
Annual Conference of the Prognostics and Health Management Society, 2010 

 1 

Towards Defining and Allocating PHM Requirements for 
Military Systems 

Joel J. Luna 

Frontier Technology, Inc., Beverly, MA, 01915, USA 
jluna@fti-net.com   

 
 

 
ABSTRACT 

Issues and methods of relating program 
requirements to PHM requirements and 
allocation of PHM requirements to lower 
system levels are discussed as alternatives to 
technology-driven approaches.  This paper 
focuses on evaluating program requirements 
for improving reliability for military systems 
with a required maintenance free operating 
period.  Reliability improvements are related 
to PHM attributes, which are condensed to 
two primary attributes:  coverage and 
inefficiency.  Methods of allocation of higher 
level PHM requirements to lower level 
requirements are examined, focusing on a 
normalized weighting approach.  An 
alternative approach beginning with coverage 
estimates is also examined.  A discrete-event 
simulation model is developed and exercised 
to confirm analytical results.* 

1 INTRODUCTION 

The application of Prognostics and Health Management 
(PHM) technology is largely technology driven – the 
focus of much of the effort in the field is on developing 
technologies which are hoped to transition to 
developing or fielded systems.  One starts with a 
technology which appears promising or seems like a 
good idea, and then goes and looks for an application in 
which it can benefit the target system.  But success in 
finding transition targets for technologies is dependent 
in a large degree on the ability to make the business 
case for its adoption, i.e., to justify its benefits using 
metrics such as return on investment (ROI).  In this 
sense PHM seems very much like a solution looking for 
                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

a problem where added value needs to be demonstrated 
in order to be adopted. 
 Another approach is to adopt PHM technology 
because of its general promise without any specific 
goal or requirement, such as the adoption of health 
usage monitoring systems (HUMS) in the US Army 
Blackhawk UH-60 program.  On the basis of a general 
expected added value, large investments are made in 
building an infrastructure and diagnostic/prognostic 
capability into an existing fleet with the expectation of 
improvements in reduced manhours, mission aborts, 
etc., but without being driven specifically by required 
objectives and thresholds.  In general, the approach is 
to define and use metrics from the fleet to look for 
evidence of a benefit, to justify after the fact that 
benefits are, in fact, being experienced. 
 Integrating PHM into a new system, subsystem, or 
component requires specific performance requirements 
for the PHM technology, which is recognized and 
described in (Di Lorenzo and Bayer, 2009).  Those 
specific PHM performance requirements should be 
clearly related to system Key Performance Parameters 
(KPPs), and in fact, should be derived from them.  This 
is often not the case, however, due to a lack of ability to 
quantify the relationship between PHM requirements 
and KPPs. 
 The purpose of this paper is to explore how PHM, 
prognostics in particular, can be represented by 
attributes which can be related to overall KPPs and to 
allocation of system reliability and maintainability 
requirements to lower levels during the design process.  

2 DRIVING PHM REQUIREMENTS BY 
PROGRAM REQUIREMENTS 

While PHM can yield benefits in program areas such as 
system safety, reliability, maintainability, logistics 
support, and training, the readiness KPP of operational 
availability (Ao) as defined in the RAM-C manual 
(DoD, 2009) is the focus of this paper.  It should be 
noted that programs may use a more focused metric, 
such as the Joint Strike Fighter program, which elected 
to use Sortie Generate Rate (SGR) instead.  The choice 
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of SGR allowed for a more direct measure of the key 
parameter desired, which was the rate at which sorties 
could be flown from a representative squadron.  The 
use of SGR rather than Ao allowed the inclusion of 
additional concepts such as flying window and periodic 
downtime for maintenance, which are more difficult to 
measure with a metric like Ao.  In addition, the 
verification of SGR is performed via discrete-event 
simulation of operation and support of the JSF 
(ASCLCOM, 2010), which provides a more realistic 
assessment of the effect of constraining resources on 
the ability to achieve SGR objectives than a simple 
computation such as Ao.  Nonetheless, its use in this 
paper allows for a simple analytical solution to 
compare to simulation results, while more complicated 
metrics, such as SGR, cannot be computed analytically. 
 The use of simulation to assess the impact of PHM 
on program KPPs is described in a separate paper 
(Luna, 2009).  The focus of this paper is not on 
assessment of PHM impacts, but on approaches and 
methods for defining what PHM requirements should 
be, given what overall KPP requirements are.  The use 
of simulation in this paper, however, serves to validate 
the simulation results with simple analytical solutions 
for Ao, which helps gain confidence in simulation 
results when more complex KPPs are used to evaluate 
the impact allocated PHM requirements can have.   

2.1 Considerations of Operational Availability 

Computation of Ao from the RAM-C manual is defined 
as the difference between operational uptime and 
operational downtime divided by operational uptime.  
The downtime in this case includes both scheduled and 
unscheduled maintenance.  The benefits resulting from 
PHM can differ for each type of maintenance (a more 
detailed examination overall of prognostic benefit areas 
is provided in (Luna, 2009)).  The primary benefit for 
unscheduled or corrective maintenance, particularly for 
mission aborting or mission affecting (i.e., critical) 
failures, is to avoid undesirable consequences of those 
failures by avoiding the loss of mission or ability to be 
assigned to a mission and/or by fixing at a convenient 
place and time.     
 The focus in this paper is largely on avoiding loss of 
mission or ability to be assigned to a mission due to 
maintenance of a mission affecting failure.  In other 
words, in consideration of Ao, the operational uptime is 
considered that time that the system is desired to 
operate maintenance free.  For example, the operational 
use concept of a ground radar system may be to be able 
to operate the radar maintenance free for 23 hours, 
followed by an allowed downtime of 1 hour.  The 
failures that occur in that 23 hours that must be fixed in 
that 23 hour window are of critical importance, since 
they cause the system to be down during the time that it 

is required to be up.  Similarly, a squadron of military 
aircraft may need to fly missions during a 16 hour 
flying window, followed by an allowed downtime to 
perform maintenance.  Any failures that cause an 
aircraft to be unavailable in the flying window are also 
considered critical.  Since the downtime in the Ao 
computation involves both scheduled and unscheduled 
downtime, an availability measure which specifically 
targets the unscheduled downtime is particularly 
relevant to identifying the benefits of PHM in 
predicting the unscheduled failures in advance and 
repairing them during an allowed downtime so as not to 
impact the maintenance free period.  For this reason, 
the following availability (Aocrit) is defined, 
 
        Aocrit = (uptime - downtimeunsched_crit)/uptime       (1) 
 
where uptime is the maintenance free period and 
downtimeunsched_crit is the time that the system is down 
during the maintenance free period due to unscheduled 
maintenance of mission aborting or mission affecting 
failures.  This downtime is given by, 
 
         downtimeunsched_crit = λucrit*uptime*MDTcrit             (2) 
 
where λucrit is the rate at which critical failures occur, 
uptime is the maintenance free period, and MDTcrit is 
the mean time the system is down to repair critical 
failures.  Rearranging Eq. (1) and substituting in Eq. (2) 
yields 
 
                  Aocrit = 1 - λucrit * MDTcrit                 (3) 
 
 At this point it is worth noting that Aocrit can be 
increased by decreasing λucrit or MDTcrit or both.  
Improved diagnostics or advanced warning for 
reductions in administrative or logistics lead times can 
be used to reduce MDTcrit, while using indications of 
failure in advance to perform maintenance outside of 
the maintenance free operating period reduces λucrit.  
Conversely, if Ao is held fixed, decreasing λucrit or 
MDTcrit or both results in allowing for an increase in 
uptime, or an increase in the maintenance free period.  
It is important to remember that the improvement of 
Aocrit or extension of the maintenance free period occurs 
in the context of an identified allowable scheduled 
downtime for performing the maintenance outside of 
the maintenance free period. 

2.2 Operational Availability Allocation 

As seen from the previous section, PHM can be applied 
to increase maintainability (by reducing MDTcrit) or 
reliability (by reducing λucrit) or both.  Current methods 
for allocating reliability and maintainability 
requirements to achieve availability goals can be used 
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to similarly help identify the focus of PHM benefit 
desired.  In this paper, the focus will be on using 
reliability requirements to allocate PHM requirements.   

2.3 Reliability Improvement and Allocation 

Perhaps it is a misnomer to refer to reducing λucrit by 
means of effectively converting unscheduled to 
scheduled maintenance as reliability improvement, 
since there is no actual reliability improvement 
involved.  Yet, the effect on Aocrit is the same as if λucrit 
were reduced by means of reliability improvement.  
What is different is that the frequency of maintenance 
actions is not reduced, and may be increased depending 
on the point at which the maintenance is performed 
relative to the actual failure.   
 The application of PHM for effective reliability 
improvement then must be considered as part of the 
overall reliability allocation and improvement for a 
system.  In (Bedard, 2009), prognostics is considered as 
an alternative to actual reliability improvement via 
reliability growth, with a rule-based screening process 
as the basis for deciding which components are best for 
prognostics versus reliability growth.  The use of more 
sophisticated methods involving cost estimates for 
incremental reliability improvements, such as in 
(Ebeling, 1997), can be extended to include PHM as an 
alternative as well, although the development of such 
an approach is considered outside the scope of this 
paper.    
 The focus of this paper is to look at reliability 
allocation methods for applicability to allocating PHM 
requirements, in particular, the Base Apportionment  
method as described in (Crowe, 2008). This method 
represents several other methods as well, such as the 
Equal Apportionment and ARINC methods, since it is 
based on defining a set of normalized weighting factors 
at each level which are applied to the higher level’s 
allocated failure rate, where the source of the values for 
the weighting factors differs based on the approach.  

3 PHM ATTRIBUTES 

Before going further, the specific PHM attributes being 
considered in this paper need to be defined.  In (Luna,  
2010), five different attributes, as shown in Table 1, 
were defined for evaluating the relationship of PHM 
attributes with cost attributes.  For the purpose of this 
paper, these five attributes were condensed into two 
(coverage and inefficiency) based on the observation 
that the effects of the latter four attributes were 
inversely related to coverage (that is, as increases in 
coverage increase cost avoidance, there is a 
corresponding increase in the effects of the latter four 
attributes which serve to decrease cost avoidance.  The 
method of condensing these attributes is explained in 
the next section.   

Table 1: Summary of Prognostic Attributes 
 

Factor Symbol Description 

Coverage ƒ The fraction of failures in 
item failure rate (λ) which 
are designed to be or can 
be detected by 
prognostics 

Missed failure α Probability or fraction of 
failures that occur before 
predicted failure 

Wasted life γ Ratio of average rate of 
wasted life (or inverse of 
mean wasted life per 
failure) to item failure 
rate (λ) 

False alarm δfa Ratio of false alarms to 
'covered' failures - i.e., of 
the failures that are 
designed to be or could 
have been detected by 
PHM (whether actually 
detected or not) 

PHM failure δpf Ratio of PHM failures to 
'covered' item failures - 
i.e., of the failures that are 
designed to be or could 
have been detected by 
PHM (whether actually 
detected or not). 

3.1 Considerations of the Effects of the PHM 
Attributes on Critical Unscheduled Failure Rate 
(λucrit)  

The effects of the PHM attributes on critical 
unscheduled maintenance can be formulated readily.  In 
this paper, point values (representing average values) 
are used to provide greater clarity and insight into the 
relationships between the PHM attributes and 
availability measures.  In fact, the attributes are likely 
to be probabilistic, which is addressed by the use of 
stochastic simulation later in the paper.  First, the 
‘covered’ failures, that is, those failures for which PHM 
is intended to detect and predict, can be simply defined 
by the failure rate (λucrit) multiplied by the coverage 
factor (ƒ).  Of those failures that are intended to be 
predicted so that they can be scheduled to be repaired 
during an allowed downtime, a portion will be missed 
(factored by α), so that the rate of missed failures is 
given by, 
 
                  λucrit_missed = λucrit * ƒ * α                (4) 
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Similarly, assuming failures due to the PHM 
technology itself are not detected or predicted by the 
PHM technology (e.g., sensor failures), the rate of 
PHM failures is given by, 
 
                   λucrit_phm_fail =  λucrit * ƒ * δpf               (5) 
 
Likewise, false alarms which cause a fix action during 
the maintenance free operating period are given by, 
 
                 λucrit_false_alarm =  λucrit * ƒ * δfa               (6) 
 
It should be noted that false alarms could also result in 
a fix action during allowed downtime, but in this paper 
the worst case is assumed that false alarms result in 
unscheduled downtime.  Those failures which are not 
intended to be predicted by the PHM technology, or, 
are not ‘covered’, are given by, 
 
                 λucrit_not_covered =  λucrit * (1-ƒ)               (7) 
 
So that together, the sum of Eq.s (4) – (7) constitute the 
unscheduled maintenance, which can be reformulated 
as, 
               λucrit_phm =  λucrit * (1-ƒ*(1- ε))               (8) 
 
where ε is the inefficiency attribute mentioned earlier 
and is given by, 
 
                               ε = α + δpf + δfa                                             (9) 

 

It can be seen more clearly from Eq. (8) that missed 
failures, PHM technology failures, and false alarms act 
to reduce the positive effect of coverage in reducing the 
critical failures that occur during the maintenance free 
period.  Eq. (8) was then used as the basis for 
examining the surface of reliability improvement as a 
function of coverage and inefficiency.   

3.2 Prognostic Horizon and Take Action Points 
(TAPs)  

One PHM attribute that may seem noticeably absent is 
prognostic horizon, which figures prominently in other 
efforts to define PHM attributes and metrics for 
decision making (Saxena, et al., 2009).  While the 
concept of prognostic horizon makes sense for 
evaluating and comparing prognostic algorithms, it 
makes less sense in an operational and support concept.  
There will already be specific types of actions that a 
decision maker (i.e., an operator or maintainer) will 
want to take, such as order a spare in advance, 
preposition resources, fix immediately, fix before the 
next mission, fix at the next scheduled downtime, or fix 
when already fixing something else (opportunistic 
maintenance).  The point at which a decision maker 

will want to take action, or Take Action Points (TAPs), 
are dependent on the maintenance and supply 
opportunities defined by the maintenance concept and 
operation.  For example, the TAP for ordering a spare 
is dependent on the spare lead time (the time it takes to 
order and receive a spare).  The TAP for mission 
aborting or mission affecting failures is the time 
between allowed downtimes, at a minimum.  The 
decision maker is only interested in knowing in 
advance of a given TAP with a sufficient degree of 
confidence whether or not to take that action.  The 
more uncertain the prediction, the more in advance of a 
TAP a decision maker will need to make a decision if 
the same level of confidence is desired.  An example of 
an evaluation of the effect of uncertainty on increased 
time before decision points is provided in (Luna, 2009).         

4 DERIVING SYSTEM LEVEL PHM 
REQUIREMENTS FROM AVAILABILITY 
REQUIREMENTS 

Using Eq. (8) to relate coverage and inefficiency to 
λucrit_phm and Eq. (3) to relate λucrit_phm to Aocrit by 
substituting λucrit_phm for λucrit, the relationship between 
required coverage and inefficiency values can be 
determined.  Figure 1 shows the coverage required for a 
range of inefficiencies for Aocrit ranging from 0.991 to 
0.999 where MDTcrit = 1 hour, and λucrit = 0.01 failures 
per hour (MTBCF = 100 hours).   
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Figure 1: System Coverage Requirements from 
Availability Requirements 

 
For very low inefficiency (0.05), the coverage required 
to meet Aocrit requirements varies linearly from about 
10% for Aocrit = 0.991 to above 90% for Aocrit = 0.999.  
As inefficiency increases, the requirement for coverage 
increases more rapidly as seen by the increasing slope 
of the plotted lines.  It can also be seen that the 
minimum acceptable coverage also increases, ranging 
from 10% for low inefficiency up to about 25% for 
Aocrit = 0.991.  This means that the worse your PHM 

ε 

(Aocrit) 
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capability is, the more the coverage requirement is 
driven up. 
 It is interesting to compare these results with the 
increase in MTBCF (the inverse of λucrit) required to 
meet the same Aocrit objectives, as shown in Figure 2.  
While fairly linear for low Aocrit values, it becomes 
highly nonlinear from about 0.996 or 0.997.  If the 
costs to implement vary with coverage and MTBCF 
increases, then small improvements may be more 
economical to accomplish through increasing inherent 
reliability than applying PHM, while larger 
improvements may be more economical to implement 
with PHM. 
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Figure 2: Reliability Design Requirements from 

Availability Requirements 
 

 In any case, Figure 1 shows that PHM requirements 
(in terms of the two attributes coverage and 
inefficiency) can be derived from availability 
requirements when the goal is to reduce downtime 
during a maintenance free period.  

5 ALLOCATING PHM REQUIREMENTS 

Once PHM requirements for the system have been 
derived, how can they be allocated to lower levels, such 
as to subsystems and components?  One obvious source 
of potential methods to apply is from the area of 
reliability allocation.  Several classic methods exist 
which rely on the normalized weighting of lower level 
failure rates, such as the Equal Apportionment, Base 
Apportionment, and ARINC methods (Ebeling, 1997; 
Crowe, 2008), which can be summarized by the 
following, 
 
              λsys = w1λ1 + w2λ2 + … + wnλn                   (10) 
 
where there are n subsystems (or lower levels to which 
λsys is to be allocated) and ∑wi = 1.  The key to this 

approach is the source of information to determine the 
values for the weights, which can be set to be equal 
(1/n), a proportion of the subsystem to system failure 
rate (λi/λsys), or by some other means determined by the 
user.  Each of these approaches is considered in the 
sections that follow. 
 The example used to examine each approach to 
allocating PHM requirements is that of a radar system 
composed of four components (antenna, transmitter, 
receiver, and processor).  While a significantly larger 
number than four components could have been used in 
the example, a smaller number allows for simplicity 
and greater clarity.  An improvement in λucrit among the 
four components is desired for the radar system with a 
MTBCF of about 150 hours.  The components of the 
radar system have existing or predicted MTBCFs of 
3500, 750, 300, and 595 hours for the antenna, 
transmitter, receiver, and processor, respectively.  The 
desired improvement is a 15% increase in MTBCF, 
which would yield an improved MTBCF = 173 hours.  
With a MDTcrit = 2 hours (1 hour for administrative 
delay and setup and 1 hour for repair), the resulting 
baseline Aocrit is computed using Eq. 3 as 0.9867, while 
the improved Aocrit is computed to be 0.9885. The 
recommended allocations are computed analytically, 
and then confirmed via logistics simulation of the radar 
system using the discrete-event simulation ASC LCOM 
(ASCLCOM, 2010) previously described in performing 
PHM benefit analysis in (Luna, 2009). 

5.1 Equal Weighting  

In this approach, the amount of reliability improvement 
desired is equally divided among the four components, 
as shown in Table 2.  The MTBCF is shown for each 
component in the first column, along with its inverse 
(λucrit) in the second column.  The weight for each 
component is provided in the third column, which is 
used to multiply the overall λsys = 0.006633 to 
determine the reduction in each component’s λucrit, 
which is then subtracted from the original λucrit to get 
the new reduced λucrit.  This value is inverted to get the 
new MTBCF in the fourth column, and then the 
percentage increase from the original to the improved 
MTBCF is shown in the fifth column. 
 

Table 2: Equal Weighting 
 

MTBCF λucrit w 
New 

MTBCF 
MTBCF 
increase 

3500 0.000286 0.25 14405 312% 

750 0.001333 0.25 895 19% 

300 0.003333 0.25 321 7% 

595 0.001680 0.25 683 15% 

(Aocrit) 
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 The requirements on PHM to produce such MTBCF 
increases in each component can be evaluated using a 
similar approach to that described earlier for λucrit , but 
based on a percentage increase in MTBCF, as shown in 
Figure 3.  In this figure, coverage requirements are 
shown along the vertical axis, while the required 
MTBCF increase is shown along the long horizontal 
axis for different inefficiency values along the short 
horizontal axis.  Using the percentage MTBCF 
improvement requirements from the fifth column of 
Table 2 and the equations to related percentage 
MTBCF to coverage and inefficiency requirements 
from Figure 3, the coverage requirements would be 
80%, 17%, 7%, and 14% for the four components 
respectively for a low inefficiency (ε = 0.05).  Different 
coverage requirements for different inefficiency values 
could be obtained for the same desired component 
MTBCF improvement, and could be used to evaluate 
various PHM technologies to satisfy those 
requirements.  
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Figure 3: Reliability Design Requirements from 
Availability Requirements 

 
It can be seen that using this method results in a 
requirement for quite a significant increase to the 
MTBCF of the antenna, the first component, which in 
turn results in a significant coverage requirement of 
80%.  Such a high coverage requirement may not be 
technically feasible.  A weakness in this approach, then, 
is the allocation of requirements which may have 
unacceptably high technical risks. 

5.2 Simulation  

A discrete-event simulation model of the radar system 
with four components operating in a maintenance free 
environment as described earlier was developed to 
assess the actual impacts of coverage and inefficiency.  
An obvious advantage of simulation is to model 
uncertainty connected with PHM attributes which was 

not reflected in the simple analytical equations.  In 
addition, simulation also provides not only single point 
values for Aocrit, but also confidence values for Aocrit 
based on the variation of PHM attributes as well as 
uncertainties in the system’s operation and support.  
The simulation model explicitly handles the prediction 
of failures and performance of maintenance during 
allowed downtimes to examine whether the coverage 
and inefficiency values determined above are 
reasonable for estimating improvement to Aocrit.  Most 
modeling approaches model the effects of PHM in 
terms of non-PHM attributes, such as reduced lead 
times and larger MTBFs, while ASC LCOM is one of 
the few models that actually models the mechanisms of 
PHM as they apply to operational and logistics decision 
making based on the PHM attributes.  The way in 
which these modeling mechanisms are implemented is 
discussed briefly below, but in more detail in (Luna, 
2008; Luna, 2009). 

5.2.1 Times to Fail and Coverage 
Stochastic values for time to failure are generated for 
each of the four components in the simulation model.  
An exponential distribution was used to generate each 
of the stochastic times to fail, although a number of 
other distributions could have been used.  A new time 
to fail for a given component is generated initially at 
the start of the simulation, and subsequently whenever 
it is replaced, whether in advance of failure during 
scheduled downtime, or when it fails during the 
maintenance free operating period.  The covered 
failures were modeled separately from failures that are 
not covered, so that two distributions were needed for 
each component.  This required dividing the component 
MTBFs between covered and not covered.  This was 
implemented by dividing the current MTBF by the 
coverage value obtained above for the covered values, 
i.e., for component i, 
 
          MTBCFi_covered = MTBCFi/coverage           (11) 
 
which for the first component yielded an MTBCFcovered 
= 3500/80% = 4392 hours.  The MTBCF for the 
uncovered values were derived by dividing by 100 
minus the coverage percent, which for the first 
component yielded MTBCFuncovered = 3500/20% = 
17231 hours.  These two values were used to drive the 
failure mechanisms in the simulation (only a single 
parameter was required since exponential distributions 
were used for covered and uncovered failures).  It 
should be noted that coverage was not implemented as 
a random variable within the simulation.  To account 
for variation in coverage, different coverage 
percentages could be used to compute the parameters 
for the failure time distributions.  Alternatively, logic 
could be defined in the model input file which allows 
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Time

Allowed Predictions 
Occurring After Actual 
Failure

MPFWC

Actual 
Failure

Offset Corresponding 
to Allowed Predictions 
after Failure

Time

Allowed Predictions 
Occurring After Actual 
Failure

MPFWC

Actual 
Failure

Offset Corresponding 
to Allowed Predictions 
after Failure

failures for each component to be randomly assigned as 
covered or not covered based on the coverage 
percentage.  

5.2.2 Missed Failure  
The value for missed failure probability (α) is defined 
by the user as an input, and is used to define the offset 
of the component’s prediction distribution from the 
component’s actual time to failure as shown in Figure 
4.  When the actual failure (the solid vertical line in 
Figure 4) has been randomly generated by the 
simulation, a corresponding prediction of time to 
failure is also randomly generated from a prediction 
distribution.  The first parameter (mean predicted 
failure with confidence, or MPFWC, in Figure 4) of the 
predicted failure time is fixed by the simulation with 
respect to the actual failure by α (referred to as 
“allowed predictions occurring after failure” in Figure 
4) and by the standard deviation of the prediction 
distribution (also entered by the user as input). The 
standard deviation of the prediction distribution 
accounts for the precision of the prediction distribution 
and the offset accounts for the accuracy.    

 

5.2.3 Taking Maintenance Action  

The user also specifies states of the aircraft with 
corresponding maintenance actions.  In this example, 
the state ‘PHMFIX’, which means to fix at the first 
opportunity outside of the maintenance free operating 
period, is specified to begin 48 hours in advance of 
predicted failure.  The user specifies maintenance tasks 
which look to see if the aircraft is in a ‘PHMFIX’ state, 
or, whether there is an opportunity to fix outside of the 
maintenance free operating period.  When such an 
opportunity occurs (once every day for one hour), the 
administrative delay is assumed to have occurred prior 
to the scheduled maintenance for that downtime, so that 
the aircraft is only down for the one hour.  Since the 
one hour of repair is conducted in the allowed one hour 

of downtime, the result is that Aocrit is not impacted by 
predicted failures which can be fixed outside of the 
flying window.  Failures that are not predicted should 
impact Aocrit, whether it is because they are not covered 
or not predicted in time to fix outside of the flying 
window. 

5.2.4 The Other Attributes  

The other attributes from Table 1 were also considered 
for simulation.  Wasted life (γ) was excluded because it 
concerns maintenance actions outside the maintenance 
free operating period, whereas this paper is concerned 
with failures that occur within the maintenance free 
operating period.  Wasted life, however, is an important 
attribute when considering economic impacts.  Both 
PHM failures and false alarms (δpf, δfa) were also 
excluded because they can be modeled as increases to 
non-covered failures, and since non-covered failures 
are already being modeled, they are not necessary for 
validation of the simulation with the analytic equations.  
They would be important factors, however, in an 
analysis where factors contributing to inefficiency are 
examined using the simulation. 

5.2.5 Simulation of Equal Weighting  

 The MTBCF values for each component were 
computed based on the coverage allocations for low 
inefficiency (ε = 0.05) where α was set to 5% and PHM 
induced failures and false alarms were not modeled (δfa, 
δpf = 0).  A special measure was defined for the 
modified availability (to only count the downtime that 
occurs in the maintenance free operating period) and 
used to collect statistics.  Assuming sufficient resources 
otherwise (parts, manpower, support equipment), the 
resulting mean Aocrit for 30 replications of 180 days 
each was 0.9895, with low and high confidence (95%) 
values of 0.9888 and 0.990, respectively.  Since the 
improved Aocrit was expected to be 0.9885 (below the 
lowest confidence value), the difference between the 
values was investigated.  Further review of the model 
showed that downtime is only counted in the simulation 
when there is maintenance performed, so that the 
system continued to operate during the scheduled 
downtimes when there was no critical maintenance to 
be performed.  Examination of the baseline case 
confirmed this, where for no PHM capability, Aocrit was 
reported as a mean of 0.9878 (with low and high 
confidence values of 0.9870 and 0.9886, respectively) 
versus the expected value computed earlier of 0.9867.  
Therefore, accounting for this difference between the 
mean and computed values for Aocrit, the simulation 
results from modeling the PHM mechanisms matched 
well with the computed values of Aocrit. 

Figure 4. MPFWC is fixed relative to actual 
failure by allowed predictions occurring after 

actual failure (or false negatives). 
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5.3 Equal Coverage  

In this approach, the amount of reliability improvement 
desired is divided among the four components such that 
equal percent of MTBCF improvement is provided, as 
shown in Table 3.  The resulting required coverage for 
each component would then be 14% based on a low 
inefficiency (ε = 0.05). 
 

Table 3: Equal Coverage 
 

MTBCF λucrit w 
New 

MTBCF 
MTBCF 
increase 

3500 0.000286 0.04 4025 15% 

750 0.001333 0.20 863 15% 

300 0.003333 0.50 345 15% 

595 0.001680 0.25 684 15% 

 
The coverage values were again used to compute 
MTBFs for the simulation, and confirmed by exercising 
the simulation that the expected Aocrit was obtained. 

5.4 Likely Coverage  

The problem with the previous approaches is that they 
rely on methods to weight the allocation of reliability 
improvement with coverage as a result, rather than 
starting with what is likely coverage that can be 
obtained, and then computing what the resulting 
MTBCF improvements might be.  An approach, which 
takes into account the desired coverage, as well as an 
estimate on the likelihood of obtaining it, was 
developed as shown in Table 4.   
 In this approach, one starts with estimates of what 
are possible coverage values based on PHM technology 
available, the type of equipment (mechanical, electro-
mechanical, etc.), and any other factors that are 
considered relevant.  These estimates can be developed 
by subject matter experts, market survey results, or 
through the use of tools such as MADe (Hess et al., 
2008), and hypothetical estimates are shown in the first 
column for the four components. 
 

Table 4: Likely Coverage 
 

 In addition, a likelihood of achieving that coverage 
can be specified, based on factors such as the maturity 
of the PHM technology, which are shown in the second 
column.  These are multiplied together to compute 
maximum allocated coverage, shown in the third 
column.  In addition, estimates on inefficiency are 
provided which correspond with the coverage values 
provided.  In this example, inefficiencies hypothetically 
vary from low (0.05 for the second component) to 
fairly high (0.30 for the first component).  The 
coverage and inefficiency together can then be used to 
compute an estimated maximum achievable MTBCF 
for the component, as shown in the fifth column.  These 
values can then be used to compute an overall MTBCF 
increase (19%) to a value of 180 hours, which is 
slightly larger than the previously stated goal of 173 
hours.  If the maximum achievable MTBCF does not 
meet the goal, then other reliability improvement 
means need to be identified or reassessment of PHM 
technologies.  If the MTBCF is much higher than the 
goal, then the estimated coverages can be reduced 
based on probability of success, cost, or other relevant 
factors. 
 These coverage values were again used to compute 
MTBFs for the simulation, and confirmed by exercising 
the simulation that the expected Aocrit (0.9896, slightly 
higher than 0.9895, with low and high confidence 
values of 0.9888 and 0.9903, respectively) was 
obtained. 

5.5 Using Cost in Allocation Decision  

There are reliability allocation methods that take costs 
into account (Ebeling, 1997; Mettas, 2000), but it often 
involves either estimating a general cost function for 
reliability increase, or obtaining detailed cost data that 
is often not available.  The same is true for PHM 
technologies as well – there is still little in terms of 
actual cost data or cost estimating relationships to use 
as a basis for cost functions to help evaluate reliability 
allocation alternatives.  It is a subject of future research 
to review methods for estimating and using cost 
functions to perform such evaluations.              

6 CONCLUSION 

Issues and methods of relating program requirements to 
PHM requirements and allocation of PHM 
requirements to lower system levels have been 
discussed.  This paper focused on evaluating program 
requirements for improving reliability in a maintenance 
free operating period, although other benefit areas will 
also be examined in this ongoing effort (such as 
extending a maintenance free operating period, 
reducing downtime due to improved or replaced 
scheduled inspections, extending scheduled 
maintenance intervals by moving to condition-based 

Estim.
Covg. 

Prob. of 
Success 

Alloc.
Covg. Ineff. 

MTBCF 
increase 

15% 0.9 13.5% 0.30 10% 

20% 0.8 16% 0.05 18% 

50% 0.5 25% 0.25 23% 

20% 0.7 14% 0.10 14% 
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maintenance).  Reliability improvements were related 
to PHM attributes, which were condensed to two 
primary attributes:  coverage and inefficiency.  
Methods of allocation of higher level PHM 
requirements to lower level requirements were 
examined, where lower level requirements were 
translated into component coverage and efficiency 
requirements which could guide PHM design.  Methods 
of allocation focused on a normalized weighting 
approach.  An alternative approach beginning with 
coverage estimates was also examined.  A discrete-
event simulation model was developed and exercised to 
confirm analytical results and to demonstrate that more 
extensive and complicated systems could be modeled. 
 The work described in this paper is part of a larger 
effort to define a framework and methodology for 
identifying and quantifying PHM benefits to military 
systems.  Further efforts will involve identifying what 
tools and data are required in the proposed seven step 
process, including methods for tying to cost models in 
order to perform cost benefit analysis, as well as 
decision analysis tools for identifying high driver 
candidates for PHM application and the most promising 
PHM technologies. 
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