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ABSTRACT 

Among systems that provide sensor data of their 

performance, one approach to prognostic estimation is 

forecasting, i.e. prediction of measurable parameters 

and comparison of predicted values against established 

operational limits.  Forecasting can be attempted 

statistically, or can be based on rigorous physical 

simulation.  However, combining these approaches is 

difficult where system mode behavior or timing of 

system activities is uncertain, limiting the accuracy or 

applicability of a forecast.   

 

In this paper we describe a method to modify 

simulation outputs to better match current telemetry.  

We begin with a familiar autoregressive approach to 

model residuals between predicted spacecraft 

performance, provided by physics-based modeling 

tools, and up-to-date spacecraft telemetry.  This result is 

then improved by transforming the simulation result to 

better fit recent data, and the transformation is applied 

to generate more accurate future predictions.  The 

method is suitable for real-time signal prediction.  We 

will motivate this approach and characterize its 

performance using example telemetry from the NASA 

Mars Exploration Rover spacecraft.
*
 

 

1.  INTRODUCTION 

 

While spacecraft cannot be maintained in the classical 

sense, prognostics can be relevant to spacecraft 

operations, either to support activity planning or to 

detect and prevent operational trends that would lead to 

spacecraft safing.  At present, trend analysis is usually 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

performed by hand, relying upon sophisticated physics 

simulation (Kordon and Wood, 2002).   

 

Hand-driven analysis remains dependent on spacecraft 

telemetry, as do the simulations themselves.  The 

spacecraft and its environment are difficult to simulate 

and may change dramatically in a short period of time.  

This is particularly true of spacecraft in complex 

environments such as landers or rovers.  In addition, the 

physics models of the spacecraft response are often 

extremely complex and dependent upon dozens or 

hundreds of parameters, which precludes using them in 

a reactive manner.  As a result, the simulations cannot 

be quickly adjusted if there is a sudden change in 

environment, a decision to reschedule or delay 

spacecraft activities, or an unexpected change in 

spacecraft state.  Typically the simulation outputs, 

referred to as “predicts,” are updated only on a regular 

basis, at intervals of one to several days depending on 

the mission. 

 

Simple statistical methods of trending such as 

autoregressive (AR) methods can react immediately to 

sensor updates or changes to planned behavior.  AR-

based approaches are often tried but may prove 

insufficient given the extreme complexity of spacecraft 

behavior, and may suffer from false alarms.  The ideal 

balance from an operational perspective is a mixture of 

techniques that leverages deep physical understanding 

of spacecraft behavior, yet remains flexible and 

tailorable to fit sensor updates as they arrive.  In this 

paper we describe one such approach, designed to 

modify the “predicts” in response to new data. 

 

1.1 Prognostic Forecast Example:  Mars Rover 

 

A useful illustration is the thermal behavior of the Mars 

Exploration Rover (MER).  Electronic components of 

the MER heat up when switched on and cool at their 

own individual rate when quiescent.  Depending on 
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rover orientation, these components may be shaded, 

exposed to Martian wind, or loaded with additional 

solar radiation reflected from the ground or another part 

of the vehicle.  Temperatures tend to follow a “daily” 

cycle that depends on the Martian season, latitude, and 

angle of terrain.  In other words, the thermal state of 

electrical components is complex, and also highly 

dependent on the duration and timing of their operation.   

 

Accurate signal prediction is particularly important for 

spacecraft prognostics for two reasons.  First, where 

round-trip light time creates a significant delay in 

communication and control, operators can be warned of 

predicted violations of flight rules, which will lead to 

failures to execute commands and potentially strand the 

spacecraft in an undesirable state.  One example is 

forecast of spacecraft component temperatures – if the 

components exceed preset temperature limits, a fault 

protection response will be triggered, rendering their 

function unavailable.  Second, wear and component 

lifetime is dependent on operating conditions which 

cannot always be sensed with adequate fidelity.  Signal 

forecasting, particularly in combination with physics-

based models, can be used to provide much better 

estimates of the operating environment and support 

remaining life estimates.  In addition to these functions, 

the signal forecasting approach presented here can be 

used to refine predictions of sequence execution and 

spacecraft state, relevant to activity planning and 

investigations of in-flight anomalies. 

 

In our previous investigations, we demonstrated that 

forecasting MER thermal telemetry using time series 

analysis is possible but of limited potential accuracy 

(Mackey, James, and Kulikov, 2008).  There are two 

main reasons for this:  first, time series of telemetry 

data are not stationary; and second, there are spikes in 

temperature telemetry data caused by switching of 

component power.  The occurrence of these spikes 

cannot be accurately predicted from telemetry data 

alone.  These difficulties preclude a purely statistical 

forecast more than two steps ahead, or roughly ten 

minutes at best. 

 

Fortunately, there is a sophisticated model available to 

predict power and thermal behavior of the MER.  This 

model is used for activity planning but is problematic in 

mission analysis since the model data do not match the 

telemetry.  These data are typically off both in time and 

absolute value, as shown in Figures 1 and 2, due to 

inevitable discrepancies between the model inputs and 

reality. 

 

To illustrate and evaluate our hybrid approach, we will 

consider thermal telemetry data of Electronic Solid-

State Power Amplifier (SSPA), Ultra High Frequency 

(UHF) telecommunication components and of Rover 

Electronics Module (REM).  We will contrast examples 

from two Solar days (Sols), numbers 13 and 434. 

 

2.  TECHNICAL DESCRIPTION 

 

To begin, we assume that our data is composed of a 

background signal plus a superposed transient signal or 

series of signals.  These transients correspond to 

planned activities, which may occur at a varying time, 

or may not occur at all. 

 

A second important assumption is that it is the actual 

value, and not just the shape of the signal, that is 

important.  This is intuitively obvious for temperature 

prediction, where exceeding a temperature limit could 

cause physical damage, and the spacecraft will 

automatically interrupt its operation to protect itself.     

This behavior is typical of numerous spacecraft 

subsystems, e.g. voltage and current limits, limits on 

orientation or motion of movable elements, etc. 

 

Let us consider MER SSPA component temperature 

telemetry and the model data for Sol 13 (Figure 1).  

There are four separate SSPA activities, which are 

given by four spikes in the plot.  To provide a telemetry 

forecast we have to take into account this specific 

SSPA activity.  One possible way is to estimate the 

spikes and to include these activities in the physical 

model, as was done in this case.  But there is a problem 

with this approach:  We do not know when the modeled 

spikes will appear.  Figure 1 clearly shows thermal and 

temporal differences between the actual telemetry 

(given by the blue dots) versus the model data (given 

by the red curve).  
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Figure 1:  SSPA component temperature telemetry and model 

data for Sol 13 

 

In addition to activity timing, differences are also 

caused by shifts in the background data, as shown in an 



Annual Conference of the Prognostics and Health Management Society, 2010 

 3  

example of UHF temperature telemetry.  MER UHF 

telemetry and the associated predict for Sol 434 are 

shown in Figure 2.  The model data (given by the red 

curve) are shifted significantly with respect to the 

telemetry (the blue dots).  Any prediction of maximum 

temperature or remaining operating margin based on 

this predict alone would be inaccurate as a result. 
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Figure 2:  UHF component temperature telemetry and model 

data for Sol 434 

 

As follows from Figures 1 and 2, the model data alone 

does not provide a particularly accurate forecast, 

especially where it is the value rather than the character 

of the signal that is important.  In both of these 

examples, the model alone underpredicts the actual 

maximum temperatures experienced.   

 

Nonetheless, the overall shape of the prediction is 

materially consistent with the actual telemetry.  It 

should be possible to simply adjust the model data to 

get a better fit with actual telemetry. There is 

precedence for this approach, treating the problem as 

one of pattern recognition, allowing us to perform 

model modification as a transformation of 2D space 

(Duda and Hart, 1973).  We can also look to modern 

approaches of image registration (Zitova and Flusser, 

2003) for inspiration. 

 

2.1 Transformation of model data 

 

A model data curve is given by a function )(tyy , 

where y is the temperature and t is the time. We will 

make a coordinate transformation as follows: 

 

t i ti t0

y i b ay i

      (1) 

 

We assume that the data are given as discrete set, a and 

b are simple coefficients, and t0 is the time shift.  

Coefficients a, b and t0 are found from a minimal 

deviation of the model data from the telemetry.  We 

will estimate a, b and t0 in two steps.  

 

First, given time t0, we compute the coefficients a and b 

from the system of equations below: 

 

NN ayby

ayby

ayby



22

11

          (2) 

 

where 
iy  and 

iy  (i=1, …, N) are telemetered values 

and the model data respectively.  The solution of this 

system is given by: 

 

[b a]T (AT A) 1(ATY )  (3) 

 

where Y [y i,...y N ]T  is the array of telemetry, and the 

matrix A is constructed from the model data as follows: 

 

   

Ny

y

y

A

1

1

1

2

1


           (4) 

 

Solving equation (3) gives us the coefficients a and b 

that best modify the model curve.  The accuracy of the 

model curve transformation to the telemetry can be 

measured by computing the average residual 

MEAN(Y Y ) , and the standard deviation 

)(STD YY , where Y [yi,...yN ]T is the array 

constructed with the model data, considering each 

element of the array as an independent measurement.  

 

For the second step, we change the time shift t0, repeat 

the procedure to compute new values for a and b 

computation again and compute STD for time t0 to see 

if the fit has improved. This search is motivated by the 

idea that mismatches between data and predictions will 

be primarily caused by a mismatch in timing of key 

events. 

 

To find the best fit, we repeat the procedure several 

times.  We assume that t0 lies within an interval of K 

samples either shifted ahead or behind: 

 

 t0 [ K t, (K 1) t,...,(K 1) t,K t,]      (5) 

 

and compute MEAN(Y Y ) (k) and )(STD YY (k) 

for times )(0 kt , (k = -K,…,K).   
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For our example, we will assume that activities, when 

they occur at all, happen within 15 samples of their 

expected time.  Curves of MEAN and STD for SSPA 

Sol 13 for K=15 and t 0.01 (hr) (or 0.6 (min)), are 

shown in Figure 3, below. 
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Figure 3:  SSPA Sol 13 error MEAN and error STD as 

functions of time shift 
 

The red dot in these plots corresponds to the 
0k -

number of the best fit, defined as the shift that produces 

the smallest error STD (if there is more than one, the 

smallest shift should be chosen), as this represents the 

best match to signal behavior, and thus the most 

reliable prediction of future results.  In the example 

above, this choice also minimizes error mean, but this 

will not necessarily be the case.  A non-zero error mean 

at the chosen shift is acceptable if it is bounded, but a 

large error mean should be investigated further.  This 

may indicate an insufficient sample window or 

structural differences between sensor data and the 

physics model.  

 

For a given 
0k  we estimate the time shift as 

tktshift *0
.  After finding tshift

, we find the 

coefficients a and b which correspond to this time shift. 

 

In this example, the best time shift is tshift
 = 0.06 (hr) 

(Figure 3), the telemetry /model error mean is equal to 

zero, and error STD = 1.  The coefficients a and b are 

found to be a = 0.96 and b = 3.29.  Using these 

coefficients, the modified model data for SSPA Sol 13 

is shown in Figure 4 (given by the black curve). 
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Figure 4:  Telemetry (blue dots), model (solid red), and 

modified model (solid black) curves as functions of time 
 

For a second example, we perform the same procedure 

for the UHF Sol 434 telemetry and model data.   

Curves of error MEAN and error STD for MER UHF 

Sol 434 are shown in Figure 5. 
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Figure 5:  UHF Sol 434 error MEAN and error STD as 

functions of time shift 
 

From Figure 5 it follows that minimal error STD 

corresponds to time shift of -0.07 hours. For this time 

shift, the mean of telemetry minus model data equals to 

zero, and the STD is equal to 0.55 degrees Celsius. The 

coefficients a and b are a = 1.32 and b = 6.27. 

 

After applying this time shift and coefficient pair, we 

arrive at the modified model data curve shown in 

Figure 6.  Telemetry and original data curves are shown 

in blue and red respectively.  As before, this approach 

yields a dramatically improved prediction. 
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Figure 6:  Telemetry (blue dots), model (solid red), and 

modified model (solid black) curves as functions of time 
 

As these examples demonstrate, equation (3) provides 

satisfactory model data fitting for a variety of 

situations. 

 

2.2 One step ahead forecast 

 

The approach described above is not limited to post 

facto analysis, but can also be used for real-time 

prediction and monitoring.  This approach also follows 

two steps.  

 

To begin, we compute the telemetry-model data 

difference: 

 
model

iii yyz         (6) 

 

where yi

model  are the modified model data described in 

Section 2.1.  In Figures 4 and 6, these data are shown 

by the black curves. 

 

Next, we treat the residual using AR(p) autoregressive 

estimation (Box et al., 1994; Brockwell and Davis 

1996; Hamilton 1996). The parameters {w} in this 

methd are the weights in the equation given below: 

 

pipii zwzwz ....11
  (7) 

 

Once these weights are found, we apply them to the 

current set of telemetry data (i=1 ,…, Ntotal)  to forecast 

the next expected value. 

 

An example of this approach is shown in Figure 7, 

demonstrating the result applied to the SSPA data of 

Sol 13.  The blue curve is the true residual 
model

iii yyz , and the red curve is the forecasted 

residual, one sample ahead of its arrival. 
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Figure 7:  SSPA Sol 13 z data (red curve) and one step ahead 

forecast (red curve) 
 

Similar results applied to the UHF data of Sol 434 are 

shown in Figure 8. 
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Figure 8:  UHF Sol 434 z data (red curve) and one step ahead 

forecast (red curve) 
 

After we have computed the forecast of the residual 

time series {zi} , we can reconstruct the actual 

telemetry values {y i} as  ̂y i  ̂z i yi

model , where  ̂y i is 

the telemetry forecast, ˆ z i  is z i
-data forecast, yi

model  is 

the modified model data.  In Figure 9 we present the 

final result for SSPA Sol 13. 

 

The result for SSPA Sol 13 one step ahead forecast is 

the following: Forecast error MEAN is 0.01 (degrees 

Celsius) and STD is 0.56 (degrees Celsius). 
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Figure 9:  SSPA Sol 13 telemetry (blue curve), modified 

model data (the black curve), and one step ahead forecast (the 

red curve) 

 

In Figure 10 we present the telemetry, the modified 

model and one step ahead forecast curves for the UHF 

temperature telemetry on Sol 434. 
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Figure 10:  UHF Sol 434 telemetry (the blue curve) modified 

model data (the black curve) and one step ahead forecast (the 

red curve) 

 

The result for UHF Sol 434 one step ahead forecast is 

the following: Forecast error MEAN is -0.01 (degrees 

Celsius) and STD is 0.41 (degrees Celsius). 

 

The results presented above are similar to those taken 

on other systems.  Tables 1 and 2 below summarize 

temperature forecast accuracy (still limited to only a 

single sample) for the SSPA, UHF, and REM 

components of MER. 

 

 

 

 

 

 

 

 

 

 

Sol 13 

REM Temperature Forecast 

Error MEAN = 0.04 (C); STD = 0.44 (C) 

tshift = 0.28 (hr); a = 0.96; b = 3.23 

SSPA Temperature Forecast 

Error MEAN=0.01 (C); STD =0.56 (C) 

tshift = 0.05 (hr); a=0.96; b=3.29 

UHF Temperature Forecast 

Error MEAN =0.00 (C); STD=0.40 (C) 

tshift = 0.35 (hr); a=1.09; b=2.7 

 

 

Table 1:  One sample ahead forecast accuracy for Sol 13 

MER data 

 

 

Sol 434 

REM Temperature Forecast 

Error MEAN = -0.02 (C); STD=0.29 (C) 

tshift = 0.2 (hr); a = 1.16; b = 7.686 

SSPA Temperature Forecast 

Error MEAN = 0.03 (C); STD  = 0.43 (C) 

tshift = -0.05 (hr); a = 1.095; b = 7.844 

UHF Temperature Forecast 

Error MEAN = -0.01 (C); STD = 0.41(C) 

tshift = -0.07 (hr); a = 1.32; b = 6.27 

 

 

Table 2:  One sample ahead forecast accuracy for Sol 434 

MER data 

 

As follows from the tables, the maximal MEAN does 

not exceed 0.04 (degrees Celsius) and the maximal 

STD of the forecast does not exceed 0.56 (degrees 

Celsius).  This is for an admittedly short forecast time; 

however, it does include periods of complex operation 

and nonlinear signal behavior, and is vastly superior to 

the accuracy afforded by either physics modeling or 

statistical trending alone. 

 

The forecasting method presented here can be extended 

using the AR(p) parameters, limited only by stability of 

the AR(p) filter.  We will consider this more general 

case in the following section. 
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3.  REAL-TIME FORECASTING 

 

In the previous section, we investigated how to use the 

model data for the telemetry forecast improvement and 

found that we can avoid inaccuracies raised by partially 

unpredictable spacecraft activities by modifying the 

model data for the best fit to the telemetry.  In this 

section we consider the problem of a real-time forecast. 

We assume that during the forecast, sensor data are 

measured on-board or telemetered to the ground and 

updated at a certain frequency.  When we have 

obtained a number of data samples sufficient to fill an 

observation window (for our examples, we assume an 

initial window size of 25 samples), we can start to 

adjust the model curve and provide an updated forecast.  

This forecast procedure can be performed with the 

following steps: 

 

Step 1:  Obtain N samples of the telemetry data 

 

Step 2: Adjust the model data as a best fit to the 

telemetry 

 

Step 3: Compute AR(p) coefficients and provide 

forecast 

 

Step 4: When the next telemetry data sample 

arrives, adjust the model data as the best fit to the 

new N+1 sample telemetry data set and provide 

forecast again 

 

This process continues as long as desired.  The sample 

window used to compute the forecast can be allowed to 

grow or can be fixed in size, gradually dropping old 

data, if needed for reasons of computational speed. 

 

We will illustrate this process using the SSPA Sol 13 

data, as it is the most challenging example considered 

here.  We begin with the one step ahead telemetry 

forecast as described above. After collecting 25 

samples of telemetry data, we begin adjusting the 

model data and compute the AR(3) parameters to begin 

our forecast. For this example, we will expand the 

window size every time new telemetry arrives. The 

results of the forecast are the following: 

 

Model curve adjustment MEAN and STD of a and b 

coefficients, as the window grows in size to cover an 

entire Sol of operation, are shown in Figure 11. Over 

time, we find that both a and b fluctuate, but remain 

bounded, according to different “stretching” of the 

spacecraft activity timeline at different times of 

operation.  Parameters a and b are also not independent, 

which is expected given their physical meaning.  

Statistics on these coefficients are as follows: 

 

 a) MEAN (a) is 0.897 STD (a) is 0.021; 

 b) MEAN (b) is 4.751 STD (b) is 0.395  
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Figure 11:  Change of the coefficients a and b over a full Sol 

of operation 

 

As before, we also find the optimal time shift at each 

sample.  The time shift MEAN is 0.06 (hr), STD of the 

time shift is 0.012 (hr).  

 

The computed real-time one step ahead forecast, 

plotted against actual telemetry and the original model 

data for SSPA Sol 13 are shown in Figure 12.  In this 

plot the telemetry data are shown by the blue curve, the 

forecast is the black curve and the original model data 

are the red curve. Forecast look ahead time is 0.07 (hr) 

or 4.3 (min).  The first 25 points of telemetry data, 

required to start the forecast, are highlighted with 

magenta dots. 
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Figure 12:  SSPA Sol 13 telemetry (blue curve) one- step 

ahead forecast (black curve) and model data (red curve) 

 

For Figure 12, mean and standard deviation of the 

forecast data in comparison to telemetry are as follows: 

Forecast MEAN is 0.13 (degrees Celsius) and STD is 

0.74 (degrees Celsius). 
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Finally, we present an example with our forecast 

extended to 13 minutes. This forecast is computed by 

extending the AR(3) prediction by three samples and 

reconstructing using the modified model data as before. 

The forecast of SSPA Sol 13 is shown in Figure 13; 

telemetry data are shown in blue, the forecast is shown 

in black, and the original model data are shown in red.  

As before, the first 25 points of telemetry data are 

required to start the forecast, as shown by the magenta 

dots. 
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Figure 13:  SSPA Sol 13 telemetry (blue curve) three steps 

ahead forecast (black curve) and model data (red curve) 

  

Mean and standard deviation of the forecast data in 

comparison to telemetry are:  Forecast MEAN is 0.27 

(degrees Celsius) and STD is 1.3 (degrees Celsius).  As 

follows from Figures 12 and 13, there remain no 

forecast errors related to electronic switching behavior.  

We have successfully removed these errors by 

including additional information about the SSPA and 

its planned behavior using the physical model predict.  

 

3.1 Limitations of Technique 

 

The approach presented here is extremely flexible and 

applicable to a wide variety of sensor data.  However, 

like any attempt at curve-fitting, it can provide 

misleading or inaccurate results if pushed beyond 

prudent limits.  A few guidelines for application of this 

method are as follows: 

 

1. Time shift should be restricted to an interval 

no longer than the characteristic time of a 

single operation.  Otherwise, the algorithm 

may attempt to fit one operation in a sequence 

to a different one entirely. 

2. Wherever possible, confirm that modeled 

activities actually take place as planned.  If the 

spacecraft activity deviates sufficiently from 

the original plan, any precomputed predict 

may be worse than useless, and should not be 

used for prediction. 

3. Test the AR(p) filter for stability, and limit the 

maximum look ahead accordingly.  By 

adjusting the predict and reducing the 

magnitude of residuals, the forecast presented 

here is much less sensitive to error in the 

autoregressive parameters.  However, even 

minimized, the autoregressive approach can 

yield unstable solutions if extended too far 

into the future. 

4. CONCLUSION 

 

In this research we present a method of telemetry 

forecast improvement using physical model predictions 

alongside of recent sensor data.  This approach 

formalizes the concept of adjusting the model predict, 

both in absolute magnitude and timing of key features, 

to reduce the discrepancies between actual data and 

predicted data.  These residuals are then treated 

statistically to produce an accurate forecast of future 

values.  To evaluate this approach, we considered 

examples of thermal data from the Mars Exploration 

Rover mission, focusing on the temperature behavior of 

SSPA, UHF and REM components during two different 

cycles of operation.   

As demonstrated above, we found that the standard 

deviation of the resultant forecast versus actual 

telemetry data does not exceed 1 degree Celsius – the 

limit of sensor resolution -- for up to three steps ahead 

(12.8 min in advance) for SSPA Sol 13 using this 

method. 

 

While this style of forecast differs from that found in 

prognostic-driven maintenance, it is still of 

considerable value to spacecraft operations.  A 

forecasted warning of only a few minutes, if available 

on board, could practically eliminate spacecraft safing 

events brought on by spacecraft activity and 

underestimated performance margin.  This predictive 

ability also provides spacecraft operators with advance 

warning of problems and a rapid quantification of 

anomaly severity. 

 

This approach could potentially be adapted to treat less 

dynamic prognostic data, for example the expected 

versus estimated lifetime performance curve of a 

component experiencing wear.  The underlying 

assumptions allow for virtually any kind of physical 

model or sensed quantity.  At present, our approach has 

only been tested upon examples of directly sensed 

physical quantities, but has been found to perform well 

on a variety of difficult signals. 
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