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ABSTRACT
The next generation wind turbine systems become more
and more complex, which requires a more accurate fault
detection method to ensure their efficiency. On a wind
farm, sibling turbines should see similar wind speed if
they both work normally. Based on this, we design wind
speed difference tests to detect both hard failures and soft
failures, including anemometer faults. In such tests, it is
crucial to determine the decision boundary optimally to
tell apart the abnormal state from the normal state. We
propose a Particle Swarm Optimization (PSO) based ap-
proach to learn from historical data to decide the loca-
tion and size of the boundary. This procedure is adapt-
able to each turbine using SCADA (Supervisory Control
And Data Acquisition) data only. Our approach is ad-
vantageous in its applicability and data-driven nature to
monitor a large wind farm. The test result has verified
the effectiveness of our approach, and we have observed
the anemometer aging in data.

1. INTRODUCTION
In a wind turbine energy generation system, diagnosis of
potential faults is crucial to maintain and improve the ef-
ficiency of the system (Ribrant & Bertling, 2007; Chen
& Blaabjerg, 2006). Currently there are built-in diagnos-
tic units developed for physical model based faults such
as bearing faults (Stefani, Bellini, & Filippetti, 2009),
and there are some effective features to diagnose spe-
cific faults, such as wavelet transformation for spectrum
decomposition in mass unbalance fault diagnosis (Yang,
Tavner, Crabtree, & Wilkinson, 2010), but other minor
yet also detrimental faults, such as anemometer and wind
vane faults, are not fully studied (Yan, Osadciw, Benson,
& White, 2009; Lu, Li, Wu, & Yang, 2009). We pro-
pose to use data-driven approaches to learn the normal
and abnormal patterns from the available data, which
help both sensor validation and diagnostics in an inte-
grated way. The abnormalities are detected by tracking
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the turbine state variations (Zaher & McArthur, 2007). If
a fault could be detected at an early stage, the potential
damage could be minimized or mitigated through early
repair avoiding drastic breakdown of the wind turbine,
which leads to less downtime and more revenue; mean-
while, the repairs can be optimally scheduled with the
regular maintenance trips to minimize the repair costs
(Chen, Lian, Yu, & Bao, 2009).

Anemometer measures the wind speed as seen by the
turbine. The wind speed measurement is used for con-
figurations and control settings of the turbine, and hence
very important for online monitoring of turbine perfor-
mance (Burton, Sharpe, Jenkins, & Bossanyi, 2001). It
is crucial to monitor the anemometer status and detect its
failure.

It is observed that on a wind farm there are tur-
bine groups that see similar wind flow, either due to
their physical proximity, or their similar configuration
in a cluster of turbines including surrounding geography
(Yan, Kamath, et al., 2009). These turbines are called
sibling turbines. It is assumed that if the sibling turbines
all perform properly, then they should measure similar
wind speed. Based on this similarity, we begin to com-
pare wind measurements between turbine pairs. If they
begin to differ, this is a good indication that one of the
wind turbines requires maintenance. We collect a week’s
worth of data and model the wind speed difference us-
ing the Weibull distribution, as the Weibull distribution
is very practical for reliability test (Hisada & Arizino,
2002; Yeh & Wang, 2008). The detector uses the es-
timated Weibull parameters to define the normal and
abnormal states of wind turbines. The abnormal wind
speed difference patterns are caused either by a faulty
anemometer directly or by other faults indirectly. For
instance, if a system is shut down due to major compo-
nent failure, or if the system is under the influences of
lightning, the anemometer of that particular turbine will
produce very small readings causing detectable discrep-
ancies in the wind speed measurements of the turbine
pairs. We have designed multiple tests on other sensor
data to exclude faults not caused by anemometers.

In order to determine the decision boundary between
the normal and abnormal states in the wind speed differ-
ence failure detector objectively and optimally, we pro-
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pose to use the particle swarm optimization (PSO) algo-
rithm to learn from the historical data. Model param-
eterization is critical for accurate diagnosis (Bennouna,
Heraud, Chafouk, & Notton, 2009), and PSO is an ef-
fective optimization algorithm to automate the parameter
estimation. PSO is inspired by social behaviors, where a
population of particles search through the solution space
to find the global optimum of a fitness function defined
for each specific application. Each particle represents a
complete solution and moves in the search space using
both cognitive awareness and social influence. The PSO
algorithm has been widely applied in NP-hard optimiza-
tion problems.

The optimal decision boundary between normal and
abnormal states is designed as the boundary to minimize
the errors due to missed detection and false alarms on
the training data. We also compare the PSO algorithm
with differential evolution (DE) and evolutionary strat-
egy (ES) algorithms. It turns out that the PSO algorithm
achieves the lowest fitness value in a shorter converging
time than the other two algorithms. The same decision
rule is then tested on an exclusive testing data set for the
same turbine. We verify our test results by the automatic
failure flagging on the turbines and the monthly opera-
tional reports from the wind farm operators.

The rest of the paper is organized as follows. We de-
scribe the wind turbine failure detection based on wind
speed differences between two neighboring turbines in
Section 2. Then we introduce PSO and explain how to
apply it to determine the decision boundary in the wind
speed difference test in Section 3. We evaluate the per-
formance of our method in Section 4. Finally, we provide
concluding remarks in Section 5.

2. WIND TURBINE FAILURE DETECTION BY
WIND SPEED DIFFERENCE TEST

A wind farm consists of multiple turbines, even hundreds
in some cases, and the coverage of the farm can be on
a complicated landscape with obstructions due to local
topographic features (Tindal et al., 2008). This implies
that each turbine may have its own operational charac-
teristics, which complicates the fault detection (Ribrant,
2006). We propose to use data-driven approaches, which
adapt to each turbine automatically. The turbine per-
formance data is collected by the SCADA (Supervisory
Control And Data Acquisition) system. The data are col-
lected from dozens of built-in sensors on the turbines
measuring various physical quantities.

Some failures such as the bearing and gearbox fail-
ures (Robb, 20045) cause the turbines to completely shut
down, which is obviously detrimental to the turbine’s
performance, and, therefore, have been studied thor-
oughly by many manufactures. Their diagnostic units
are built into the wind turbines. These failures are called
hard failures. On the other hand, many soft failures,
which degrade the turbine’s performance but do not nec-
essarily stop the turbine from running, are often over-
looked, such as anemometer faults. This kind of soft
failure can be also very harmful to the efficiency of the
turbines in the same way long term. This paper pro-
vides one technique that can recoup some of the losses
by catching the soft failures early on and then supporting
maintenance plans to minimize their impact.

Wind turbines have different operating modes that

match each possible wind speed. The turbine starts
generating electricity when the wind speed exceeds a
lower-bound threshold, such as 5 m/s. Then the tur-
bine increases its rotation speed as it reaches its maxi-
mum power production at a wind speed of approximately
15 − 18 m/s. If the wind speed exceeds an upper-bound
threshold, such as 20 m/s the wind turbine is stalled or
braked to prevent damage or an accident. The wind
speed measurement is an important control parameter
for real time operation, and hence the wind speed mea-
surement from the anemometer is highly correlated with
rotor speed, pitch angle, exported power, etc. A faulty
anemometer reading can cause severe damage, because
if the turbine does not shut down at the right time, the
turbine may not keep up and over heat or a blade may
come loose. Further, incorrect readings may also result
in false alarms that the wind speed is higher than it really
is and frequent braking causing unnecessary downtime.

One solution is to pair up all the turbines so that each
turbine has a sibling. Two sibling turbines would most
likely measure a similar wind speed at the same time. If
the measured wind speed is drastically different, it could
be due to anemometer faults, turbine malfunctioning or
wind blockage. We (Ye, Veeramachaneni, Yan, & Os-
adciw, 2009) proposed to use wind speed difference be-
tween a turbine pair to detect faults and fuse the results
from multiple pairs to identify the turbine at fault. Due
to the high variation of wind speed, a direct point-to-
point comparison of wind speed differences easily trig-
gers false alarms. Therefore, a week’s worth of wind
speed data is aggregated to increase the robustness of the
detection.

2.1 Two-Dimensional Failure Detector
We choose a turbine, denoted asA, and its closest neigh-
boring turbine,B, to evaluate the difference in their wind
speed measurements. These two turbines are closest to
each other, and there are no other turbines around them
to interfere the air flow around them. They make a sib-
ling turbine pair. We divide the data set into individual
weeks that contain n data points, or less if data is miss-
ing. For each week, we calculate the absolute values of
wind speed difference between A and B as

wsd = |wsA − wsB |. (1)

Then the weekly data are estimated by a two-parameter
Weibull distribution of

pdf(wsd;λ, k) =
k

λ
(
wsd

λ
)k−1e−(wsd/λ)k , (2)

where k and λ are the estimated shape parameter and
scale parameter, respectively.

Since both turbines ideally should see similar wind
speeds, the Weibull probability density distribution
should match and hence produce little spread. Figure 1
(1), (2) and (3) demonstrate the “normal”, the “faulty”
and the “idle” states of Weibull distribution of wind
speed difference, respectively.

The normal state such as in week 31 in Figure 2.1 has
a sharp distribution. The wind speed difference in this
week is all less than 2 m/s, and the wind speed differ-
ence is consistently small. This implies that both tur-
bines work similarly, and the probability that they both
work well is high.
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(1) normal in week 31

(2) faulty in week 79

(3) idle in week 118

Figure 1: Examples of normal, faulty, and idle distribu-
tions of wind speed difference between turbineA andB.

The faulty state such as in week 79 in Figure 2.1 has a
more spread distribution between 0 m/s and 6 m/s with a
larger scale parameter, and its shape parameter is greater
than 1. This distribution is indicative of a soft failure
in one of the turbine anemometers, mostly due to aging.
The faulty turbine’s performance degrades gradually.

The idle distribution in Figure 2.1, as an example of
week 118, is flattened out with a long tail. This kind
of Weibull distribution has a large scale parameter and
a shape parameter less than 1. An intuitive explanation
of such a scenario is that one turbine completely shuts
down because of hard failures such as lightning or ma-
jor component failure, and its anemometer is also turned
off to read near-zero wind speed. As a result, the wind
speed difference distribution is almost the same as the
wind speed distribution of the other normal turbine.

We wish to sum up saying that the turbine working
status is reflected by the estimated Weibull distribution
of the weekly wind speed difference data, represented
by the scale and shape parameters. Based on this phe-
nomenon, the main goal is, in the 2-dimensional plot of
Weibull scale and shape parameters, to reveal the normal
and abnormal regions of turbine performance. Improved
from our previous work (Ye et al., 2009), in this paper we
propose a new method to determine a circle-shaped de-
cision boundary between the normal and abnormal states
using PSO algorithm. The weeks inside the circle are de-
cided to be normal, when both turbines are functioning
properly. The ones outside the circle are decided faulty
or idle, where the faulty state often indicates soft failures,
and the idle state often indicates hard failures. Compared
to differential evolution (DE) and evolution strategy (ES)
algorithms, PSO achieves better solution with lower fit-
ness value in a shorter convergence time.

2.2 One-Dimensional Failure Detector

As a way to measure the integrated effects of the scale
and shape parameters, we designed another test based on
the area under the Weibull cumulative distribution func-
tion (CDF). The area definition is given later in equation
(4). The Weibull CDF function is defined as

cdf(wsd;λ, k) = 1− e−(wsd/λ)k . (3)

If both turbines work well and similarly, the cumula-
tive probability function rises to value 1 fast. Other-
wise, if one turbine is faulty, then the wind speed dif-
ference is larger, and the Weibull cumulative distribution
approaches 1 slower. For instance, Figure 2 illustrates
that the Weibull cumulative distribution of wind speed
difference in week 31 is steeper than those in week 79
and week 118, and week 31 is a normal week when both
turbines work well.

As shown in Figure 2, when the Weibull cumulative
distribution rises to 1 fast, the curve covers more area un-
der it. So we consider the normalized total area under the
CDF curve (AUC) as an indicator of such a phenomenon,

AUC(wsd = wsdmax;λ, k) =

∫ wsdmax

0
cdf(w;λ, k)dw∫ wsdmax

0
1dw

,

(4)
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Figure 2: Weibull Cumulative Distribution of Wind
Speed Difference between A and B in Week 31, 79 and
118

where the infimum of the area is

AUC(wsd = wsdmax;λ, k)→
∫ wsdmax

0
1dw∫ wsdmax

0
1dw

= 1,

(5)
and in our application, we have wsdmax = 25 here. The
bigger the AUC, the better both turbines work. Figure
3 plots the AUC curves versus week numbers. An area
of

∫ 25

0
1 − e−(wsd/0.9)0.9dw = 0.96382, shown as the

green straight line, serves as a reference when the scale
and shape parameters are both 0.9. The line is used as
the threshold to declare problematic weeks for assigning
the weekly health flags later on.
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Figure 3: Normalized Area under Weibull Cumulative
Distribution of Weekly Wind Speed Difference, AUC,
between Turbine A and B

2.3 Relation between 2D and 1D Failure Detectors
In this paper, the 2D method uses 1D method to help
training the decision boundary, so 2D method is en-
hanced by 1D method. On the other hand, if only using
1D method, we can’t tell apart the hard failures and soft
failures. These two methods complement each other, and
we do not compare them.

3. PARTICLE SWARM OPTIMIZATION BASED
DECISION BOUNDARY DETERMINATION

3.1 Particle Swarm Optimization Algorithm
Inspired by the fact that simple behaviors of individ-
uals lead to much complicated societal phenomenon,
Kennedy and Eberhart first proposed the particle swarm
optimization (PSO) algorithm in 1995 (Kennedy & Eber-
hart, 1995). Particles in PSO are randomly deployed
to effectively explore the solution space, while the fit-
ness function (the notation of “fitness” function is by
convention, more accurately, it should be called an ob-
jective function without the implication that the higher
the value, the more “fit”) guides the particles to exploit
the promising regions with randomness. PSO has been
widely applied in various optimization problems, espe-
cially the NP-hard problems, when other optimization
algorithms do not work. We introduce the generic PSO
algorithm in this section, and then we adapt it for the
wind speed difference test problem in the next section.

Without losing generalizability, assume that the opti-
mization is a minimization problem (negating a maxi-
mization yields minimization), and the function f(x) of
multivariate x is to be optimized,

x = arg minf(x). (6)
Then the particle in PSO is x, and the function value f(x)
is the fitness of the solution x. Suppose that there are N
particles in the swarm with the fitness of each particle as
Fitnessi (i ∈ [1, N ]). The particle’s movement is af-
fected by its inertia, its cognitive awareness (pbest, the
best location that the particle has been before) and social
influence (gbest, the best location within the population
during the iterations). The algorithm of PSO is as fol-
lows.

1. Initialize a population of N particles. Each particle
is a solution, xi, i ∈ [1, N ]. Fitnessi, pbesti , and
gbest, are all initialized to be infinity.

2. Until the iteration index t reaches the maximum it-
erations tmax, or, some other termination condition
is satisfied, do the following.
(a) Evaluate Fitnessi = f(xi).
(b) Update pbesti,t for each particle, as cognitive

awareness.
(c) Update gbestt for the population, as social in-

fluence.
(d) Move the particles by

xi,t+1 = xi,t + ui,t+1, (7)
where ui,t+1 is the influence defined by

ui,t+1 =ω · ui,t+
c1 · r1 · (pbesti,t − xi,t)+
c2 · r2 · (gbestt − xi,t),

(8)

where ui,t is the velocity of the ith particle at
time instance t, ui,t+1 is the velocity of the
next step, and ω is an inertial constant, less
than 1, to retain the information of previous
velocity. xi,t is the current particle’s location
that needs to be updated. c1 and c2 are con-
stants to weigh these influences. r1 and r2 are
uniform random numbers to randomize the in-
fluences.
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(e) t = t+ 1.
3. Finish. Print out the best solution.

3.2 Application of PSO to Determine the Decision
Boundary

A major problem in the wind speed difference test is to
determine the decision boundary between the normal and
abnormal states in the feature space objectively and opti-
mally. The feature space spanned by the shape and scale
parameters of the estimated Weibull distribution of the
weekly wind speed differences is illustrated in Figure 4.

When soft failures such as the anemometer faults hap-
pen, the wind speed difference is not drastic, but the dif-
ference is consistently there, and hence the distribution is
skewed towards the bigger wind speed difference. In this
case, both the shape parameter and the scale parameter
are large numbers, pointing to the upper right region.

When hard failures such as major component fail-
ures happen, one turbine completely shuts down and its
anemometer reads zero wind speed, causing maximum
wind speed difference between a turbine pair. The distri-
bution is thus nearly flattened out with a very heavy tail,
represented by a bigger scale parameter but small shape
parameter, namely, the lower right region.

Based on the above analysis, we note that the features
of the normal weeks are clustered together, and yet the
features of the abnormal weeks can spread around any-
where outside of that cluster. We propose a heuristic that
the features of the normal weeks are clustered in a circu-
lar region, which is the least informative shape, yet the
location and size of such a circle in the feature space is
turbine specific. In order to determine the origin and the
radius of the circle, we utilize PSO algorithm to learn
from historical data. Then we use this decision rule to
test on future data.

The particle in our application is defined as

{Pi : xi, yi, ri}, (9)

where the particle index is i going from 1 toN , the origin
of its circle is (xi, yi), and the radius of its circle is ri.

Each SCADA data record is associated with a man-
ual or automatic label indicating the event happening
at that time, which is used to label whether the turbine
works normally at that instance. If the labels associ-
ated with faults account for more than 20% percentage
of the weekly data, this week is regarded as a problem-
atic week, and hence a health flag of−1 is applied to this
week. Otherwise this week is assigned with a health flag
of 1. An exception is that if there are too many missing
data and hence the data are not sufficient, a health flag
of 0 is assigned, which does not affect the optimization
procedure.

However, the SCADA flagging is not completely de-
pendable, especially on the degradation of the faulty
components. This is also why we need to design better
diagnostics and prognostics algorithms. Another factor
to label whether the week is healthy or problematic is
the area value under the Weibull CDF curve of the wind
speed difference in that week, as defined in equation (4).
A health flag of −1 overrides a flag of 1 if the area value
is less than 0.96382.

Note that labelling is based on both the reported events
and AUC, where AUC serves as a data-based evaluation
to enhance the reliability of event flagging for labelling,

which is for training purpose. In testing, we often do not
have enough resources to label, and then testing is based
on classification.

After the health flag of each week is assigned, any de-
cision boundary may incur two types of errors. One error
is miss detection, defined as the number of weeks with
a health flag of −1 but located inside the circle as being
normal,

(Emiss detection)i =
∑
j

I(normal|health flagj = −1),

(10)
where j is the set of week indices in the training set. I(·)
is a counting function, with value 1 when the argument
is true, or else 0. The other error is false alarm, defined
as the number of weeks classified as abnormal outside
the circle but with a health flag of 1,

(Efalse alarm)i =
∑
j

I(abnormal|health flagj = 1).

(11)
The fitness function is the summation of the above two
errors associated with each particle,

Fitnessi = f(Pi) = (Emiss detection)i + (Efalse alarm)i.
(12)

The optimal solution minimizes the fitness function.

4. SYSTEM SIMULATION AND RESULTS
We have 130 weeks’ worth of data, and we split them
into training and testing sets. The training set includes
the first 70 weeks, and each week is labelled with 1, −1
or 0 indicating whether that week is healthy, problematic
or missing-too-much-data. In Figure 4, the green points
represent healthy weeks, and the red ones problematic
weeks. If one green point is outside the candidate de-
cision boundary, it causes false alarm error; however, if
one red point is inside the boundary, it causes miss de-
tection error. We use 200 particles and let them search
in 100 iterations. Note that the number of particles could
be reduced to maintain a similar performance, and our
analysis indicates that more particles do not necessary
improve performance, and hence we use 200 particles.
We have tried different total number of iterations. PSO
often converges in less than 50 iterations, and we choose
100 iterations to allow some tolerance.

In each iteration, the fitness of each particle is eval-
uated by equation (12). The best solution seen by each
particle is used to update pbesti , and the best solution
seen by the whole population is used to update gbest.
Through iterations, all particles move towards to the op-
timal locations driven by their own cognitive awareness
and social influence.

Figure 4 shows the 2-dimensional plot of Weibull
scale and shape parameters of wind speed difference be-
tween turbine A and B. Each point represent one week.
We use the first 70 weeks as training data, and then apply
PSO to determine the optimal decision boundary with
the lowest error amount. In Figure 4, the red circle rep-
resents the optimal decision boundary obtained by PSO
algorithm from the training data. This circle separates
the normal and abnormal regions of the wind speed dif-
ference test incurring minimum errors. In this feature
space, the weeks associated with soft failures are located
to the upper right of the circle, and the weeks associated
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Training week with health flag = 1
Training week with health flag = −1
Optimal decision boundary learned
from training data by PSO

Figure 4: 2D plot of weekly estimated Weibull parameters of wind speed difference between turbine A and B. Apply
the first 70 weeks as training data. Learn the optimal decision boundary of normal and abnormal states by PSO.

with hard failures are located to the lower right of the
circle.

We compare PSO algorithm with the other two opti-
mization algorithms, Differential Evolution (DE) (Gao
& Tong, 2006) and Evolution Strategy (ES) (Hansen,
March 7, 2010). Differential Evolution algorithm is an
optimization method in evolutionary algorithms (EAs),
capable of handling non-differentiable, nonlinear and
multi-model objective problems. The crucial idea be-
hind DE is a scheme for generating new candidate so-
lutions by combining existing ones according to its for-
mulae of vector crossover and mutation. Then, DE adds
the weighted difference between two solution vectors to
a third one, which makes the scheme completely self-
organizing. In each iteration, DE updates the solution
which has the best fitness value on the optimization prob-
lem. On the other hand, Evolution Strategy (ES) al-
gorithm is a stochastic, derivative-free numerical opti-
mization method for nonlinear or non-convex problems.
In ES algorithm, new candidate solutions are sampled
according to a multivariate normal distribution. The
pair-wise dependencies between the variables in this dis-
tribution are described by a covariance matrix, which
is updated by the covariance matrix adaptation (CMA)
method. So, this algorithm is also called CMA-ES.

Figure 5 compares the progression of gbest versus it-
erations among three mentioned algorithms. As shown
in Figure 5, the PSO algorithm achieves the lowest fit-
ness value in a shorter converging time than both DE and
CMA-ES. The fitness value by PSO converges below 10
around the 10th iteration, but the other two algorithms
need about 20 iterations. Eventually, all methods hit the
lowest fitness value after 40th iteration.

After the location and size of the decision boundary
circle are determined for each turbine, we use this deci-
sion rule to test on future data for the same turbine. We
use the data from week 71 to week 130 in testing. In
Figure 6, the red circle is the optimal decision boundary
learned from the first 70 weeks. All the weeks outside
this circle are classified as abnormal weeks. Except for
week 118, which falls into the idle state due to the light-

Figure 5: Comparison of fitness transition among PSO,
DE and CMA-ES

ing strike, all the other abnormal weeks are caused by
the fact that the anemometer is degraded as time goes
on. As shown in Figure 6, the anemometer barely func-
tions since week 79 until it is replaced in week 95. With
the red decision boundary learned from the earlier data,
even through there are false alarms, miss detections are
avoided.

To demonstrate the system degradation due to
anemometer aging, we apply the same decision bound-
ary procedure on the testing data from week 71 to week
130 to obtain the yellow circle. This procedure on the
latter data is not used to train or test the system, but only
to show the average system performance. The center of
later data set is shifted to the right, indicating that the
anemometer shifts towards worse performance.

5. CONCLUSIONS
We propose a PSO based approach to determine the de-
cision boundary between the normal and abnormal states
in the wind speed difference failure detector. The train-
ing data are labelled based on known events from wind
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Testing week with health flag = 1 
Testing week with health flag = −1
Optimal decision boundary learned
from training data by PSO
Optimal decision boundary learned
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Figure 6: 2D plot of weekly estimated Weibull parameters with optimal decision boundary. Apply the week 71 to
week 130 as testing data. The average system performance gets worse due to the aging anemometer.

farm operators and the fault detectors designed by us.
The fitness function is the summation of miss detections
and false alarms, which is minimized to yield the optimal
location and size of the boundary circle. The testing re-
sult verifies the effectiveness of fault detection with min-
imal false alarms. We also observed anemometers aging
as the circles shifts toward the right if the circle is ob-
tained using latter data.
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