
  
The growing potential of Prognostics and Health Management 
(PHM) technology to facilitate the maintenance and support of 
systems emphasizes the need for the ability to determine just what 
the impacts and benefits of PHM will be. In order to incorporate 
a capability to evaluate the effects of PHM in logistics support 
models, the abstraction of PHM metrics and functions is a 
necessary step.  What are the essential prognostics metrics and 
functions within a logistics support system that will adequately 
model the effects of PHM? The purpose of this paper is 
identifying overall categories for understanding the different 
types of impacts and benefits a PHM system can have from a 
logistics support perspective. This paper also discusses how 
prognostics can be assessed by a modeling capability implemented 
in a legacy logistics support discrete-event simulation, and some 
examples and results for different support scenarios 
implementing a prognostics capability. 
 

I. INTRODUCTION 

HE growing potential of Prognostics and Health 
Management (PHM) technology to facilitate the 

maintenance and support of systems emphasizes the need for 
the ability to determine just what the impacts and benefits of 
PHM will be. Much of the effort to date has focused on the 
comparison of prognostics algorithms for the purpose of 
selecting the best algorithm for determining remaining useful 
life (RUL) [1-6] or on the economic benefits [7-11,22] (see in 
particular [9] for a summary of economic analyses of PHM to 
date). How to assess what impact prognostics will have on 
actual logistics support concepts, policy, and systems, 
however, is still fairly immature. Recurring themes of failure 
and cost avoidance, extended life, etc., can be observed in the 
literature but no general framework exists in which to place 
them. Initial efforts have been made to assess PHM within 
larger operational and support planning contexts [12-14,23], 
assess impact on sparing and inventory [15], and assess PHM 
versus reliability growth improvement [16]. A modeling 
approach to evaluate prognostics within a support context has 
been developed [7-9], and a general framework provided for 
understanding how prognostics can fit within a maintenance 
decision process [17]. One purpose of this paper is to provide 
a framework for organizing themes of PHM benefits by 
identifying overall categories for understanding the different 
types of impacts and benefits a PHM system can have from a  

 
 

 
logistics support perspective.   

Many analyses make simplifying assumptions about the 
logistics support system in which a prognostics capability is to 
be implemented. In many cases, realistic scenarios cannot be 
adequately defined using analytical models; so that analysis 
approaches often must use discrete-event simulation to model 
the detailed and complex logistics support processes. In order 
to incorporate a capability to evaluate the effects of PHM in 
such logistics models, the abstraction of PHM metrics and 
functions is a necessary step.  What are the essential 
prognostics metrics and functions that will adequately model 
the effects of PHM within a logistics support system? The 
purpose of this paper is also to show how prognostics can be 
assessed by a modeling capability implemented in a legacy 
logistics support discrete-event simulation, and some examples 
and results for different support scenarios implementing a 
prognostics capability.   

II. SUPPORT SCENARIOS FOR APPLICATION OF PHM 

Often benefits of PHM are referenced without any clear idea 
of what exactly those benefits are and how they relate to the 
logistics support system.  Without clearly understanding how 
PHM is intended to provide a benefit, it has the potential for 
actually becoming a detriment.  Four support scenarios for the 
application of PHM are proposed.  These scenarios are 
differentiated by the key benefit intended as a result of the 
application of PHM.  More than one scenario may apply in a 
given PHM application, depending on the benefits desired and 
actions taken as a result of PHM implementation.   

A. Reduce Lead Time 
The key benefit of prognostics in this scenario is to identify 

the need for a resource that requires a nonnegligible lead time 
to acquire. An example of such a resource could be a 
replacement item (spare) or a maintenance resource that must 
come from off-site, such as a crane for wind turbine 
maintenance. Prognostics helps to reduce or eliminate the lead 
time, resulting in less downtime and in the case of spares, 
fewer pipeline spares. Items could still be allowed to run to 
failure. 

B. Avoid Consequences of Failure 
The benefit of prognostics in this scenario is the avoidance 

of a failure, such as increased downtime, loss of mission, more 
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Figure 1. Extending Life by Transitioning to Condition-Based Maintenance. 
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Figure 2. Depicting accuracy and precision in stochastic modeling. 

extensive damage to a higher level subsystem, or even loss of 
system or life. The system is not allowed to run to failure, but 
is repaired or replaced based upon the predicted RUL. 
Maintenance is scheduled for a time of least interference, 
particularly if the consequence to avoid is downtime. The 
resulting increased need for maintenance is offset by the 
reduction in downtime, overall reduced cost (whether because 
the cost of scheduled maintenance is less than unscheduled 
maintenance or because a more costly repair is avoided), or 
avoidance of a catastrophic event. The example considered in 
this paper is that of reducing unscheduled maintenance to 
achieve system performance goals for a squadron of military 
aircraft.    

C. Extend Life/Reduce Maintenance Frequency 
The benefit of prognostics in this scenario is to implement 

condition-based rather than time-based scheduled 
maintenance. By scheduling maintenance based upon each 
individual item’s predicted RUL versus a population statistic, 
the period between maintenance is to be increased, thus 
reducing the frequency of maintenance (and its costs). If the 
item is replaced during maintenance, then the life of the item is 
extended because the time to replacement has been extended. 
This scenario is notionally depicted in Fig. 1. An example of a 
population statistic upon which time-based maintenance would 
be determined is the probability that very few failures will 
have occurred before maintenance. The maximum period 
between maintenance with prognostics will approach that of 
the mean time between failure (MTBF) of the item as 
prognostics is able to more perfectly predict failure. The 
smaller the population variance, the less benefit prognostics 
can yield.    

D. Optimize Resource Use 
The benefit prognostics is to provide in this scenario is to 

optimize resource use by the ability to schedule the resource 
for an optimal time or to consolidate failures for repair to 
minimize the number of times a resource is needed.  For 
example, acquiring a crane for turbine repairs on a wind farm 
can be quite costly.  If it can be known in advance what 
potential future repairs will be needed, the use of the crane can 

be optimized by conducting those repairs as well (in advance 
of their predicted failure) when the crane is already on the 
premises. 

Scenarios Avoid Consequences of Failure and Extend Life/ 
Reduce Maintenance Frequency will be examined in greater 
detail via specific examples in Sections V and VI.   

III. MODELING THE IMPACTS AND BENEFITS OF PHM 

As identified earlier, this paper is concerned with the 
modeling of PHM to be used to perform quantitative analyses 
on the effect PHM will have on a logistics support system.  In 
an earlier paper, a general probabilistic model was proposed as 
the basis for implementation in a discrete-event simulation 
model [17].  The probabilistic model is in general agreement 
with other similar models [1,7,18,19].  The integration of a 
PHM model within a larger logistics analysis model, however, 
is still uncommon and not well documented.  Only three such 
models are known to the author [7,18,20].  Therefore, it is 
important to identify what are the key attributes and metrics, 
events, and functions of PHM that are relevant for use in 
logistics analysis models.  These are followed by a description 
of implementation in the Logistics Composite Model (LCOM) 
[21], a discrete-event simulation model for logistics analysis of 
systems such as military aircraft. 

A. PHM Attributes and Metrics 
The attributes and metrics for evaluation of PHM within a 

logistics support context are related to those proposed for 
evaluation and comparison of PHM algorithms [1,2]. In 
particular, the following serve as a basis for the 
attributes/metrics for modeling:  

1) Probability that a failure occurs before its prediction 
This metric is also referred to as false negatives [2] and 

missed estimation rate [1]. This metric refers to the proportion 
of predictions that fail, i.e., that the actual failure occurs before 
the prediction. It can also include predictions that are later than 
some critical threshold.  

2) Accuracy and Precision 
There are a number of metrics that relate the failure 

prediction to the actual failure [2]. It is common to describe 

this relationship in terms of a mean with confidence levels for 
the failure prediction with respect to the actual failure [1,9,17]. 
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Figure 3. MPFWC is fixed relative to actual failure by allowed predictions 
occurring after actual failure (or false negatives). 

For the purpose of stochastic modeling, accuracy and precision 
are most easily defined as attributes of probability distributions 
for actual failures and failure predictions as shown in Fig. 2. 
The precision is defined by the variance of the failure 
probability density function (p.d.f) and the accuracy is defined 
by the distance between means of the failure prediction and 
actual failure (the failure event for Precursor to Failure and the 
failure p.d.f for Life Consumption [9]).  

3) Time of first prediction and prediction lead time 
The point at which a prediction of RUL is first available is 

the time of first prediction (it is not meant to include the time 
between detection and prediction). It is identified as te in [1], 
tP in [2], and time Z in [17]. This point is particularly 
important for modeling, in that it defines the earliest point at 
which any maintenance planning or scheduling can occur, and 
thus the greatest value for logistics lead times. The prediction 
lead time is the time between the time of first prediction and 
the failure prediction. Note that time may refer either to 
calendar time or to a usage basis (such as hours of operation).  

4) False alarm 
This metric is the percentage of predictions for which the 

corresponding actual failure is later than some specified 
maximum [1,2].  From a modeling perspective, this is the 
number of times a prediction is made for which there is no 
corresponding actual failure (such as a Cannot Duplicate). If a 
false alarm can be identified as such before a maintenance 
action is taken, the consequence of a false alarm can be 
averted. This may support definition of an interval after a 
prediction is first made to increase confidence that it is not a 
false alarm.         

B. Maintenance Attributes and Metrics 
The key events related to logistics support must also be 

identified in relation to PHM events.  
1) Logistics lead time 

The time in advance of a failure prediction that can be used 
to plan for and perform maintenance and supply actions. This 
time is referred to as alert time in [1], and is based on a user 
defining a minimum time before a predicted failure required to 
schedule maintenance. This time is considered as a window for 
maintenance opportunities (L) in [17] to assess the likelihood 
maintenance and supply actions could take place within the 
allowable lead time. Actually, there can be more than one lead 
time, depending on the corresponding action (such as for 
different PHM application scenarios). For example, the lead 
time for ordering replacement spares could be different than 
that for scheduling maintenance for a least disruptive time. If 
the logistics lead time is greater than the prediction lead time, 
then it is presumed that the corresponding maintenance action 
cannot be performed. It is important to note that the units of 
the logistics lead time (the basis for maintenance actions, 
typically calendar time) may be different than the units for the 
prediction (which may be based on operational hours).  

It may not be simple to specify a logistics lead time. For 
example, it may be desirable to wait for a number of failures to 
occur before acquiring a long-lead or high cost resource. In 

that case, logistics lead time should be the time it takes to 
accumulate predictions for that number of failures.  

2) Mean predicted failure with confidence (MPFWC) 
This metric is new and is being proposed as a reference 

point in logistics planning for determining when maintenance 
and supply actions should occur. The reference point is 
proposed as the predicted failure time that is fixed with respect 
to the actual failure by an allowed number of failures that 
occur before the predicted failure. This metric combines the 
accuracy and precision metrics with the false negatives metric 
to identify a point before which a logistics planner can have a 
high confidence that an actual failure will not occur (see Fig. 
3). 

3) Coverage 
This metric concerns the percentage of total failure rate that 

PHM addresses. Coverage of the failure modes for a single 
item concerns the percentage of total failure modes that PHM 
can address. The coverage value for an item will directly affect 
the percentage benefit for each item, for example for the 
number of repairs or replacements. Benefits for system-level 
measures such as downtime (and thus availability) and total 
cost are impacted more by coverage across items (from the 
perspective of a higher system level) unless the item has a high 
degree of impact on downtime, cost, or resource usage.   

C. Benefit Metrics 
Examples of benefit metrics for each of the support 

scenarios for PHM application from Section II are provided 
below.  It should be noted that metrics related to and 
potentially influenced by downtime, such as availability and 
numbers of missions completed, are not mentioned since they 
can vary depending on the program requirements for the 
system.  

1) Reduced lead time 
For spares, benefits could reduce the effective resupply time 

by ordering the spares in advance of the failures. Reducing the 
effective resupply time should reduce pipeline spares 
quantities and associated costs (theoretically, with sufficient 
lead time and full coverage for a unit, pipeline spares for that 
unit should be able to be eliminated). The number of 
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Figure 4. Model relating PHM events (time of prediction Z and predicted 
time of failure Y), failure event (X), maintenance opportunity (M), and 
times between them. 

replacements or maintenance actions remains the same since 
the unit is allowed to run to failure. 

For acquisition of a resource, the key benefit metric should 
be reduced or eliminated downtime for acquisition of the 
resource. 

2)  Avoid Consequences of Failure 
A key metric for this scenario is the mean time between unit 

replacement (MTBUR) or mean time between maintenance 
events (MTBME), or number of repairs/replacements for a 
given timeframe (the metric used in this paper). These metrics 
especially should be used to compare with corresponding 
values based upon the mean time between failure (MTBF) 
without PHM. The expectation is that with PHM these metrics 
will show an increase in the number of repairs/replacements. 
The benefit metric is reduction in downtime since unscheduled 
maintenance is being shifted to less disruptive times. Another 
benefit metric is cost – there will be improved cost if a 
differential in the per unit costs for scheduled versus 
unscheduled maintenance accounts for the increase in the 
number of maintenance events. 

3) Extend Life/Reduce Maintenance Frequency 
Metrics for this scenario include time between 

repair/replacement (which should increase), and numbers of 
maintenance events (which should decrease with 
corresponding costs). Note that this is exactly the opposite 
effect from Avoid Consequences of Failures. There is a 
potential decrease in downtime as well. 

4) Optimize Resource Use 
Since maintenance is to be performed in advance, as in 

Avoid Consequences of Failures, the metrics are also the same. 
In addition, metrics related to reduced frequency of the use of 
selected resources with corresponding costs and potentially 
reduced downtime are also important.  

D. Modeling PHM and Logistics Support 
A general framework for implementing a PHM assessment 

capability in stochastic support models [17] is shown in Fig. 4. 

In this framework, a random failure event X occurs with 
probability density function (p.d.f) ƒX, mean µx, and standard 
deviation σx. No assumption is made regarding the type of 
p.d.f. X occurs relative to a start or renewal not shown in the 
figure. At time Z, a PHM system predicts a random failure 
event Y, with p.d.f ƒY, mean µY, and standard deviation σY. 
Similar to X, no assumption is made regarding the type of 

p.d.f. This prediction is made at random time L (with p.d.f ƒL 
and mean τ) before the predicted failure (Y). A maintenance 
opportunity M can occur during the interval L, that is, between 
time of prediction Z and predicted failure Y, based upon a 
p.d.f or events within a discrete-event simulation model. 
Logistics lead time is the time between event M and prediction 
Y. There can be one or more M events, or none, depending on 
the distributions of M and L.  It is assumed that a planned 
maintenance event can only occur if the maintenance 
opportunity M were to occur before predicted failure Y. In 
other words, while a maintenance event could occur because of 
a maintenance opportunity after predicted failure Y and before 
actual failure X, it is not a planned event. The relationship 
between X, Y, and M can change if the prediction is updated 
over time. 

IV. IMPLEMENTATION IN LCOM 

Since more realistic scenarios cannot be adequately defined 
using analytical models as described above, a capability for 
defining PHM systems in the context of specific operation and 
support scenarios for military aircraft was developed. The 
discrete-event simulation model used in this case is LCOM, a 
large-scale stochastic model which allows the analyst to define 
any number of operational, maintenance and support activities 
as interconnected tasks, usually at the squadron level [21].  
Analysts typically create tens of thousands of tasks for 
thousands of removable/replaceable items. Each item, 
equivalent to an LRU, has a defined failure distribution. When 
a failure occurs in the simulation, a maintenance activity is 
either conducted right away or postponed to a time when the 
aircraft are not flying (usually end of day), depending on its 
criticality. Implementing PHM provides a means for the user 
to model predicted failures, which can then be used as a basis 
for scheduling maintenance events in the simulation. 

A. Generation of a Predicted Failure 
At the time that an LRU is repaired or replaced (assuming 

complete renewal), the next actual failure (event X in Fig. 4) is 
randomly drawn from a user specified distribution. At that 
time, a predicted failure (event Y) is also randomly drawn 
from a separate distribution that has been offset from the value 
for the drawn actual failure as shown in Fig. 3. As described 
earlier, the predicted failure distribution is defined by the user 
in terms of a standard deviation and probability that actual 
failure will occur before the predicted failure (Pf), or false 
negatives rate. The actual and predicted failures both have the 
same usage basis (number of sorties, flying hours, number of 
rounds, etc.). A user specified lead time is then subtracted 
from the predicted failure time to establish the time of first 
prediction (event Z). This lead time also has the same usage 
basis as the actual and predicted failures. 

B.  Generation of a Maintenance Opportunity 
Once the predicted failure has been set, user specified 

maintenance opportunities can be initiated at specified lead 
times. These are implemented in LCOM in two different ways, 
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corresponding to an event or a state. Events, called triggers, 
initiate user defined processes in the discrete event simulation 
which can model the repair process itself or schedule the repair 
for a later time. States, called modes, are passive in that they 
do not initiate any action per se, but are set to an ‘on’ state for 
a prespecified period of time. The user can develop processes 
that check for the value of the state, such as at the end of the 
day, to see which LRUs are in need of maintenance. For both 
triggers and modes, a check is made to see if the lead time has 
already been passed. If so, the mode or trigger is not 
scheduled.    

V. UNSCHEDULED MAINTENANCE AVOIDANCE 

A. Description of Scenario 
A six aircraft squadron is scheduled to fly missions 

throughout each day with a flying window specified for 0600 
(6 a.m.) to 2000 (8 p.m.). The flight schedule is for 10 sorties 
per aircraft per day (a sortie generation rate, or SGR, of 10), 
scheduled one and a half hours apart, with each sortie one hour 
in length. An hour past the scheduled takeoff time is allowed 
for any late aircraft. Pre-sortie processing is 5 minutes and 
post-sortie is 25 minutes if there is no failure, so one complete 
cycle is one and a half hours. If there is a failure, post-sortie 
processing takes an additional 20 minutes. The flying window 
allows a half hour slack to accomplish 10 one-hour sorties, so 
the squadron can experience one failure of one aircraft in a day 
and still meet the goal of 10 sorties (since a delay to takeoff is 
allowed past the time lost to additional post-sortie processing). 
If more than one aircraft fails in a day, one of the scheduled 
missions will be lost and the goal of 10 sorties per aircraft per 
day will not be met.  Maintenance can be performed during the 
day and at night. Resources such as manpower, parts, support 
equipment, and facilities are not constrained (i.e., assume there 
are enough).   

Failures are grouped into a critical and non-critical status.  
Critical failures occur at 100 flying hours on average with a 
normal distribution where the standard deviation is varied. 
Non-critical failures occur at a constant 10 flying hours. 
Critical failures must be repaired/replaced immediately, 
especially during the flying window. Non-critical failures can 
be deferred until outside the flying window. The non-critical 
failures occur at ten times the rate of the critical failures. 
Critical failures have a PHM capability with a prediction lead 
time of 50 flying hours, and a 5% probability of an actual 
failure occurring before the failure prediction (false negatives). 
The precision of the prediction and the logistics lead time for 
repair/replacement of a critical failure are varied. 

B. Description of Analysis 
The first step was to establish a baseline case where there is 

no PHM capability. In this case, the average SGR achieved is 
8.61, well below the goal of 10. For comparison purposes, the 
critical MTBF was increased to determine at what value an 
SGR goal of 10 could be met, which was 5500 flying hours. 
This means that increasing reliability, such as through a 

reliability growth program, must increase the MTBF by a 
factor of 55 in order to meet the SGR goal. 

The focus of this analysis was to examine the effects that the 
precision of the prediction has on the ability to meet the SGR 
goal of 10 and the effects of increasing logistics lead time for 
different population standard deviation values. Values for 
prediction precision are measured as the ratio of the prediction 
standard deviation to the critical MTBF, or STMRpred, 
expressed as a percent. The value of 0% precision corresponds 
to perfect PHM – the failure prediction is aligned with the 
actual failure, and there is no variation about the prediction.  
Other precision STMRpred values included 1%, 5%, and 10% 
of the population mean (i.e., 1, 5, and 10 flying hours, 
respectively). Logistics lead time for repair/replacement of a 
critical failure was varied in steps of 2 hours beginning with 2 
flying hours up to 36 flying hours (which at a rate of 10 flying 
hours per day means from less than a day to over 3 days). The 
standard deviation of the critical failures was also varied as 
ratios over the critical MTBF, or STMRcrit.  These values 
included 0% deviation (or constant TBF), 1%, 5%, and 10%. 
A horizon of 90 days and 50 replications were used for each 
run. 

For each aircraft, when the value of the actual failure is 
obtained (at the beginning of the simulation, or when a fix is 
performed), the value of the predicted failure is also obtained 
based upon the 5% false negatives goal and the precision of 
the prediction as described earlier for MPFWC. At this same 
point, the beginning of a maintenance opportunity window is 
scheduled to occur the specified logistics lead time prior to the 
MPFWC. As the simulation runs, the rate of flying hours to 
calendar time is monitored, and if it varies beyond a set 
tolerance, a new estimate is made for the beginning of the 
maintenance opportunity relative to the predicted failure and is 
rescheduled within the simulation. At the scheduled simulation 
time, the maintenance opportunity begins. This is implemented 
by a unique attribute of the aircraft, which the simulation 
maintains, and is used to test within the flow of post-sortie 
tasks the aircraft performs. Once that attribute indicates that a 
maintenance opportunity exists, a fix is identified to be 
performed at the next opportunity outside of the flying 
window. Thus, if the attribute is encountered in any given day, 
a fix will be performed outside the flying window of that same 
day. Thus, a fix is performed at the first opportunity after 
indication that is needed. It should be noted that the time of the 
indication and the time of the fix are not the same. If the actual 
failure occurs before the first opportunity to fix it, the fix will 
be conducted immediately.    

Primary outputs examined were SGR and mean number of 
fixes. The mean flying hours between maintenance events 
(MFHBME - computed from a tailored output which measured 
the flying hours between fixes) was used with the total flying 
hours (900), when SGR of 10 was achieved, to determine the 
mean number of fixes. 
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Figure 5. Number of fixes for varying population variance (STMRcrit) by 
lead time and prediction precision (STMRpred). 

Figure 6. Number of fixes for varying prediction precision (STMRpred) by 
lead time for STMRcrit of 10%. 

C. Results 
1) Varying Population Variance 

The first comparison is of varying population variance 
(STMRcrit) as a function of lead time and prediction precision 
(STMRpred).  The results are interesting although not surprising 
as shown in Fig. 5. The graph for each case only begins at the 
flying hours before predicted failure where the SGR goal of 10 
is met.  There are four cases where the prediction is assumed 
to be perfect (a STMRpred of 0% for a constant critical time to 
failure, and STMRcrit values of 1%, 5%, and 10%), and two 
cases where the prediction precision is 10% of the MTBF (a 
STMRpred of 10% for a constant critical time to failure and 
STMRcrit of 10% of MTBF).  Interestingly, for perfect 
prediction and very low critical standard deviation, the number 

of fixes is a step function of the flying hours before predicted 
failure.  This makes sense because each day there is a very 
high likelihood that the critical failure will occur at the end of 
the day (after 100 flying hours, or the end of the tenth, 
twentieth, etc. days). Any indications that a critical failure is 
going to occur within that day will still result in the same time 
for the fix (i.e. at the end of the day). For each day, therefore, 
there is little effect on the number of fixes for indications 
within that day. As the variation about the MTBF increases, 
however, the likelihood that the critical failure will occur at the 
end of the day becomes much less, and so the effect on the 
number of fixes becomes more linear. In this case, this 
occurred by an STMRcrit of 5%. Also of interest is when the 
prognostic is less precise (STMRpred = 10%). Even for constant 
failure (when the STMRcrit is zero), the effect of lead time 
(flying hours before predicted failure) on the number of fixes 
is now fairly linear. This can be explained by the fact that the 
alert for maintenance is tied to the failure prediction, and not 
to the actual failure itself. Even though for STMRcrit = 0 the 

actual failure still occurs at the end of the day, the MPFWC 
can occur throughout the day due to the increase in variation of 
the prediction, and thus the alerts are also occurring 
throughout the day.  This also explains why the SGR goal of 
10 is achieved much earlier for constant failure (STMRcrit of 
zero) versus failures with increased variation (STMRcrit of 
10%) when the prediction is less precise (STMRpred = 10%). 
For STMRcrit close to zero, the actual failures occur at the end 
of the day, outside of the flying window. For larger STMRcrit 
values, the actual failures can occur throughout the day (albeit 
rarely because of the 5% false negative rate), and thus can 
impact the ability to meet the SGR goal of 10.  It should be 
noted that while not meeting the goal, a very high SGR value 
can be obtained earlier than a lead time of 22 flying hours 
(9.953 at a lead time of 10 flying hours). 

2) Varying Prediction Precision 
For failures with increased variation (STMRcrit of 10%), 

cases of decreasing precision (or increasing STMRpred) are 
shown in Fig. 6. The minimum lead time at which an SGR of 

10 can be achieved appears to increase nonlinearly with 
STMRpred (STMRpred values of 0-5% result in minimum lead 
times of 12-14 flying hours, while an STMRpred value of 10% 
results in a minimum lead time of 22 flying hours). The 
numbers of fixes corresponding to the minimum lead time also 
appear to grow nonlinearly with linear increases in STMRpred. 
For each STMRpred value however, the number of fixes grow 
relatively linearly with the lead time.  

Overall it can be observed that increasing the lead time 
tends to increase the number of fixes, as expected. This is true 
for perfect prediction as well. Increases in lack of precision for 
the prediction also results in increased number of fixes, both in 
terms of the number of fixes for the same lead time, and for the 
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Figure 7. Availability for varying prediction percentage of failure standard 
deviation by STMRfail. 

longer lead time required to meet the SGR goal. It might be 
slightly more difficult to detect that the increase in number of 
fixes for a linear increase in STMRpred is in fact nonlinear, 
although slightly so. 

3) Cost Benefit 
From these results, the relative benefit of improvements to 

precision can be measured as the reduction in the number of 
fixes. If the cost of a level of precision is far greater than the 
cost of the corresponding number of replacements gained, then 
the increase in precision may not be cost effective.  The cost of 
implementing a prognostic capability can also be compared to 
the cost of a non-prognostic alternative, such as reliability 
growth.        

VI. TIME-BASED VERSUS CONDITION-BASED MAINTENANCE 

A. Description of Scenario and Analysis 
A continuously operating system, such as a wind turbine or 

a computer system, is scheduled for periodic maintenance 
based upon a MTBF and a safety factor. For a normal 
distribution, the safety factor can be expressed in terms of 
numbers of standard deviations (nfail*sfail) from the mean (Mfail, 
or MTBF), and the period, Tsched, is given by Mfail – nfail*sfail 
(notionally depicted in Fig. 1). For values of a 95% probability 
the scheduled maintenance occurs before a failure, Mfail of 12 
days, and sfail of 1.2 days (STMRfail = 10%), Tsched is 10 days. 
Periodic maintenance takes 24 hours (admittedly, not very 
realistic, but adequate for illustrative purposes) so with no 
prognostics, for every 11 days the system is up for 10 days and 
down 1 day, yielding an availability of 10/11 = 0.909. 

PHM was added to the system in order to move to 
condition-based maintenance rather than the time-based 
maintenance described above. First of all, it should be noted 
that even with a perfect prognostics capability, the average 
time between maintenance will be equal to the MTBF as 
shown in Fig. 1. Thus, the most a perfect PHM can do is to 
increase the period of 10 days for time-based to 12 days for 
condition-based maintenance.  This means that on average for 
every 13 days, the system is up for 12 days and down 1 day, 
yielding an average availability of 12/13 = 0.923. Since PHM 
cannot be assumed to be perfect, the prediction with 
confidence can be determined as described earlier in the paper, 
where MPFWC is obtained by subtracting a number of 
prediction standard deviations (npred*spred) from the time of 
failure, where npred is determined by the desired false negatives 
rate. The mean of those predictions (Tpred) then is given by 
Mfail – npred*spred, which has the same form as that for Tsched 
given above. The life of the system is extended when Tpred > 
Tsched, and for the same confidence, this can be simplified to 
the case where spred < sfail. It is expected that when the 
prediction standard deviation and the failure standard 
deviations are the same, that the availability will be the same, 
and that when prediction standard deviation is less, the 
availability will be greater, and that when it is greater, the 
availability will be less. For perfect PHM (zero prediction 
standard deviation), availability should correspond to Tpred = 

Mfail. It is also expected that as the failure standard deviation 
increases, availability will go down but that the relationship 
between prediction and failure standard deviations will remain 
the same. 

B. Analysis and Results 
In order to evaluate the effects of precision and the 

population variance on availability, prediction precision values 
were varied (prediction standard deviation as percentages of 
the failure standard deviation from 0 to 140%) for three 
different values of population standard deviation (STMRfail of 
10%, 20%, and 30%).  A confidence level of 95% is assumed 
for both. 

1) Availability as a function of prediction precision 
For a range of values of prediction precision (prediction 

standard deviation as percentages of the failure standard 
deviation, or spred/sfail*100) from 0 to 140%, availability values 
are shown in Fig. 7. Three different cases of STMRfail are 

shown (10%, 20%, 30%) with availability values demarcated 
for corresponding Tsched values (10 days, 8.1 days, and 6.1 
days respectively). Starting with a STMRfail of 10%, it can be 
seen that when spred and sfail are equal (prediction is 100% of 
failure standard deviation), the condition-based and time-based 
approaches yield the same availability. For spred > sfail 
(percentage > 100%), the time-based approach yields a higher 
availability, while for spred < sfail (percentage < 100%), the 
condition-based approach yields a higher availability.  As 
expected, the bound for perfect prediction (percentage = 0) 
yields the maximum availability attainable, corresponding to 
Tpred = Mfail. It should be noted that availability results 
diminish as spred decreases with respect to sfail, requiring greater 
investment for equal increases in precision.  

For greater values of STMRfail, the same general behavior is 
observed except for the change in slope at prediction 
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Figure 8. False negatives for varying prediction percentage of failure 
standard deviation by STMRfail. 

 
 

Figure 9. Availability for increasing STMRfail by prediction percentage of 
failure standard deviation. 

percentage of 120% for STMRfail of 20% and prediction 
percentage of 80% for STMRfail of 30%. In fact, for STMRfail 
of 30%, the availability actually increases when spred > sfail 
(between 120% and 140%), which seems incorrect, as well as 
the fact that it never reaches the availability corresponding to 
Tsched when spred = sfail. This can be explained by the increase in 
STMRfail, which for spred << sfail still behaves as expected, but 
as spred approaches sfail, the likelihood increases that the 
MPFWC will be beyond the renewal point, resulting in a false 
negative. This can be seen in Fig. 8, where the false negatives 

increase dramatically for STMRfail = 30% beyond a prediction 
percentage of 40%.   

2) Availability as a function of STMRfail 
Also of interest is the rate of decrease in availability over 

increases in STMRfail for each of the prediction percentages.  

As shown in Fig. 9, there is very little effect on availability 
from increases in the failure variation when the prediction 
precision is very good (low prediction percentage), but for 
decreasing precision, the failure variation becomes more of a 
factor in decreasing availability. The exceptions for higher 
STMRfail and prediction percentages are again due to the 
increasing false negative rate described earlier. In general, 
better precision is good if the failure variation is not well 
understood. 

C. Other than full coverage for a single item 
The analysis and discussion thus far for extending life with 

PHM has centered on the assumption that the PHM coverage 
is 100% for a single item (that is, with PHM, scheduling 
maintenance to occur before failure is performed at one time). 
If coverage is not 100%, or if there are multiple items that 
require scheduled maintenance at the same time, or both, then 
the benefit of condition-based maintenance becomes a little 
less clear. If coverage is less than 100% for a single item, that 
item may still need scheduled maintenance in addition to the 
condition-based maintenance. If the condition-based 
maintenance cannot be scheduled for an off time, then 
availability is potentially impacted negatively by the increase 
in downtime (for both the time-based and condition-based 
maintenance). If there are multiple items, a similar argument 
can be made.  In fact, if there are multiple items that even have 
100% coverage with PHM, the single scheduled maintenance 
event is replaced by potentially many scheduled maintenance 
events, decreasing availability due to increased downtime.  
This scenario is actually the opposite of the optimize resource 
use scenario which aims to consolidate repairs. For example, if 
there are 5 items, and one of those items has perfect PHM, 
then 4 of the items will get time-based maintenance at 10 days 
(assuming as before a normal distribution, 95% probability 
maintenance occurs before failure, MTBF of 12 days, and a 
failure standard deviation of 1.2 days), and one item will get 
condition-based maintenance on average every 12 days.  
Availability of this mixed scenario then on average for every 
14 days is up for 12 days and down for 2 days, for an average 
availability of 12/14 = 0.857. The availability for full time-
based maintenance of 0.909 from earlier then decreases with 
this scenario where PHM can only be partially applied.      

Even if the intent is to fix all of the items at one time as 
condition-based maintenance, the life extended is 
compromised by the number of items. For increasing numbers 
of items, each with their own individual times to failure, the 
time that all items will be fixed will be driven by the least time 
to failure. The average number of fixes over time will be 
driven by the minimum time to fail rather than the average 
time to fail. For the scenario describe above of 5 items, fixing 
all items when the first one fails yielded an average 
availability of 0.848 versus 0.909 for a single item with 100% 
coverage. Thus, care needs to be taken in evaluating the 
benefits of extending life when PHM coverage is not 100% or 
involves multiple items.    
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VII. CONCLUSION 

Overall categories for identifying and understanding the 
different types of impacts and benefits a PHM system can have 
from a logistics support perspective were presented, which are:  
Reduce Lead Time, Avoid Consequences of Failure, Extend 
Life/Reduce Maintenance Frequency, and Optimize Resource 
Use. A method for how prognostics can be assessed by a 
modeling capability that is implemented in discrete-event 
simulation models was presented, including identification of 
key attributes and metrics.  

Examples and results for different support scenarios 
implementing a prognostics capability were provided. For the 
Avoid Consequences of Failure scenario, it was observed that 
increasing the lead time tends to increase the number of fixes 
(assuming maintenance is performed at the first opportunity). 
Increases in lack of precision for the prediction also result in 
increased number of fixes, both in terms of the number of fixes 
for the same lead time and the longer lead time required to 
meet the performance goal (SGR). For the Extend Life/Reduce 
Maintenance Frequency scenario, it was observed that when 
the prediction standard deviation and the failure standard 
deviations are the same, that the availability will be the same, 
and that when prediction standard deviation is less, the 
availability will be greater, and that when it is greater, the 
availability will be less. It is also observed that as the failure 
standard deviation increases, availability will go down but that 
the relationship between prediction and failure standard 
deviations will remain the same. It was identified that care 
needs to be taken in evaluating the benefits of extending life 
when PHM coverage is not 100% or involves multiple items. 
In both scenarios, it could be concluded that better precision is 
good if the failure variation is not well understood 

REFERENCES 
[1] Leão, B. P., Yoneyama, T., Rocha, G. C., Fitzgibbon, K. T., 

“Prognostics Performance Metrics and Their Relation to Requirements, 
Design, Verification, and Cost-Benefit,” 2008 International Conference 
on Prognostics and Health Management, Denver, Colorado, October 
2008. 

[2] Saxena, A., Celaya, J. Balaban, E., Goebel, K., Saha, B., Saha, S., 
Schwabacher, M., “Metrics for Evaluating Performance of Prognostics 
Techniques,” 2008 International Conference on Prognostics and 
Health Management, Denver, Colorado, October 2008. 

[3] Qiu, H., Eklund, N., Hu, X., Iyer, N., “Evaluation of Filtering 
Techniques for Aircraft Engine Condition Monitoring and Diagnosis,” 
2008 International Conference on Prognostics and Health 
Management, Denver, Colorado, October 2008. 

[4] Kurtoglu, T., Mengschoel, O., Poll, S., “A Framework for Systematic 
Benchmarking of Monitoring and Diagnostic Systems,” 2008 
International Conference on Prognostics and Health Management, 
Denver, Colorado, October 2008. 

[5] Saxena, A., Goebel, K., Simon, D., Eklund, N., “Prognostics Challenge 
Competition Summary: Damage Propagation Modeling for Aircraft 
Engine Run-to-Failure Simulation,” 2008 International Conference on 
Prognostics and Health Management, Denver, Colorado, October 2008. 

[6] Wang, T., Lee, J., “On Performance Evaluation of Prognostics 
Algorithms,” 2009 Machine Failure Prevention Technology 
Conference, Dayton, Ohio, April 2009. 

[7] Sandborn, P. A., Wilkinson, C., “A Maintenance Planning and Business 
Case Development Model for the Application of Prognostics and Health 

Management (PHM) to Electronic Systems,” Microelectronics 
Reliability, vol. 47, no. 12, pp. 1889–1901, Dec. 2007. 

[8] Feldman, K., Sandborn, P., Jazouli, T., “The Analysis of Return on 
Investment for PHM Applied to Electronic Systems,” 2008 
International Conference on Prognostics and Health Management, 
Denver, Colorado, October 2008. 

[9] Feldman, K., Jazouli, T., Sandborn, P., “A Methodology for 
Determining the Return on Investment Associated with Prognostics and 
Health Management,” IEEE Transactions on Reliability, vol. 58, no. 2, 
pp. 305-316, June 2009. 

[10] Scanff, E., Feldman, K. L., Ghelam, S., Sandborn, P., Glade, M., 
Foucher, B., “Life Cycle Cost Impact of Using Prognostic Health 
Management (PHM) for Helicopter Avionics,” Microelectronics 
Reliability, vol. 47, no. 12, pp. 1857-1864, Dec. 2007. 

[11] Shroder, R., Frankle, N., “Economic Modeling for Prognostic Health 
Management,” 2008 Machine Failure Prevention Technology 
Conference, Dayton, Ohio, April 2008. 

[12] Williams, Z., Gilbertson, D., Sheffield, G., “Fleet Analysis and Planning 
Using CBM+ Open Architecture,” 2008 International Conference on 
Prognostics and Health Management, Denver, Colorado, October 2008. 

[13] Hess, R. A., Heimes, F. O., Propes, N. C., “A Health Management 
Solution for Hybrid Electric Vehicle Transit Fleets,” 2008 International 
Conference on Prognostics and Health Management, Denver, 
Colorado, October 2008. 

[14] Jessop, S., Cook, T. C., “A Model-Based Mission Planning and 
Decision Support Tool,” 2009 Machine Failure Prevention Technology 
Conference, Dayton, Ohio, April 2009. 

[15] Gebraeel, N., Elwany, A., “An Adaptive Prognostic Methodology for 
Sensor-Driven Component Replacement and Spare Parts Ordering 
Policies,” 2009 Machine Failure Prevention Technology Conference, 
Dayton, Ohio, April 2009. 

[16] Bedard, P., “Prioritizing Prognostic and Reliability Growth 
Investments,” 2009 Machine Failure Prevention Technology 
Conference, Dayton, Ohio, April 2009. 

[17] Luna, J., “A Probabilistic Model for Evaluating PHM Effectiveness,” 
2008 International Conference on Prognostics and Health 
Management, Denver, Colorado, October 2008. 

[18] (Unpublished work style) PHM Implementation in SEM, Sandia 
National Laboratories, Albuquerque, NM, 2003. 

[19] (Presentation style) Implementating PHM in SEM, Sandia National 
Laboratories, Albuquerque, NM, 2003. 

[20] (Manual style) ASC LCOM 2.7.1 User’s Manual, Aeronautical Systems 
Command, ASC/ENMS, Wright-Patterson AFB, OH, 2005. 

[21]  (Manual style) ASC LCOM 2.6 User’s Manual, Aeronautical Systems 
Command, ASC/ENMS, Wright-Patterson AFB, OH, 2004. 

[22] Luna, J., Kolodziejski, P., Frankle, N., Conroy, D. C., Shroder, R., 
“Strategies for Optimizing the Application of Prognostic Health 
Management to Complex Systems,” 2009 Machine Failure Prevention 
Technology Conference, Dayton, Ohio, April 2009. 

[23] Pipe, K., “Practical Prognostics for Condition Based Maintenance,” 
2008 International Conference on Prognostics and Health 
Management, Denver, Colorado, October 2008. 


	I. INTRODUCTION
	II. Support Scenarios for Application of PHM
	A. Reduce Lead Time
	B. Avoid Consequences of Failure
	C. Extend Life/Reduce Maintenance Frequency
	D. Optimize Resource Use

	III. Modeling the Impacts and Benefits of PHM
	A. PHM Attributes and Metrics
	1) Probability that a failure occurs before its prediction
	2) Accuracy and Precision
	3) Time of first prediction and prediction lead time
	4) False alarm

	B. Maintenance Attributes and Metrics
	1) Logistics lead time
	2) Mean predicted failure with confidence (MPFWC)
	3) Coverage

	C. Benefit Metrics
	1) Reduced lead time
	2) Avoid Consequences of Failure
	3) Extend Life/Reduce Maintenance Frequency
	4) Optimize Resource Use

	D. Modeling PHM and Logistics Support

	IV. Implementation in LCOM
	A. Generation of a Predicted Failure
	B. Generation of a Maintenance Opportunity

	V. Unscheduled Maintenance Avoidance
	A. Description of Scenario
	B. Description of Analysis
	C. Results
	1) Varying Population Variance
	2) Varying Prediction Precision
	3) Cost Benefit


	VI. Time-Based Versus Condition-Based Maintenance
	A. Description of Scenario and Analysis
	B. Analysis and Results
	1) Availability as a function of prediction precision
	2) Availability as a function of STMRfail

	C. Other than full coverage for a single item

	VII. Conclusion

