (2009) successfully used both AE signals and 
vibration signals to detect the gear faults in a notational 
STG.  Their results showed that both AE signals and 
vibration signals are capable of detecting the gear faults 
in a STG.  However, the AE signals are more sensitive 
to the gear fault location than the vibration signals.  In 
their paper, the emphasis was placed on the comparison 
of gear fault detection performance between the AE 
signals and the vibration signals.  No quantitative 
analysis of AE signals for gear fault location detection 
was reported in their paper.    

In this paper, a methodology on gear fault location 
detection using AE sensors is presented.  Wavelet 
transform is applied to process the AE signals collected 
from different sensor locations to determine the arrival 
time of the AE bursts.  By analyzing the arrival time of 
the AE bursts, the gear fault source location can be 
determined.  Data collected from real seeded gear fault 
experimental tests on a notational STG are used to 
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validate and demonstrate the effectiveness of the 
methodology.   
 

2 GEAR FAULT LOCATION DETECTION 

In concept, when traveling through a plate, the 
propagating waves are governed by Lamb’s 
homogeneous equation whose solutions are called 
Lamb waves.  Based on the general theory of wave 
propagation in elastic solids, AE waves propagate 
through a structure in a number of modes with the 
characteristics of dispersion and attenuation.  According 
to Jeong and Jang (1991), if the plate is a thin one, then 
the velocities of the lowest symmetric (S0) and 
antisymmetric (A0) Lamb waves reduce to the plate 
wave solutions.  To develop an AE based gear fault 
source location method, we can use the velocity of the 
waves to compute the arrival time of the waves at a 
limited number of sensors and hence to determine the 
source location.  Given the nature of the AE waves, 
there are two possible ways to determine the arrival 
time.  One way is to calculate the arrival time by using 
the information of the same part of the wave on 
different sensors.  The other way is to calculate the 
arrival time by using the information of the different 
part of the wave on one sensor.  The latter may help to 
reduce the number of required sensors for detection.  
The details of the methodology based on the first 
approach are provided next. 

2.1 The Framework of the Methodology  

Without the loss of generality and for the sake of 
simplicity of the demonstration, the scheme of the 
proposed methodology for a two-sensor system is 
shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2:  The scheme of the proposed methodology for 
a two-sensor system 

  
As shown in Figure 2, the AE signals are first processed 
by continuous wavelet transform.  The peak value and 
the arrival time t1, for sensor 1 and t2, for sensor 2, are 
then determined.  The difference of the arrival time tΔ  
is calculated as t1 - t2.  The value of tΔ could be used to 
determine the arrival sequence of the AE waves.  If 

0>Δt , it means that the AE waves reach the sensor at 
location 1 prior to the sensor at location 2 and vice 
versa.  The parameters of the wavelet are optimized 
approximated by using ant colony optimization (ACO) 
method. 

2.2 Theoretical Basis 

2.2.1 Wavelet Transform 

The wavelets can be obtained from a single function 
)(tψ  by translation and dilation: 

)(1)(
a

t
a

t τψψ −
=                                (1) 

In Eq. (1), a is the scaling parameter, 0>a ,τ  is 
the time localization parameter, R∈τ , and )(tψ  is 
called the “mother wavelet”.  

The wavelet transform of a finite energy signal 
)(tx  with the analyzing wavelet )(tψ  is the 

convolution of )(tx  with a scaled and conjugated 
wavelet: 

dt
a

ttx
a

aW ∫
−

= ∞+
∞− )()(1),( * τψτ                    (2) 

where )(* tψ  denotes the complex conjugate of )(tψ . 
In wavelet transform, the choice of a “mother 

wavelet” can have an impact on the processing results.  
Therefore, only certain types of wavelets are effective 
for fault diagnosis applications. Boczar and Zmarz 
(2004) reported that Morlet wavelet could be effective 
in estimating the arrival time of the AE waves. 
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Therefore, in this paper, a wavelet transform using 
Morlet wavelet is used to process the AE signals.   A 
Morlet wavelet is defined as: 

)exp()2/exp()( 0
22 tittm ωβψ −=                     (3) 

 
and its Fourier transform is:  
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For time-frequency analysis of dispersive waves, 

consider two harmonic waves of equal unit amplitude 
and of slightly different frequencies ω1  and ω2  
propagating in x-direction, i.e., 
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then Eq. (5) can be written as:  
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It can be seen that this resulting wave consists of 
two parts.  The carrier wavelet represented by the 
exponential term propagates with phase velocity 

c

c
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c
ω

= .  On the other hand, the modulated wave 

given by the cosine term travels with group velocity 
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When wavelet transform is applied, the WT of u(x, 
t) is given by (Jeong and Jang, 2000): 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−+
=

−−

)(ˆ)(

)(ˆ
),,)((

222

1
)( 11

ωψω

ωψω

abxkie

ae
abaxWTu

m

m
bxki

      (7) 

 
So the magnitude of the WT is obtained as 
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If ωΔ  is sufficiently small such that  
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This result indicates that the magnitude of the WT 

takes its maximum value at 
c

a
ω
ω0=  and 

gc
xxkb =⎟

⎠
⎞

⎜
⎝
⎛
Δ
Δ

=
ω

.  In other words, the location of the 

peak on the (a, b) plane indicates the arrival time of 

the group velocity cg at frequency
ac

0ωω = . 

Though this property, we can find the arrival time 
of the AE bursts accurately for each location of the 
AE sensors.  By calculating the difference of the 
arrival time, it is possible for us to locate the source of 
the gear fault.   
 

2.2.2 Ant Colony Optimization (ACO) Algorithm 
ACO is the most commonly used meta-heuristic among 
the methods inspired by the behavior of social insects. It 
has been proposed to provide a unifying framework for 
most combinatorial optimization problems (Stützle and 
Dorigo, 1999). ACO is a probabilistic technique that is 
designed to search and find answers to complex 
optimization problems in situations where the number 
of possible alternative solutions is vast (Seckiner and 
Kurt, 2008). It is widely used in solving job rotation 
scheduling problem (Seckiner and Kurt, 2008), 
Stochastic vehicle routing problem (Secomandi, 2004), 
Maximum independent set problem (Leguizamon et al., 
2001), classification problem (Martens et al., 2007) and 
global minimization problem (Toksari, 2006).  In this 
paper, ACO is used to search the optimal wavelet 
parameters with which the maximum kurtosis value of 
the wavelet coefficients can be achieved.   

Since the kurtosis is an index of “peakness” of the 
signal, the objective function of the optimization is 
chosen to be the kurtosis of the wavelet coefficients. 
The kurtosis of a signal s is defined as,  
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The ACO algorithm is used to find the maximum 

value of the kurtosis and the flow chart of the ACO 
algorithm is shown in Figure 3. 
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Figure 3: The flow chart of the ACO algorithm 
 

3 EXPERIMENTAL SETUPS 

In order to simulate the unique behavior of the STG, we 
have developed a notational STG (see Figure 4).   
 
 
 
 
 
 
 
 
 
 

Figure 4:  The notational STG 
 As the primary design considerations were the 
emulation of synchronous gear signals that would be 
found in a STG, for both the input side and output side 
of the gearbox, parallel shaft layout was used.  On the 
input side, the input driving gear is a 40 teeth spur gear 
that drives three 72 teeth spur gears.  On the output side, 
three output driving gears are 48 teeth spur gears that 
drive a 64 teeth spur gear.  A 3-HP AC motor with a 
maximum speed of 3600 rpm is used to drive the 
notational gearbox.  To accommodate for shaft 
misalignment and reduce the vibration transmission, a 
disc type coupling is utilized to transmit the torque from 
the motor to the driving shaft.  A magnetic loading 
system is controlled by a power supply and the load can 
be adjusted by changing the output current of the 
amplifier.  The data acquisition board is a 2-channel 

data acquisition card with 18-bit resolution and the 
maximum sampling frequency is 40 MHz, which is 40 
times of the highest response frequency of the AE 
sensors. 
 During the experiments, a WD type AE sensor was 
used to collect the AE signals.  The operation frequency 
range for this type of sensor is 100 kHz to  
1 MHz.  In this paper, the tooth loss type seeded fault 
was used in the investigation.  One tooth of the output 
driving gears was cut completely.  The location of the 
gears on the output side of the gearbox, called output 
driving gear (ODG) is shown in Figure 5.  
 
 
 
 
 
 
 

Figure 5: The location of the gears on the output side of 
the gearbox 

4 THE RESULTS 

4.1 Pencil Break Test for Sampling Rate Selection 

Since a too high sampling rate may create huge burden 
to both the data acquisition system and signal 
processing system, choosing a suitable sampling rate is 
very important.  Although the frequency range of the 
AE source in a rotational machine is typically between 
100 kHz and 1 MHz (Elforjani and Mba, 2009), the 
mechanical transmission path between the AE sources 
and the location of the AE sensors acts as a low pass 
filter.  Because of the effect of this low pass filter, it is 
necessary to conduct an experiment to determine the 
frequency contents of the signal picked by the AE 
sensors in order to choose the right sampling rate.  In 
our experiments, a pencil lead break test was utilized to 
determine the sampling rate.  Pencil lead break tests are 
widely used in the area of NDT and a pencil lead break 
test is a simple test that can generate a broadband AE 
signals.  Further details on pencil lead break test can be 
found in (Gary and Hamstad, 1994).  In our 
experiments, to simulate the AE bursts generated by the 
meshing of the damaged tooth, the pencil lead break test 
was conducted on the surface between the damaged 
output driving gear and the output driven gear.   
 A number of experiments were conducted using 
different sampling rates.  Five different sampling rates 
were used, 50 kHz, 200 kHz, 500 kHz, 1 MHz and 2 
MHz.  The RMS value and the peak signal-to-noise 
ratio of the AE bursts under these sampling rates are 
provided in Table 1. 
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Table 1:  The RMS and SNR of the AE bursts under 
different sampling rate 

  
 From Table 1, we can see that when the sampling 
rate is < 500kHz, the energy level of the AE bursts 
measured by RMS is reduced by one order.  Therefore, 
the peak SNR was not calculated.  This indicates that 
some contents in the AE bursts are lost due to the low 
sampling rate.  However, as the sampling rate increases, 
the more noise contents are sampled and the SNR 
decreases as a result.  Based on the results above, 500 
kHz was selected as the sampling rate of. 

4.2 Wavelet Parameters Optimization 

In order to demonstrate the influence of the wavelet 
parameters on the wavelet coefficients, two sets of a 
and β  values were used to process the AE bursts 
collected from the sensors at different locations.  The 
results are shown in Figure 6 and Figure 7.  The blue 
line represents the AE signals collected from the AE 
sensor at location 1 and the red line the AE signals 
collected from the AE sensor at location 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Envelope signal of the wavelet coefficient 
with a=15.5 and β =1.2 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Envelope signal of the wavelet coefficient 
with a=24 and β =2 

 In Figure 6, for one set of parameter values, it is 
clear that we can successfully capture the arrival time of 
the peak of the AE bursts.  However, in Figure 7, for a 
different set of parameter values, we cannot obtain the 
correct information on the arrival time of the peak of 
the AE bursts.   
 The ant colony optimization algorithm was utilized 
to search the optimal value of a and β .  In our paper, 3 
ants were used.  Since for ACO the iteration number is 
important parameter which influents the performance of 
the ACO.  Too small number of the iterations cannot 
guarantee the ACO in finding the global maximum 
value and too large number of the iterations will cost 
more time and therefore decrease the efficiency of the 
optimization process.  In our paper, 800 iteration 
numbers were chosen.  The parameters of the ACO 
were determined based on trial and error method since 
the main scope of this paper was not on improving the 
efficiency of the ACO algorithms.  The time for ACO 
optimization is about 1.34 minutes. 
 In order to quantify the result obtained by ACO, the 
true value should be known.   The kurtosis values were 
calculated in ]60 ,1[∈a  and ]16 ,1[∈β  for the step size 
of 0.01.  The kurtosis values in the (a, β ) plane is 
shown in Figure 8.  The running time was 53 minutes, 
which is slower than the ACO.  That means, in real-
time applications, it would much quicker to use ACO to 
search the approximate maximum value than the 
exhaust search method.   
 

Sampling  
Rate 2 MHz 1 MHz 500 

kHz 
200 
kHz 

50 
kHz 

RMS 0.0398 0.0363 0.0318 0.0075 0.0052
Peak  
SNR 12.58 19.21 22.46 - - 
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Figure 8: The Kurtosis values in the (a, β ) plane 

 

4.3 Analysis Results 

Totally, 1000 AE bursts were collected for the AE 
sensors at two different locations.  The waveforms of a 
sample set of AE bursts are shown in 9.  The wavelet 
coefficients of the processed AE bursts in Figure 9 are 
shown in Figure 10. 
 
 
 
 
 
 
 
 
 
 

Figure 9: The AE signals: (a) at location 1 and (b) at 
location 2 

 From Figure 10, we can see that the peak amplitude 
at sensor location 1 occurred at 0.14 ms while the peak 
amplitude at sensor location 2 occurred at 0.24 ms. That 
is, the AE burst caused by the gear fault reached sensor 
1 0.1 ms earlier than sensor 2.  This is a clear indication 
that the gear at location 1 is a damaged one.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 10:  The processed AE signals: (a) at location 1 
and (b) at location 2 

 Totally 1000 AE bursts for each sensor were 
processed in the same way and the time differences 
were extracted.  The distribution of the time difference 
is shown in Figure 11.  From Figure 11, we can see that 
the arrival time difference between 0.05 ms and 0.1 ms 
accounted for about 55% of all the AE bursts.  And 
arrival time difference between 0.05 ms and 0.3 ms 
accounted for more than 90% of all the AE bursts.  This 
result clearly indicates that the proposed method is 
effective in detecting the difference between the arrival 
times of the AE bursts to two different sensor locations. 

 
 

Figure 11:  The distribution of the time differences 
between the two different locations of the sensors 

 

5 CONCLUSION 

In this paper, a methodology on STG gear fault location 
detection using AE sensors was presented.  Wavelet 
transform was applied to process the AE signals 
collected from different sensor locations to determine 
the arrival time of the AE bursts.  By analyzing the 
arrival time of the AE bursts, the gear fault source 
location was determined.  The parameters of the 
wavelet were optimized by using ACO algorithm 
effectively.  To validate the methodology and 
demonstrate the effectiveness of the presented method, 
an experimental setup using a notational STG to collect 
the AE signals at different locations in the gearbox was 

 

0.1 ms 

β  α Value 
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implemented.  Pencil lead break tests were first applied 
to determine the sampling rate of the data acquisition 
system.  By analyzing the Fourier spectrum, RMS and 
peak SNR of the AE bursts from the pencil lead break 
tests, the sampling rate of 500 kHz was selected.  AE 
sensor signals at the locations of healthy and damaged 
output driving gears were collected simultaneously to 
determine the location of the damaged gear.  The 
distribution of the detected arrival times of the AE 
bursts coming from the damaged gear clearly indicated 
the effectiveness of the presented methodology. 
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