
Methods for Probabilistic Fault Diagnosis: An Electrical Power
System Case Study

Brian W. Ricks 1,2, Ole J. Mengshoel 3

1 University of Texas at Dallas, Dallas, TX 75080 USA
2 USRP, NASA Ames Research Center, Moffett Field, CA 80523 USA

bwr031000@utdallas.edu

3 Carnegie Mellon Silicon Valley, NASA Ames Research Center, Moffett Field, CA 80523 USA

Ole.J.Mengshoel@nasa.gov

ABSTRACT

Health management systems that more accurately
and quickly diagnose faults that may occur in
different technical systems on-board a vehicle will
play a key role in the success of future NASA
missions. We discuss in this paper the diagnosis of
abrupt continuous (or parametric) faults within the
context of probabilistic graphical models, more
specifically Bayesian networks that are compiled
to arithmetic circuits. This paper extends our
previous research, within the same probabilistic
setting, on diagnosis of abrupt discrete faults. Our
approach and diagnostic algorithm ProDiagnose
are domain-independent; however we use an
electrical power system testbed called ADAPT as a
case study. In one set of ADAPT experiments,
performed as part of the 2009 Diagnostic
Challenge, our system turned out to have the best
performance among all competitors. In a second
set of experiments, we show how we have recently
further significantly improved the performance of
the probabilistic model of ADAPT. While these
experiments are obtained for an electrical power
system testbed, we believe they can easily be
transitioned to real-world systems, thus promising
to increase the success of future NASA missions.

1 INTRODUCTION

Due to inherent uncertainties in systems as well as in
sensors, probabilistic methods are starting to play an
important role in system health management. In diagnostics,

 This is an open-access article distributed under the terms of the
Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

there are different probabilities of failure for different types
of components. There may also be sensor noise.

Fortunately, much progress has recently been made in (i)
modeling systems, under conditions of uncertainty, using
probabilistic graphical models, and (ii) performing diagnosis
by means of such models (Pearl, 1988; Lauritzen and
Spiegelhalter, 1988; Olesen, 1993; Darwiche, 2000).
Roughly speaking, these models admit relatively sparse, and
hence computationally efficient, representation of
conditional dependence and independence relationships of
large multivariate probability distributions. In this paper, we
focus on graphical models in the form of Bayesian networks
and arithmetic circuits, and illustrate novel methods for
failure diagnosis of hybrid systems using an electrical power
system case study.

Systems that we want to diagnose, including electrical power
systems (EPSs), are often hybrid, in that they exhibit both
continuous and discrete behavior. Examples of continuous
behavior, in the EPS setting, include (measurements of)
voltage, current, and temperature, while discrete behavior is
induced by protection and control devices, such as relays,
circuit breakers, and sensors for such devices. In addition to
the hybrid nature of many systems that are in need of
advanced system health monitoring, they may also be partly
event-driven, partly periodic and have non-trivial and
varying system dynamics, including transients, associated
with them. An example of events in the EPS context are user
commands, while sampling of EPS sensors is an example of
periodic behavior.

There is an urgent need for methods that bridge the gap
between complex systems (such as electrical power systems)
that are hybrid and may also exhibit some of the other issues
(event-driven/periodic and varying dynamics) discussed
above. Most existing diagnostic technologies typically have
a discrete or continuous foundation, and diagnostics in a

1

Annual Conference of the Prognostics and Health Management Society, 2009

hybrid, complex setting is an important topic for on-going
research. In this paper, we develop methods for hybrid
diagnosis by means of discrete probabilistic models
(Bayesian networks and arithmetic circuits), and specifically
develop novel techniques for handling abrupt continuous (or
parametric) faults such as continuous stuck faults and
continuous offset faults. The challenge associated with
continuous stuck faults is that they may be easily confused
with measurements that are normal but have a low level of
noise. In particular, this happens if the sensor discretization
level is of the same order of magnitude as the noise level
from some sensors in a system. The challenge associated
with continuous offset faults is that they are associated with
small and continuous anomalies that are hard to detect using
a discrete model. Specifically, since the magnitude of a
continuous off-set is not known ahead of time, it is in
practice impossible to discretize according to all possible
off-set faults. The challenge associated with dynamics
including transients is to avoid false positives.

In this paper, we discuss our contributions in the context of
the ProDiagnose algorithm. ProDiagnose processes all
incoming environment data (observations from a system
being diagnosed), and acts as a gateway to a probabilistic
inference engine. The inference engine analyzes the
observations given to it by ProDiagnose, and computes
diagnoses. ProDiagnose currently uses the Arithmetic
Circuit Evaluator (ACE). ACE uses arithmetic circuits
(ACs), which are compiled from Bayesian network models
(Chavira and Darwiche 2007; Darwiche 2003). The primary
advantage to using ACs is speed, which is key in resource-
bounded systems such as aircraft and spacecraft (Mengshoel
2007). Given an appropriate probabilistic model,
ProDiagnose diagnoses different types of faults for sensors
and components at a high level of performance and
accuracy. In this paper we focus on the introduction, in a
Bayesian network, of discrete Change nodes, Delta nodes,
and Stuck nodes, and how they are coupled with algorithms
that process continuous data, and how the overall system
provides high-performance diagnosis in the context of abrupt
continuous faults, specifically continuous stuck faults and
continuous offset faults.

The rest of the paper is structured as follows. In Section 2,
we present work related to our research. Section 3 presents
in more detail faults that may occur in EPSs such as
ADAPT, and specifically discuss continuous faults that are
non-trivial to handle in a discrete BN. In Section 4, we give
an overview of the diagnostic process, including terminology
and notations. In Section 5 we present the ProDiagnose
algorithm. Section 6 is devoted to a discussion of the
Bayesian network model structures, including how the
ADAPT BN model is used for diagnosis of continuous stuck
faults, continuous offset faults, and handling of transients.
Section 7 gives an electrical power system case study, diving
more in-depth into the ADAPT EPS. Section 8 presents the
DXC framework and discusses experimental results from
ProDiagnose, including the DXC-09 competition and latest
experimental results using a newer BN model. In Section 9
we conclude and sketch future research directions.

2 RELATED WORK

We use in this paper Bayesian networks (BNs) to represent
probabilistic multi-variate models (Lauritzen and
Spiegelhalter 1988; Pearl 1988). A BN is a directed acyclic
graph (DAG), combined with an associated set of
conditional probability tables (CPTs). Each vertex of the
graph represents a discrete random variable, represented
visually as a node. Each node has a CPT of size that is
dependent on the number of parent vertices, and the number
of discrete states that these vertices contain. The directed
edges typically represent the causal dependencies between
variables. By clamping random variables (nodes), it is
possible to compute the marginal probability of other
vertices in the BN. The marginal probabilities can then be
used to diagnose the system itself.

We currently use arithmetic circuit evaluation for
probabilistic inference (and ACE as the inference engine).
Arithmetic circuits are a fast way to evaluate Bayesian
networks. An arithmetic circuit derives marginal
probabilities by addition and multiplication operations
(Chavira & Darwiche 2007; Darwiche 2003). During each
ProDiagnose call to ACE, the partial derivatives of this AC
are computed with respect to each discrete random variable.
ProDiagnose queries the arithmetic circuit to return the
marginal probabilities in constant time.

We identify two areas of related work on hybrid systems:
research using Bayesian networks, and research using other
techniques. Of particular interest is fault diagnosis in
terrestrial and vehicular electrical power systems.

Among research using other techniques, we consider first
model-based fault diagnosis in hybrid systems (Narasimhan
and Biswas 2007; Daigle et al., 2008). Narasimhan and
Biswas discuss a model-based diagnosis approach based on
hybrid bond graphs (Narasimhan and Biswas, 2007). The
approach integrates tracking (using an extended Kalman
filter, and fault detection), fault detection (which compares
estimated and observed signals), fault isolation, and fault
identification. Successful experimental results are shown for
a fuel-transfer system of a fighter aircraft. The work by
Daigle et al. is also based on hybrid bond graphs (Daigle et
al., 2008). This research is similar to ours in its emphasis on
electrical power systems and ADAPT specifically; it also
deals with abrupt continuous and discrete faults. Unlike our
research, this work makes the single fault assumption
(Daigle et al., 2008). RODON, a model-based approach
(Karin et al., 2006) based on the general diagnostic engine
(de Kleer and Williams, 1987), also participated in DXC-09
with good results (Bunus et al., 2009; Kurtoglu et al., 2009a;
Kurtoglu et al., 2009b).

An optimization-based approach to fault diagnosis has been
applied to ADAPT as well (Gorinevsky et al., 2009). This
approach, which obtained good results in DXC-09, amounts
to developing a linear model of the EPS circuit, and
diagnosis is then based on solving a convex problem that
includes faults and other hidden states.

2

Annual Conference of the Prognostics and Health Management Society, 2009

We now turn to research using Bayesian networks. Based on
the types of random variables they contain, we can partition
BNs into three classes: discrete BNs, which contain discrete
random variables only, continuous BNs, which contain
continuous random variables only, and hybrid BNs, which
contain both discrete and continuous random variables.

Based on clique tree propagation (Spiegelhalter and
Lauritzen, 1988), Olesen developed an approach to exactly
compute marginals in clique trees that are compiled from
hybrid BNs (Olesen, 1993). In order to maintain exactness,
the hybrid BNs were restricted to ones in which the
continuous nodes are Gaussian and do not have discrete
parents. For a continuous node, each discrete configuration
of parents gives a linear Gaussian distribution. For each
configuration of all discrete nodes, the continuous
distribution is multivariate Gaussian, and this approach
therefore is a generalization of mixtures of Gaussians.

Koller and Lerner also investigated hybrid BNs, and
introduced an inexact particle filtering approach for
computing marginals (Koller and Lerner, 2000). Each
particle is an instantiation of non-evidence nodes X(t), and
the belief state at time t is approximated by all particles.
This particle filtering algorithm approximates marginals at
time t over all non-evidence continuous and discrete nodes.

Even though it is natural to use hybrid BNs in hybrid
domains such as EPSs, there are also limitations associated
with doing so. In particular, the mathematics of hybrid BNs
is non-trivial, thus the need to introduce restrictions (Olesen,
1993) or resort to approximations (Koller and Lerner, 2000).
Arithmetic circuits, to which we compile our BNs, do not
currently support continuous or hybrid BNs. Consequently,
we discuss in this work hybrid methods, in particular
diagnosis of abrupt discrete and continuous (or parametric)
faults, which use discrete BNs. Discrete BNs have
previously been used for fault diagnosis in terrestrial EPSs
(Yongli et al., 2006; Chien et al., 2002), although not for the
type of abrupt continuous faults that we stress here.

In this discussion of diagnosis of abrupt continuous faults,
our main emphasis is on algorithms that discretize
continuous signals, and in particular create from them
discrete outputs that are used as evidence in discrete BNs.
This extends our previous work, where we considered abrupt
discrete faults (Mengshoel et al., 2008; Mengshoel et al.,
2009); we also go into more technical detail than our
previous paper on ProDiagnose (Ricks and Mengshoel,
2009). For a more detailed comparison of ProDiagnose to
other systems in the ADAPT setting, we refer to discussions
of the benchmarking framework and its application in DXC-
09 (Kurtoglu et al., 2009a; Kurtoglu et al., 2009b).

3 BEHAVIORS AND FAULTS

There are many dimensions along which systems faults, such
as faults in electrical power systems, may vary. Diagnostic
techniques and systems typically vary accordingly, since it is
very difficult to develop approaches that are able to detect or
isolate along all of these dimensions equally well and with

equal computational efficiency. We now discuss a few of
these dimensions.

One dimension is speed of fault progression, where we
distinguish between faults that progress very quickly (abrupt
faults) versus faults that progress very slowly (incipient
faults). Another dimension is fault persistency, where one
typically distinguishes between persistent and intermittent
faults. A third dimension is the fault type, where it is fruitful
to distinguish between continuous (or parametric) faults and
discrete faults. As an example, "stuck high" is a discrete
fault, while "stuck at X", where X is a parameter that can
vary over a real-valued interval, is considered a continuous
fault. A fourth dimension is independent faults versus
dependent faults; common cause faults and cascading faults
are examples of dependent faults.

In this paper, we are concerned with abrupt continuous (or
parametric) faults that are independent and persistent.1 This
contrasts with earlier work (Mengshoel et al. 2008;
Mengshoel et al. 2009) where we also investigated
independent and persistent faults, but they were abrupt and
discrete. In this section we will use the ADAPT EPS to
illustrate our approach.

Figure 1: Graph showing the sensor readings of a
voltage sensor over time. The voltage drop illustrates
an offset sensor fault, a type of abrupt fault. The grey
area represents the nominal range considered normal
or healthy for this sensor.

In Figure 1, we see an example of sensor readings from a
voltage sensor. Assuming this part of the EPS has power,
the grey box represents the nominal range that this sensor is
allowed to be in (to be considered healthy). This nominal
range is dependent on other sensors within the EPS, meaning
that other changes within the electrical power system itself
may change what the nominal range for this sensor is at any
time. In this scenario, the sensor's value (voltage) suddenly

1This is not to say that ProDiagnose cannot handle other fault types
- we are currently investigating intermittent as well as cascading
faults

3

0

5

10

15

20

25

Offset Voltage Sensor

Tim e

Vo
lta

ge

Annual Conference of the Prognostics and Health Management Society, 2009

drops downwards out of this range. The nominal range
itself is still deemed to be the same as before the voltage
drop however, and the sensor is now considered to be offset.
This example (Figure 1) illustrates an offset of about -12 V,
which is enough to throw the sensor out of its nominal range.

Figure 2: Graph showing the behavior of a degraded
battery according to the closest voltage sensor
downstream. The grey area represents the region in
which the voltage has dropped very slightly due to a
short.

Figure 2 illustrates an abrupt continuous offset fault of very
small magnitude. These types of faults often cannot be
diagnosed as quickly as the previous example (Figure 1).
The graph shows a tenth of a volt drop of a power source, in
this example a battery after a short circuit somewhere in the
EPS. When factoring in the sensor noise, detection of this
drop would be very difficult by using a nominal range due to
the narrow scope of the range factored in with the noise
spike both before and after degradation starts.

ProDiagnose handles this tiny abrupt fault by using weighted
Cumulative Sums, or CUSUMs, to monitor the long term
change in behavior of the sensor. The difference between
the weighted average of the sensor's readings and the current
sensor reading is added to the current CUSUM (which
initially is zero). This pattern repeats for each sensor
reading received, and thus the CUSUM is keeping a record
of the overall trends (long-term behavior) of this sensor.
This technique can exploit even minute changes in a sensor's
behavior over a given time period.

If we were to let this fault play out over time, the battery
would slowly exhaust itself, and the voltage would start to
drop very gradually as a result. ProDiagnose would still use
the same technique to catch it. In fact, if this scenario were
to happen, ProDiagnose would simply continue to diagnose
the same abnormality both after the initial voltage drop and
during the degradation itself. If there is no initial voltage
drop, this would be an incipient fault, but ProDiagnose
would still catch it using CUSUMs. The detection time

would depend in how gradual the degradation was. This
technique would allow the fault to be diagnosed well before
the degradation dropped below the nominal range.

Figure 3: Graph showing the sensor readings of a
voltage sensor over time. The graph after the arrow
indicates the area in which this sensor has become
stuck at the same value (a stuck fault).

Figure 3 shows a very common abrupt continuous fault. The
noise associated with this sensor's readings are shown before
the arrow. The sensor in the figure is moderately noisy, but
can have short periods in which it returns the same sensor
reading in subsequent samples, which is evident from Figure
3. After the arrow, all noise ceases to exist in the sensor,
which is not characteristic for this type of sensor.
ProDiagnose cannot detect the fault immediately due to
ambiguity between the initial fault and normal periods of
equal-valued sensor readings. However, after a certain
interval of time with no change in sensor readings, the sensor
is then diagnosed as operating abnormally. This span varies
depending on nominal characteristics between different
sensor types.

4

24.2

24.25

24.3

24.35

24.4

24.45

24.5

Abrupt but small Continuous Offset Fault

Time

Vo
lta

ge

22.82

22.84

22.86

22.88

22.9

22.92

22.94

22.96

22.98

23

Stuck Voltage Sensor

Tim e
Vo

lta
ge

Annual Conference of the Prognostics and Health Management Society, 2009

Figure 4: Graph showing the behavior of a failed fan
according to its RPM sensor and a current sensor in
series with the fan itself. The area between the arrows
shows the difference in behavior between current and
fan blade RPM immediately after the failure.

Figure 4 illustrates a fan failure in an EPS. Power is applied
throughout this time interval, but the fan suddenly stops
working, and both the RPM of the fan blades and the current
draw of the fan drop to zero. If the sensors in the EPS that
directly monitor the fan (RPM sensor) or indirectly (current
sensors in series with the fan) are all deemed to be healthy,
and there are no other component failures upstream from the
fan itself, then this fan would be considered failed.

Notice the area of the graph between the arrows. The current
drops immediately to zero following the failure, which
indicates an abrupt fault. However the fan blades do not
immediately stop spinning, but rather spin down gradually.
This characteristic indicates dynamic transient behavior.
During this time frame, if only taking into consideration the
RPM values themselves, it would appear that perhaps this
speed sensor is abnormal as it is not reading zero. In fact,
until this speed sensor hits the nominal range considered to
be zero, the sensor will most likely be diagnosed incorrectly
as offset. To avert this type of problem, more evidence is
introduced to specify the short-term behavior of the fan
blades at a given RPM reading. If the RPM is dropping over
this period of time, then this evidence combined with what is
known from the current sensor along with the RPM reading
itself can lead to a more accurate diagnosis.

While this type of fault deviates from the main emphasis on
abrupt continuous faults, we include this example to
illustrate the technique used to diagnose it. ProDiagnose
monitors this type of short term behavior by taking the
difference of the current and previous weighted sensor
averages. We call this a Delta. Unlike with CUSUMs, no
record of the sensor's long term behavior is recorded. This
technique is used to give a good picture of the short-term
behavior of a sensor. In the example above, the decreasing

fan blade RPM would result in a consistent negative delta
until the fan blades stopped spinning.

4 OVERVIEW OF DIAGNOSTIC PROCESS

Figure 5: The ProDiagnose Architecture. Two types of
diagnosis-related messages can be received,
commands, C(t) and sensor readings, S(t) (or sensor
data). Commands can be received any time, whereas
sensor data comes in at specific times, according to
the sample cycle. Diagnosis, D(t), is sent after each
sample cycle completes.

Figure 5 depicts the ProDiagnose architecture. The
environment provides our sensor data and commands from
the system we are diagnosing. The probabilistic model
provides a model of the system (to diagnose, such as a
Bayesian network), which works with the inference engine
to provide diagnoses each time ProDiagnose receives data
from the environment.

How the inference engine receives the sensor and command
data is dependent on various parameters ProDiagnose uses
during the diagnostic process. These parameters, along with
other notation and definitions, are introduced in Section 4.1

The fault examples presented in this paper are from the
ADAPT EPS, a physical EPS developed by NASA. Sensor
data obtained from experiments (scenarios) utilizing ADAPT
are converted to a format specified by the evaluation
framework ProDiagnose uses for scenario input (Kurtoglu et
al., 2009a; Kurtoglu et al., 2009b). ProDiagnose uses these
scenarios along with the ADAPT BN to diagnose faults in
the system, which consist of abrupt continuous faults (see
Section 3).

4.1 Notations and Definitions

The following is a list of all ProDiagnose parameters and
their purpose:

Sample Cycle, tSC: The amount of time, measured in
milliseconds, between sample readings.

5

Env ironment Pro-
Diagnose

Probabilistic Model
(PM)

Inf erence
Engine

Diagnosis
D(t)

C(t)

S(t)

EP, DD,
CO, ...

0

100

200

300

400

500

600

700

800

900

1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dynamic Behavior - Transients

Fan RPM
Current

Time

R
PM

C
ur

re
nt

Annual Conference of the Prognostics and Health Management Society, 2009

Command Epsilon, tEP: A global threshold for determining if
a given command should be clamped as evidence
immediately or queued in regard to the time stamp of the last
sensor set. This is discussed in more detail in the Command
Data section (Section 5.3).

Diagnosis Delay, tDD: A global value, measured in
milliseconds, that gives the delay to start diagnosis output.
Diagnosis delay is used at the beginning of environment
monitoring. This variable is useful to filter out transients
and other normal behavior that may appear abnormal and
thus have false positive diagnoses associated with them.

Command Offset, tCO: A global value, measured in
milliseconds, that gives the delay to output diagnosis when a
command is received. This variable is useful for situations
in which, for some n millseconds after a command is issued
to a component, transients from sensors cause ProDiagnose
to produce false diagnosis. Depending on when the
command was issued in regard to the next sensor sample set,
and also the length of the transient, tEP may not in itself be
able to prevent the false diagnosis.

Sensor Stuck Delay, tSSD: A value, measured in milliseconds,
that gives, for a sensor with a reading that is the same, a
maximum amount of time to wait before setting that sensor
to a stuck state.

Other notation and definitions are described as follows:

PM (Probabilistic Model): The probabilistic model
represents the system that ProDiagnose will diagnose. The
probabilistic model that ProDiagnose uses is an Arithmetic
Circuit compiled from a Bayesian Network.

e (evidence): e represent the evidence that is used in the
diagnosis process. Evidence comes from commands and
sensor readings (the environment, Figure 5).

4.2 Diagnostic Scenario using ProADAPT

Using a scenario from the DXC-09 Industrial Track Tier 2 as
an example, we illustrate the importance of the ProDiagnose
parameters in accurate fault detection. We will cover
specifics of the ADAPT EPS in Section 7.

The example scenario follows two current sensors in the
ADAPT EPS, IT261 and IT281. IT261 is located just before
an inverter (Figure 18, 'it' sensor closest on left to bottom
'INV') and monitors current flow into the inverter and DC
load bank. IT281, located just before the a DC load bank
(Figure 18, 'it' sensor closest to bottom load bank with 'DC'
load) only monitors current flow into the DC load bank. The
following graphs show the current readings of these sensors
over a specific period of time. The arrows indicate
important areas of the graphs that will be discussed shortly.

Figure 6: The first 30 seconds of an example ADAPT
scenario, following two current sensors.

Starting out the scenario, all relays are open, and no current
is flowing through any of the sensors. Relays start closing,
powering up the EPS (18 relays close in this span of time),
Looking at IT281 (Figure 6), we see a nice near
instantaneous change in current flow at the grey arrow.
Looking closely, there is a tiny transient here as the rate of
change of the current flow is not instantaneous. tCO or tEP

would work here to eliminate any false positives calculated.
However, for IT261, the changes in flow of current are not
nearly as quick or linear as for IT281, as indicate by the
arrows. The inverter takes a bit of time to fully power up,
and during this time the current flow changes frequently.
This behavior is very unpredictable and hard to monitor.
Thus, ProDiagnose uses tDD to suppress any false positives
generated during this time until after the EPS reaches a
steady state.

Figure 7: A span of 30 seconds starting 110 seconds
into the example ADAPT scenario.

At about 110 seconds into the scenario, a relay in the second
AC load bank opens (represented by the arrow in Figure 7),
cutting current to a light bulb connected to it. This results in
a current drop for sensor IT261. IT281 however monitors
the DC bank and is unaffected by the relay. While the drop

6

-5

0

5

10

15

20

25

Example ADAPT Scenario
0-30 seconds

IT261
IT281

Time

C
ur

re
nt

0

5

10

15

20

25

Example ADAPT Scenario
110-140 seconds

IT261
IT281

Time

C
ur

re
nt

Annual Conference of the Prognostics and Health Management Society, 2009

in current for IT261 is near instantaneous, it is still possible
for false positives. If the command to open the relay was
given right before the next sensor sample set, it is very
possible that the next sensor reading itself will still be in the
same threshold range (as the current could still be dropping,
notice that the drop in Figure 7 is not totally vertical). This
may be diagnosed as offset, depending on the magnitude of
the current drop. Commands given farther from the next
sample set will most likely not be affected, as by this time
(say 100ms) the current drop should have completed easily.
To avoid these issues, parameters tEP or tCO can be used,
either by queuing the command and waiting for the transient
to pass (tEP), or suppressing diagnosis until the transient
passes (tCO)

5 DIAGNOSTIC ALGORITHM

Before we dive into the algorithms, we introduce notations
and definitions:

5.1 Notations and Definitions

We now describe the data structures associated with
ProDiagnose. These structures store information related to
the current state of the system being diagnosed. A node
represents one specific instance in a set.

C (Command Set): A Command node C ∈ C represents a
command given to a component. An example would be a
command to open or close a relay. This is shown visually as
C(t), Figure 5.

S (Sensor Set): A Sensor node S ∈ S represents the current
reading of a sensor. This reading is discretized from real-
valued S(t) in Figure 5. which represents a range for real-
valued sensors, or the actual state of 0 or 1 for a boolean
position sensor. The discretized sensor reading is clamped
as evidence in the BN.

H (Health Set): A Health node H ∈ H represents the current
health state of a component. The set of states of a node H is
partitioned into normal and abnormal states. Abnormal
states indicate a fault in the component. Any component or
sensor that is not healthy is output by ProDiagnose as faulty
(with the faulty state being the abnormal health state). In
Figure 5, D(t) represents health nodes with abnormal states.

ST (Stuck Set): A Stuck node ST ∈ ST represents the stuck
state of a sensor. A sensor becomes stuck when its reading
is the same over a period of time, regardless of what the
underlying process state is.

D (Delta Set): A Delta node D ∈ D represents the difference
(delta) between the current sensor reading S(t) and its
previous reading S(t – 1):

∆S = S(t) – S(t – 1)

The discretization of D into three states corresponds to the
following three cases: ∆S < 0, ∆S = 0, and ∆S >
0. Note that D is not the same as D(t) in Figure 5.

CH (Change Set): A Change node CH ∈ CH represents
overall trends in sensor readings (long term behavior), using
CUSUMs:

CUSUM(t) =
 (S(t) – {S(t)WEIGHTED+...+S(t –p)WEIGHTED})
 + CUSUM(t - 1)

S(t) represents the current sensor reading, which is
subtracted from the weighted average of a contiguous
subsequence of sensor readings, from the current reading
(S(t)WEIGHTED) to the sensor reading p cycles back (S(t –
p)WEIGHTED). This difference is then added to the previous
CUSUM value (CUSUM(t - 1)). CH nodes are good for
detecting small changes in sensor readings over a period of
time. This change is clamped as evidence, but it also
depends on H, as certain states of health for relevant
components can play a role in how the change nodes affect
the rest of the BN.

A (Attribute): An Attribute A ∈ A represents a subset of
nodes that describe various attributes of a component. These
attributes could be voltage V and current I for an electrical
device. A usually depends on A' ∈ A upstream, where A' ≠
A.

CL (Component State): A Component State node CL ∈ CL
represents a generalized state of operation for the
component.

Base_Component: A base_component represents a physical
component of a system in the probabilistic model.
base_components are used as a common link for lookups of
various parts that all share the same base_component. For
example, in an EPS, a fan component may have a sensor that
monitors blade RPM. This sensor's base_component would
be the fan.

The ProDiagnose algorithm can be broken down into two
stages: The pre-processing and diagnosing stages. The pre-
processing stage initializes ProDiagnose to a state in which it
can start accepting data from an environment. The diagnosis
stage is executed each time data from the environment is
received.

5.2 Pre-Processing Stage

1 Algorithm ProDiagnose(tEP, tDD, tCO)
2 Begin:
3 initialize_DA(tEP, tDD, tCO, Init_Params : PDB)
4
5 Send_Message(Message : M = DA_Ready)
6
7 do
8 Begin:
9 receive Message : M from environment
10
11 Process_Message(M, tEP, tDD, tCO)
12 loop until M = Terminate
13 End

7

Annual Conference of the Prognostics and Health Management Society, 2009

The pre-processing stage sets up ProDiagnose, including
parameters and all data structures that will be used during
diagnosing.

5.3 Diagnosis Stage

The diagnosing stage analyzes each message S(t) or C(t)
when they come in and outputs diagnosis of abnormal health
(H) states according to the sample cycle, tSC. The first course
of action is to determine the data type of the incoming
message, which can be either a sensor message, command
message, or termination message. ProDiagnose evaluates
the PM and computes diagnoses only when sensor data is
received.

1 Algorithm Process_Message(Message : M, tEP, tDD, tCO)
2 Begin:
3 if M = Scenario_Status : Terminate then Exit
4
5 if M = C(t) : (Command : C_Command, Value : V)
6 Begin:
7 C ← get_node(C_Command)
8 ti ← C.timestamp
9 tj ← S(t - 1).timestamp + tSC

10 if tj - ti < tEP

11 command_queue ← C
12 else
13 C.command ← Discretize_For_PM(V)
14 End if
15
16 if M = S(t)
17 Begin:
18 for each S(t) : (Sensor : S_Sens, Value : V) ε S(t)
19 Begin:
20 S ← get_node(S_Sens)
21 S.value ← Discretize_For_PM(V)
22
23 if D ε Base_Component(S)
24 D.value ← Discretize_For_PM(Calc_Delta(D))
25
26 if ST ε Base_Component(S)
27 ST.value ← Discretize_For_PM(Calc_Stuck(ST))
28 End for
29
30 for each CH
31 CH.value ← Calc_Change(CH)
32
33 End if
34
35 Calculate_Marginals(PM)
36
37 Output_Diagnosis(H, tDD, tCO)
38
39 Update_Command_Queue(command_queue)
40 End

Scenario_Status (Line 3): This datatype is a constant
specifying any status updates that arrive to ProDiagnose as
message M. If M is the constant specifying termination,
then ProDiagnose frees up its resources and exits gracefully.

C(t) (Line 5): This datatype is a tuple, (C_Command, V), in
which C_Command is a command given, and V is the value
of the command. ProDiagnose first fetches the appropriate
C node (line 7). It then checks the timestamp of the
command. If the command C(ti) has come in too close to
S(tj), where j > i and tj - ti < tEP, then we queue the command
(line 11). Otherwise we update the C node with the new
command (see Figure 11). The queuing of commands is due
to the following.

In a physical system, such as an EPS, there is often a
significant delay between the time a command is issued and
the time it is sensed to have taken effect. In addition comes
communication delays, both to actuators and from sensors.
ProDiagnose will queue commands to attempt to make sure

that commands are only input to the PM after sensor
readings from the system reflect the effects of these
commands. In ADAPT, keeping commands queued for one
sample period usually achieves the desired effect.

S(t) (Line 16): This datatype is a set, {(S_Sens, V) | S_Sens ∈
S}, in which S_Sens is a sensor, and V is the value for the
sensor. Each sample has a key/value pair for every sensor in
the network. The keys map to an S node, and the values (V)
represent the current sensor reading for the respective S
node. For each S node, its new sensor reading is discretized
(Line 21) and value updated to the new reading. During
each iteration ProDiagnose also looks for any D or ST nodes
that share the same base_component as the S node in the
network. These operations consist of simple lookups using
the base_component for the sensor.

If a D or ST node is found for a specific base_component,
then its value is updated using the current sensor value (lines
24, 27). This value is further discretized for clamping as
evidence in the network.

After all S nodes are processed, ProDiagnose updates the
values of any CH nodes that may be present in the Bayesian
network. Since the value of CH nodes can be derived from
any sensor in the Bayesian network (as opposed to D and ST
nodes in which the base_component's sensor value is always
the one used), a reference to this bound S node is stored in
the CH node. Because of this, we can iterate through the CH
nodes (updating their values) after all S nodes are updated, as
opposed to doing CH node lookups for each S node (though
it is worth mentioning that CH nodes can be treated similar
to D and ST nodes). At this point all our input nodes are
ready for clamping to the network and evaluation of the
network itself.

1 Algorithm Discretize_For_PM(Value : V, Thresholds : TH)
2 Begin:
3 A ← NEGATIVE_INFINITY
5
6 for each N ε TH
7 Begin:
8 B ← N
9 if V ≥ A and V < B
10 return TH.Index(N)
11 else
12 Begin:
13 A ← B
14 End else
15 End for
16
17 return TH.Index(TH.size + 1)
18 End

The Discretize_For_PM method (Process_Message, lines 21,
24, 27) takes the current sensor value and returns an index
value that is used in network nodes as states (clamped
evidence). This index is the index value between two
thresholds. A threshold has TH.size + 1 different Index
values (line 6) that are possible, starting at 0, where TH.size
is defined as the number of thresholds N in the set TH. The
discretized value is Index(N) for which V is [A, B) (lines 9,
10), or Index(TH.size + 1) if V is above all thresholds (line
17). For example, a sample sensor has three discrete states
in the PM: low, mid and high, which correspond to index
values 0, 1 and 2 respectively. Two sample thresholds are
given: 50 and 100. Any sensor reading below 50 is given an

8

Annual Conference of the Prognostics and Health Management Society, 2009

index of 0, [50, 100) is given an index of 1, and above 100 is
given index 2.

The following algorithms perform dynamic processing in the
Bayesian network:

1 Algorithm Calc_Delta(D)
2 Begin:
3 I ← Sensor_Average(Base_Component(D).S)
4 Iprev ← Sensor_Average(Base_Component(ST).S(t-1))
5 D.value ← I – Iprev

6
7 return D
8 End

1 Algorithm Sensor_Average(S)
2 Begin:
3 Sum ← 0
4
5 for each S ε {S(t), ..., S(t – p)}
6 Begin:
7 Sum ← Sum + S.value * S.weight
8 End for
9
10 return A

The Calc_Delta method (Process_Message, line 24) returns
the difference between the current and previous weighted
averaged sensor values of the delta D node's
base_component (lines 3, 4: Calc_Delta, Figure 9, see
Section 5.1, D). The average is defined as the summation of
any contiguous subsequence of sensor readings and their
corresponding weights (line 7: Sensor_Average) from the
current S(t) sample cycle to S(t – p), defined as the p sample
cycles back in the timeline.

1 Algorithm Calc_Stuck(ST, Counter : I, Sensitivity : K)
2 Begin:
3 current_value ← Base_Component(ST).S.value
4 previous_value ← Base_Component(ST).S(t-1).value
5 J ← current_value – previous_value
6
7 if J = 0 and I ≥ K
8 return 0
9 else if J ≠ 0
10 I ← 0
11 else
12 I ← I + 1
13
14 return J
15 End

The Calc_Stuck method (Process_Message, line 27) analyses
a component's sensor values for readings that are repeatedly
identical, defined if J = 0, by subtracting the current S(t) and
previous S(t - 1) values of the ST nodes' base_component
sensor (line 5, Figures 8-10). Each time J = 0 a counter I is
incremented. If this pattern continues past a given sensitivity
threshold K so I ≥ K (line 7), the ST node is considered
stuck. The pattern is broken if J ≠ 0 during a sample cycle
(line 5), at which point I is reset to 0 (line 9). A stuck node
ST has three discretized states, 0, 1, and 2, where 1
represents stuck, and 0, 2 represent non-stuck states.

1 Algorithm Calc_Change(CH, CUSUM : U)
2 Begin:
3 S ← CH.Bound_Sensor
4 I ← Sensor_Average(S)
5 Uprev ← U
6 U ← (S.value – I) + Uprev

7
8 if U < CH.Lower_Threshold
9 return 0
10 else if U > CH.Upper_Threshold
11 return 2
12
13 return 1
14 End

The Calc_Change method (Process_Message, line 31)
calculates a continuous CUSUM, or cumulative sum, which
is used to detect slight changes, or trends, in a sensor reading
over time. The current CUSUM U is calculated by taking
the current sensor reading S from the CH nodes' bound
sensor (Figure 10, see Section 5.1, CH) and subtracting it
from an averaged sensor reading I (lines 4, 6), in the same
way as for D nodes (see Sensor_Average algorithm). This
difference is then added to the previous CUSUM, and
updated as the new current CUSUM U (line 6). Very slight
changes that form a trend will over time will cause the
CUSUM to consistently increase or decrease. If this change
accumulates to the point where the CUSUM's value to drop
below a lower threshold (line 8) or above an upper threshold
(line 10), the index of the CH node will change in the PM to
0 or 2, respectively.

1 Algorithm Calculate_Marginals(PM)
2 Begin:
3 for each Node : N ε {S,C,D,ST,CH}
4 e ← fetch_current_evidence(PM, N)
5
6 for each H ε H
7 H.state ← argmax(P(H | E = e))
8
9 return H
10 End

In the Calculate_Marginals method (Process_Message, line
35), ProDiagnose clamps as evidence all of the input nodes
(lines 3, 4). Our probabilistic models will always have S
nodes, but not necessarily C, D, ST, or CH nodes.
ProDiagnose then calculates the marginals, P(H | E = e), for
all H (lines 6, 7). The output from the inference engine
gives the DA the states of H. For each H ∈ H, ProDiagnose
takes the most likely value for that node and assigns it as the
new health state (line 7).

1 Algorithm Output_Diagnosis(H, tDD, tCO)
2 Begin:
3 Candidate Set : CS
4
5 if first execution of Algorithm
6 dd ← tDD

7 if received C(t) within last sample cycle
8 co ← tCO

9
10 if dd = 0 and co = 0
11 Begin:
12 for each H ε H
13 Begin:
14 if H.state = abnormal
15 CS ← H
16 End for
17 End if
18
19 if dd > 0
20 dd ← dd – 1
21 if co > 0
22 co ← co - 1
23
24 return CS
25 End

If the diagnosis delay has reached 0, dd = 0 (initially set
during the first iteration of this algorithm), and there is no
current command offset, co = 0 (line 10), ProDiagnose will
output a four-tuple (t, CS, DS, IS) as D(t) (Figure 5,
Process_Message, line 37) if any abnormal health states are
detected. t is the current time, CS is a candidate set, DS is a
boolean detection signal, and IS is a boolean isolation
signal. A candidate set CS is a set containing zero or more
candidates. DS and IS are simply: DS = IS = (|CS| > 0). If
CS is non-empty, we have CS = {C1, ..., Cn}, where n ≥ 1,
with each candidate C in CS consisting of two-tuples like

9

Annual Conference of the Prognostics and Health Management Society, 2009

this: C = {(H1, a1), ..., (Hm, am)}, for m ≥ 1. For
ProDiagnose, a health node Hi is included in a candidate C,
along with a most likely state ai, if and only if that state is
abnormal. ProDiagnose always outputs exactly one (Hi, ai)
tuple per candidate, and thus candidate weights do not play a
role (and have for simplicity been kept out of the discussion
above). If dd > 0, then it decrements by 1 (line 20). This
also happens with co > 0 (line 22). co will be set to its
original value tCO each time ProDiagnose receives a
command within the last sample cycle of S(t).

1 Algorithm Update_Command_Queue(command_queue)
2 Begin:
3 for each C ε command_queue
4 Begin:
5 C ← get_node(C_Command)
6 ti ← C.timestamp
7 tj+ 1 ← S(t).timestamp + tSC

8
9 if tj + 1 - ti < tEP

10 keep command in queue
11 else
12 Begin:
13 pop command from queue
14 C ← V
15 End else
16 End for
17 End

The last step taken by ProDiagnose after diagnosis output is
updating the command queue (Process_Message, line 39),
pulling any commands C(ti) whose timestamp is considered
to be out of range of the next sample timestamp S(tj + 1)
according to the command epsilon, tj + 1 - ti < tEP (lines 8, 9).

6 BAYESIAN NETWORK (BN) STRUCTURES

The Bayesian networks ProDiagnose employs for EPSs have
two types of parts: components and sensors. A component
models a physical device in the EPS, such as a fan, circuit
breaker, relay, or light bulb. A sensor models a physical
sensor in the EPS. Sensors can take measurements of
components or wires. In the ADAPT EPS for example, e
(voltage) and it (current) sensors are wire sensors.

6.1 Component/Sensor structures

Components and sensors have specific structures within the
Bayesian network. Figure 19 (Section 7.2) shows how these
structures interconnect to form the entire system.

Figure 8: The Bayesian network representation of a
basic sensor, such as a voltage, current, or frequency
sensor. These types of sensors utilize stuck ST nodes
for stuck fault diagnosis.

Figure 8 shows our BN representation of a sensor such as a
voltage or current sensor. In the Bayesian network, these
sensors are connected on wires from one component to
another. The wire connection in the figure is represented as
an Attribute node A (refer to section 5.1, data structures, for
notations and definitions). These sensors are usually
continuous-valued sensors, as indicated by the Stuck ST
node present to provide stuck fault diagnosis within the
Bayesian network (Section 5.3, Calc_Stuck method). This
represents a basic structure for sensors in general, and many
sensors take this form.

Figure 9: The Bayesian network representation of a
component type with sensor such as a fan, pump or
light bulb. These types of components utilize delta D
and stuck ST nodes for their sensors.

Figure 9 takes our sensor representation from Figure 8 and
adds to it a component to form our BN representation of a
component plus sensor structure. This resulting structure is
used for a component that has a sensor directly monitoring it.
A physical example would be the fan and attached RPM
sensor in the ADAPT EPS. The RPM sensor is represented
in the Bayesian network as Figure 8 (the right section of
Figure 9), and the fan itself (the component) is represented
by the rest of Figure 9. These components may also utilize
the Delta D node to provide the short term behavior of the
component as evidence. This short term behavior is derived
from the sensor S node's readings (Section 5.3, Calc_Delta
method).

Figure 10: The Bayesian Network Representation of a
bound sensor (source sensor) S to a change node CH.
CH depends on both A and H.

Figure 10 represents the basic sensor structure from Figure 8
with one extra node added: a Change node CH to provide
long term sensor behavior to components that have at the

10

S

ST

D

AA

A

A

CL

H
H

Evidence
Health State

Rest
of
BN

S

ST
CH

A

H

Evidence
Health State

Rest
of
BN

S

ST

A

H

Evidence
Health State

Rest
of
BN

Annual Conference of the Prognostics and Health Management Society, 2009

very least an indirect relationship to the sensor itself. Using
Figure 2 (Section 3) as an example, we would implement the
CH node to provide long term behavior of the battery's
voltage. The CH node would obtain its values from the
CUSUM (Section 5.3, Calc_Change method) of a voltage
sensor downstream of the battery (any voltage sensor who's
readings are directly influenced by the battery could be
used). This would be the CH node's bound sensor. In Figure
10, the sensor structure to the right would represent the
voltage sensor, and the A node would represent part of the
battery component's structure. Note that the battery does not
have to be directly connected to the voltage sensor. In the
ADAPT BN (Figure 18), for example, there are currently
two nodes separating the battery component's structure from
the closest in-line voltage sensor.

Another example is the new load bank monitoring model in
the ADAPT Bayesian network. In this example, the CH
node provides long term behavior of the current sensor
monitoring the load bank to all the components within the
load bank itself (in Figure 10, the load bank can be
represented as the A node for simplicity). The CUSUM for
this CH node is discretized into many states representing
combinations of component failures within the load bank.
This long term behavior is then used to pinpoint abrupt
continuous faults within the load bank, based on this
behavior along with other evidence from sensors within the
bank.

Figure 11: The BN representation of a component such
as a relay or circuit breaker and its sensor. This type
of component can be commandable via the C node.

Figure 11 shows the BN representation for a component,
such as a relay or circuit breaker, and its corresponding
sensor. Notice how the sensor does not incorporate a Stuck
ST node. This is due to these sensors not giving real-valued
readings. In the case of relays and circuit breakers, they can
only be open or closed (so only two readings can be obtained
from the sensors, either open or closed). Since circuit
breakers tend to remain closed until tripped, it would appear
over time that these circuit breakers were stuck in the closed
state. In fact, if a circuit breaker or relay were to become
stuck, it would mean here that the component or sensor was
stuck in a state not considered healthy (closed if a relay was
supposed to be open for example).

The Command C node introduces commands as evidence
into the BN. For a relay, these commands will tell the relay
to either open or close.

Associated with each node in a Bayesian network model is a
Conditional Probability Table (CPT). The CPT gives the
conditional probability that a specific node will be in a
specific state given the state values of its parent nodes.

H
healthy 0.85
offsetToZero 0.02
offsetToLow, offsetToMid, or offsetToHigh 0.04
stuck 0.01

Table 1: The CPT for a health node H. This CPT
represents the health of a fan RPM sensor. States with
the same conditional probability are grouped together
for easier reading of the tables.

S
H A zero low mid high

healthy

zero 0.997 0.001 0.001 0.001
low 0.001 0.997 0.001 0.001
mid 0.001 0.001 0.997 0.001
high 0.001 0.001 0.001 0.997

offsetToZero zero, low, mid, or
high

0.997 0.001 0.001 0.001

offsetToLow zero, low, mid, or
high

0.001 0.997 0.001 0.001

offsetToMid zero, low, mid, or
high

0.001 0.001 0.997 0.001

offsetToHigh zero, low, mid, or
high

0.001 0.001 0.001 0.997

stuck zero, low, mid or
high

0.001 0.333 0.333 0.333

Table 2: The CPT for a sensor node S. This CPT
represents a fan sensor. Sensor readings are after
discretization clamped to S nodes.

As mentioned in the notation in Section 5.1, a health node H
gives the health state of a component or sensor in the
Bayesian network. Most H nodes follow the CPT pattern
shown in Table 1. Sensor S nodes represent sensors, and are
evidence nodes in the Bayesian network. Sensor readings
are clamped to S nodes as evidence. Evidence nodes are the
way in which ProDiagnose inputs information to the
Bayesian network.

ST
H negDelta zeroDelta posDelta

healthy 0.499 0.002 0.499
offsetToZero, offsetToLow,
offsetToMid, or offsetToHigh 0.499 0.002 0.499

stuck 0.001 0.998 0.001

Table 3: The CPT for a stuck node ST. Stuck nodes
tend to have the same CPT pattern. This CPT
represents the stuck state of a fan sensor.

11

SCL

H
Rest

of
BN

H

C

Evidence
Health State

Annual Conference of the Prognostics and Health Management Society, 2009

Stuck nodes ST are used to make a stuck state more probable
within the same sensor's health node H. The two ST states
negDelta and posDelta refer to a negative or positive
change, respectively, in the sensor S node's sensor reading.
The zeroDelta state represents a stuck state. After the SSD
(tSSD) has been reached, this state will be clamped in the ST
node. When an ST node is clamped to zeroDelta, the H
node's state has a very high probability (99.8%, Table 3) of
being stuck, and since the ST node is directly connected to it,
it yields great influence over the most likely value of the H
node. We have equal conditional probabilities for the stuck
state in the S node, Table 2, to make sure that the S node
itself cannot yield any considerable influence on the H node
being stuck. The one exception is when the sensor state is
zero (Table 2). The very low conditional probability here for
the stuck state prevents false stuck faults for sensors that can
be nominally reading zero continuously, such as RPM
sensors (the example CPT shown in Table 2).

CH
H A low nominal high

healthy

zero 0.998 0.001 0.001
low 0.998 0.001 0.001
mid 0.001 0.998 0.001
high 0.001 0.001 0.998

OffsetToLo,
offsetToHi, or
offsetToMax

zero, low, mid, or
high

0.333 0.333 0.333

stuck zero, low, mid or
high

0.333 0.333 0.333

Table 4: The CPT for a change node CH. This CPT
represents the general layout of CH nodes. The
conditional probabilities for all non-healthy states of the
H node will always be equal.

Change nodes CH are used to provide extra evidence for
components in the BN that have states which cannot be
properly determined by other evidence alone (similar to
Delta D nodes). An example is trying to pinpoint a
component failure in a bank of components, using only a
single current sensor that monitors the current flow entering
the entire bank. A CH node can give us extra evidence
related to how much the current sensor changes during a
component failure in the bank using CUSUMs.

A CH node will always be in a nominal state when it's
CUSUM is near zero, implying no distinct long-term
behavioral changes. In Table 4, the CH node has two other
states, low and high. It is worth noting that CH nodes can
have as many states as needed (in the load bank example
stated above, the CH node would need one state for each
component in the bank).

6.2 The Bayesian Network in Action

Figure 12: The marginal distributions for health H
nodes health_fan_component and health_fan_sensor
as well as the actual_fan_speed attribute A node
(same representation as in Figure 9, a fan and its
sensor). The actual_fan_speed A node represents the
actual state of the fan's blades.

Figure 12 represents the current states for select nodes of a
fan component and sensor (same structure as Figure 9) in an
example scenario. We see the most likely values for the
health H nodes of a fan component and sensor, based on the
evidence shown (Figure 12). Despite being suppressed here
to save space, the rest of the Bayesian network also
influences these outcomes. Notice how the
actual_fan_speed A node agrees with the evidence of the S
node.

Figure 13: The marginal distributions for health H
nodes health_fan_component and health_fan_sensor
as well as the actual_fan_speed attribute A node,
when the fan sensor's evidence (sensor reading -
state) is changed to low.

Suppose now that the sensor readings for the same fan
sensor dip downward so that the discretized state for the
sensor S node is now low (Figure 13). Assuming the
evidence clamped to the rest of the Bayesian network is the
same as in Figure 12, we see that the most likely value for
the sensor's health is now offsetToLow, based on the
marginal distribution for that node (Figure 13). However,
there is still enough evidence to suggest that the sensor's
health could be healthy, but with a lower probability.
Therefore, we say that the sensor's health is offsetToLow. A
similar logic applies to the fan component's health state as
being healthy.

12

S

H

ST

A

D

CL
Rest

of
BN

A

A

A

H

sensor_fan_sensor
evidence = mid

delta_fan_sensor
evidence = zero

stuck_fan_sensor
evidence = negDelta

health_fan_sensor
95.23% - healthy
0.00% - offsetToZero
0.00% - offsetToLow
4.76% - offsetToMid
0.00% - offsetToHigh
0.00% - stuck

actual_fan_speed
0.01% - zero
0.14% - low
99.72% - mid
0.14% - high

health_fan_component
99.66% - healthy
0.00% - failedOff
0.17% - underSpeed
0.17% - overSpeed

S

H

ST

A

D

CL
Rest

of
BN

A

A

A

H

sensor_fan_sensor
evidence = low

delta_fan_sensor
evidence = zero

stuck_fan_sensor
evidence = negDelta

health_fan_sensor
38.13% - healthy
0.03% - offsetToZero
61.71% - offsetToLow
0.06% - offsetToMid
0.06% - offsetToHigh
0.01% - stuck

actual_fan_speed
0.11% - zero
38.59% - low
59.53% - mid
1.78% - high

health_fan_component
61.08% - healthy
0.00% - failedOff
37.10% - underSpeed
1.82% - overSpeed

Annual Conference of the Prognostics and Health Management Society, 2009

Figure 14: The marginal distributions for health H
nodes health_fan_component and health_fan_sensor
as well as the actual_fan_speed attribute A node,
when the stuck ST node is clamped to the stuck state.

Now we show what happens when ProDiagnose determines
that a sensor is stuck. In Figure 14, the stuck ST node is
clamped to zeroDelta, the Bayesian network name for a
stuck state. Again assuming the evidence in the rest of the
Bayesian network is the same as in Figures 12 and 13, we
see that the most likely value for the sensor's health is stuck,
with high probability, based on the marginal distribution
(Figure 14).

Next we show another example, this time illustrating a
Change node CH in a configuration with a battery.

Figure 15: The marginal distributions for health H
nodes health_battery and health_voltage_sensor as
well as the voltage_battery attribute A node, for
nominal ADAPT battery behavior.

Figure 15 represents the current states of a battery and a
voltage sensor downstream from the battery. The battery
component is represented by the H node and three A nodes in
the left side of Figure 15, to the left of the 'Rest of BN'
cloud. The Change CH node derives its state from
discretizing the CUSUM from the Sensor S node
(sensor_voltage_sensor). This relationship is illustrated by
the source sensor arrow in Figure 15. The S node is
considered to be the bounded sensor to the CH node. This
example starts off in a nominal state, with both the battery
and voltage sensor in a healthy state.

Figure 16: The marginal distributions for health H
nodes health_battery and health_voltage_sensor as
well as the voltage_battery attribute A node, when a
battery's voltage has dropped enough for the battery to
be considered degraded.

Figure 16 illustrates what happens in the BN after the
battery's voltage starts to drop slightly. The voltage sensor
downstream from the battery (right side of Figure 16) is still
showing a state of 'mid' because the drop in voltage is not
enough to cross the threshold to a lower voltage state.
However the CUSUM from this sensor is showing a
decreasing voltage long-term trend (and the CH node's state
changes from 'nominal' to 'low'), which is interpreted in the
BN as a degrading battery. Therefore, the battery's health
state changes from 'healthy' to 'degraded'. Notice how the
voltage sensor's health is still 'healthy'. The next figure
shows why this is important.

Figure 17: The marginal distributions for health H
nodes health_battery and health_voltage_sensor as
well as the voltage_battery attribute A node, when the
voltage sensor is offset.

Figure 17 shows what happens if the bounded sensor to a
CH node is in an unhealthy state. In this example, the sensor
becomes offset at a much lower voltage reading than it
should be at, and its state changes to 'low' (even though it
should be at 'mid'). This offset results in the health of the
sensor changing to the 'offsetToLo' state. This offset also

13

S

H

ST

A

D

CL
Rest

of
BN

A

A

A

H

sensor_fan_sensor
evidence = low

delta_fan_sensor
evidence = zero

stuck_fan_sensor
evidence = zeroDelta

health_fan_sensor
1.88% - healthy
0.00% - offsetToZero
3.04% - offsetToLow
0.00% - offsetToMid
0.00% - offsetToHigh
95.08% - stuck

actual_fan_speed
0.17% - zero
4.57% - low
92.50% - mid
2.76% - high

health_fan_component
92.84% - healthy
0.00% - failedOff
4.45% - underSpeed
2.71% - overSpeed

ST

S

H

A

CH Source Sensor

Rest
of
BN

A

A

H
health_battery

99.78% - healthy
0.22% - degraded
0.00% - disabled

voltage_battery
0.00% - voltageNO
0.22% - voltageLow
98.06% - voltageMid
1.73% - voltageHigh

A

health_voltage_sensor
98.44% - healthy
0.02% - offsetToLo
1.53% - offsetToHi
0.02% - offsetToMax
0.00% - stuck

sensor_voltage_sensor
evidence = mid

stuck_voltage_sensor
evidence = negDeltachange_voltage_sensor

evidence = nominal

ST

S

H

A

CH Source SensorA

A

H

health_battery
22.04% - healthy
77.96% - degraded
0.00% - disabled

voltage_battery
0.00% - voltageNO
78.02% - voltageLow
10.99% - voltageMid
10.99% - voltageHigh

A

health_voltage_sensor
90.07% - healthy
0.10% - offsetToLo
9.73% - offsetToHi
0.10% - offsetToMax
0.00% - stuck

sensor_voltage_sensor
evidence = mid

stuck_voltage_sensor
evidence = negDeltachange_voltage_sensor

evidence = low

Rest
of
BN

ST

S

H

A

CH Source SensorA

A

H

health_battery
87.33% - healthy
12.67% - degraded
0.00% - disabled

voltage_battery
0.00% - voltageNO
12.67% - voltageLow
43.66% - voltageMid
43.66% - voltageHigh

A

health_voltage_sensor
8.48% - healthy
89.69% - offsetToLo
0.92% - offsetToHi
0.92% - offsetToMax
0.00% - stuck

sensor_voltage_sensor
evidence = low

stuck_voltage_sensor
evidence = negDeltachange_voltage_sensor

evidence = low

Rest
of
BN

Annual Conference of the Prognostics and Health Management Society, 2009

causes a downward trend in the CUSUM being derived from
the sensor's readings, and this changes the CH node's state
from 'nominal' to 'low'. However, because the sensor is
deemed to be unhealthy, the CH node's state, having been
derived from the unhealthy sensor's readings, can no longer
be considered accurate. We give equal conditional
probability to all states in the CH node (Table 4) when the
sensor's H node is showing an unhealthy state (sensor is
unhealthy). This ensures that the battery component (Figure
17) is not affected by any one CH node state over another.

7 ELECTRICAL POWER SYSTEM CASE STUDY

Figure 18: The ADAPT Tier 2 Electrical Power System.
Tier 2 represents the full EPS, which we will refer to as
simply ADAPT.

7.1 The ADAPT EPS

ADAPT EPS
ADAPT Bayesian

Network
Name Sym Description Qty per

EPS
Qty per sensor
Nodes Evidence

nodes

DC Current
Sensor it Measures DC

current in amps 7 3 2

AC Current
Sensor it Measures AC

current in amps 2 3 2

DC Voltage
Sensor e Measures DC

voltage in volts 12 3 2

AC Voltage
Sensor e Measures AC

voltage in volts 4 3 2

Circuit
Breaker
Position
Sensor

ish

Senses whether
a circuit
breaker is
opened or
closed

9 2 1

Relay
Position
Sensor esh

Senses whether
a relay is
opened or
closed

24 2 1

Temperature
Sensor

te

Measures
temperature in
Fahrenheit of
batteries,
battery cabinet,
and light bulbs

15 5 3

Speed
Transmitter st

Measures RPM
of the large
fans

2 5 3

Phase Angle
Transducer

xt

Measures the
phase shift in
degrees
between the
sine waves of
AC current and
voltage

2 6 2

AC
Frequency
Transmitter

st
Measures the
AC frequency
in Hertz

2 3 2

Flow
Transmitter

ft

Measures the
flow rate in
gallons per
hour through a
pump

2 5 3

Light Sensor

lt

Measures the
intensity in
millivolts of
incoming light

2 3 2

TOTAL 83 43 25

Table 5: ADAPT EPS sensors, with their quantity in
the ADAPT Tier 2 EPS. Also listed are the node and
evidence node quantities for each sensor.

14

BATT

te

te

te

CB R

R

e

ish

e

it
esh

esh
R

esh

e

it
ish

INV

e

st
ish

e

it

xt

ish

R

esh

R

esh

FAN

R

esh

FAN

R

esh

LGT

R

esh

PMP

R

esh

LGT

e

it

st

esh

LGT
LGT
LGT te

te

te

lt

R

esh

DC

R

esh

R

esh

e

it
ish

INV

e

st
ish

e

it

xt

ish

R

esh

LGT

R

esh

FAN

R

esh

LGT

R

R

esh

FAN

e

it

R

esh

R

esh

R

esh

PMP

R

esh

LGT
LGT
LGT te

te

te

lt

DC

BATT

te

te

CB R

e

ish

e

it
esh

esh
R

esh

BATT

te

te

CB R

e

ish

e

it
esh

esh
R

esh

ee
Battery
Cabinet

120V AC >>>

120V AC >>>

24V DC >>>

24V DC >>>

Lo
ad

 B
an

k 1
Lo

ad
 B

an
k 2

ADAPT Tier 2 EPS

Legend

BATT = Battery
CB = Circuit Breaker
R = Relay
INV = Inverter
FAN = Fan
PMP = Pump
LGT = Light Bulb
DC = Resistor

CB CB

CB CB

CB

CB

R

R

ft

te

ft

te

st

Annual Conference of the Prognostics and Health Management Society, 2009

The Advanced Diagnostics and Prognostics Testbed, or
ADAPT, is a real-world Electrical Power System (EPS)
located at NASA Ames Research Center. Its physical
structure is illustrated in Figure 18. This EPS is similar to
electrical power systems found aboard NASA spacecraft and
aircraft (Mengshoel et al., 2008). Since Tier 2 represents
the ADAPT EPS in its entirety, we will refer to it simply as
ADAPT.

ADAPT Tier 2 (ADAPT) consists of 3 batteries connected in
parallel through 2 DC → AC inverters to 2 load banks (Poll
et al., 2007, see Figure 18). Each load bank has a DC loads
section that bypasses the inverter. Reference Table 5 for a
breakdown of sensor quantity.

7.2 Bayesian Network for ADAPT

Figure 19 shows the ADAPT EPS as a Bayesian network. It
currently employs 671 nodes, 789 edges and has a domain
cardinality of [2, 16], with an average cardinality of 2.86.
The general structure of the BN model is laid out to visually
mimic the structure of the ADAPT EPS (Figure 18).

8 ELECTRICAL POWER SYSTEM EXPERIMENTS

We first describe the framework, developed at NASA Ames
Research Center, used in the experimental process for
collecting our results.

8.1 The DXC Framework

Figure 20: The DXC Framework used for evaluating
ProADAPT's experimental results. The Diagnosis
Algorithm would be ProADAPT in our case.

15

Figure 19: The Bayesian network representation of the ADAPT EPS. The layout visually is similar to the physical
system itself.

Scenario
Loader

Scenario
Data Source

Diagnosis
Algorithm

Scenario
Recorder

Scenario
Results

Evaluator

Spaw ns all Processes

Sends commands
and sensor values

Sends fault
injection data

Sends
diagnoses

Processed by

Annual Conference of the Prognostics and Health Management Society, 2009

The DXC (or DCC as Diagnostic Challenge Competition is
sometimes abbreviated) framework provides a method of
interfacing ProADAPT with a scenario evaluator using a
common protocol (Kurtoglu et al., 2009a; Kurtoglu et al.,
2009b; Figure 20).

ProADAPT incorporates the framework's API to interface
with the scenario data source, which acts as the environment
(see Figure 5). It also allows ProADAPT to connect to the
scenario recorder for diagnostic output. This output
(scenario results) is then processed using the evaluator
(Kurtoglu et al., 2009a; Kurtoglu et al., 2009b).

For the experiments in this paper we used all 120 scenarios
from the DXC-09 Tier 2 competition set for
experimentation. Each scenario simulates an actual fault(s)
of components and/or sensors in the ADAPT EPS. These
scenarios are either nominal, single, double or triple fault,
with various relay and circuit breaker open/close commands
(Kurtoglu et al., 2009a; Kurtoglu et al., 2009b). The
ADAPT EPS starts in a powered down state, in that all
commandable relays are open. Then various relays are
closed (and some possibly opened again), depending on the
scenario.

These scenarios were run on ProDiagnose using the latest
BN model2. ProDiagnose also competed in the DXC-09
Competition under the name ProADAPT3, and we will
compare our newest results to the ProADAPT results from
the competition, along with results from other diagnostic
algorithms.

For notational simplicity, in this section we will refer to the
version of ProADAPT that competed in DXC-09 as
ProADAPT1, and the newest version as ProADAPT2.

8.2 Notation and Definitions

The competition results are based on multiple metrics, which
we will now briefly summarize.

A false positive refers to detecting a fault when a fault is not
present. A false negative refers to not detecting a fault when
a fault is present. Reporting a fault many seconds after the
fault injection occurs is acceptable, so long as the fault is
reported before the scenario ends.

Detection accuracy is the percentage of correct fault
detections when taking into account the total percentage of
false positives and false negatives. A detection accuracy of
100% would imply a 0% false positives and false negatives
rate (but may not necessarily imply 0 classification errors,
see below).

2The BN file used was the latest as of August 8th, 2009, and is
named adapt10f3_v5c.net. Discretization and other relevant
information is kept in the file v5cT2.plog.
3The BN file used for the DX 09 Competition in this paper is named
DXCT2.net (April 6th, 2009). Discretization and other relevant
information is kept in the file DXCT2.plog.

Mean time to detect refers to the time elapsed between
specific fault injection and first detection of a fault. Mean
time to isolate is similar to the mean detection time, except
that an isolation refers to identification of the correct fault.
Diagnosing the wrong fault will result in an isolation time
equal to the difference between the initial fault injection time
and the end of scenario time, which is usually a very high
number.

Classification errors refer to the number of misdiagnoses
made during an entire scenario run (all 120 in this case).
Misdiagnoses include both false positives and false
negatives. It is possible to have multiple classification errors
per scenario. Classification errors that occur after a fault
injection, such as diagnosis of an incorrect fault, will not
result in a false negative or positive, as these types of
classification errors still count as a correct detection (of a
fault). An example is a fault in which a voltage sensor
becomes stuck at 0. If the diagnosis is that INV1 (inverter)
failed, then we get hit with 2 classification errors, one for not
isolating the correct fault (voltage sensor being stuck), and
another for isolating a fault that didn't exist (the inverter
failing). Another instance in which classification errors can
occur is in multiple-fault scenarios, in which all faults are
initially isolated correctly, but then one of the faults is
retracted. Because the other faults are still being correctly
diagnosed, the retracted fault is “forgotten”, as the last
diagnosis output before the end of the scenario is the one
used for accuracy (so if all these faults were retracted at the
same time, the last diagnosis would show all correct
isolations).

Mean CPU Time is a measure of mean CPU resources used
by ProDiagnose over all scenarios run, and Mean Peak RAM
Usage measures the maximum amount of memory needed
by ProDiagnose averaged over all run scenarios.

8.3 Results for the DXC-09 Competition - ProADAPT1

The table on the next page shows the results from the DXC-
09 Competition:

16

Annual Conference of the Prognostics and Health Management Society, 2009

Looking at Table 6 from the DXC-09 Competition,
ProADAPT1 did very well in all categories. ProADAPT1
had the lowest number of classification errors with 76, along
with the mean fastest mean isolation times at just under 12
seconds. It also had the highest detection accuracy at
88.33% (Ricks and Mengshoel, 2009).

ProADAPT1 is characterized by very low CPU and RAM
usage, which makes it ideal for systems with tight resource
constraints, such as those found on various types of aircraft
and spacecraft.

It may seem that an 11 second mean isolation time is high
(despite being the fastest time), but this is in large part due to
stuck faults, as ProADAPT1 waits to ensure with high
confidence that a sensor is indeed stuck before submitting a
diagnosis for it. Faults involving components such as fans
and pumps usually will have high isolation times also, due to
a similar principle of waiting (Ricks and Mengshoel, 2009).
In this case, ProADAPT1 waits until the component's sensor
readings trip a certain threshold, and the diagnosis is then
made based on other node influences within the Bayesian
network (The delta D node in Figure 9 aids the accuracy of
this process). Another cause of higher isolation times are
transients caused by the fault injection itself.

Please reference (Kurtoglu et al., 2009a) and (Kurtoglu et al.,
2009b) for more information on these metrics.

8.4 Results for updated BN - ProADAPT2

The results in this section use the same scenarios as those
from the DXC-09 Competition. ProDiagnose is using an
updated BN model and Prolog definitions file, giving
ProADAPT2.

ProDiagnose: Latest ADAPT Tier 2 Results
Using DXC-09 Industrial Track Tier 2 Scenarios

ProADAPT1 ProADAPT2

False Positives 7.32% 0.00 %

False Negatives 13.92% 1.25 %

Classification Errors 76 20

Detection Accuracy 88.33% 99.17 %

Mean Time to Detect 5973 ms 2096 ms

Mean Time to Isolate 11988 ms 10961 ms

Table 7: ProDiagnose experimental results using the
updated ADAPT BN Model.

A large weakness with the ADAPT model used during the
DXC-09 Competition had to do with a restricted physical
loads model. Components in the ADAPT testbed such as
light bulbs were not accurately represented, and thus did not
give accurate states. The new physical loads model fixed
these problems, and also added new evidence in the form of
a change CH node for each bank that monitors change in
current leading into the bank itself. This node aids in
accurate detection of faults within the banks, especially
multiple fault scenarios in which before there sometimes
wasn't enough evidence to avoid ambiguity.

This new BN also fixed a flaw in stuck detection having to
do with sensors monitoring components that were either off
or failed. Fan sensors for example will show 0 RPM
consistently when the fan blades are not spinning, but this is
not stuck behavior. The new BN model allows for more
accurate stuck detection. The older BN often would miss
stuck faults completely, decreasing our detection accuracy
but also decreasing our average isolation times, due to the
missed diagnoses not contributing to our isolation.
However, the new BN model combined with generally
higher diagnostic accuracy actually resulted in an average
isolation time that is a second lower than the DXC-09
results. The DXC-09 results factored in many false negatives

17

DXC-09 ADAPT Industrial Track Tier 2

ProDiagnose
(ProADAPT1)

FaultBuster HyDE RODON Stanford Wizards Of
Oz

False Positives 7.32% 81.43% 0.00% 54.17% 32.16% 51.06%

False Negatives 13.92% 24.00% 30.00% 9.72% 5.19% 9.59%

Classification Errors 76 130 121.57 84.01 110.55 159.25

Detection Accuracy 88.33% 42.50% 80.00% 72.50% 85.00% 74.17%

Mean Time to Detect 5973 ms 14099 ms 17610 ms 3490 ms 3946 ms 30742 ms

Mean Time to Isolate 11988 ms 37808 ms 21982 ms 36331 ms 14103 ms 47625 ms

Mean CPU Time 2922 ms 5798 ms 29612 ms 80261 ms 963 ms 23387 ms

Mean Peak RAM
Usage

6539 KB 10261 KB 20515 KB 29878 KB 5912 KB 7498 KB

Table 6: Results of the DXC-09 Industrial Track Tier 2 Competition.

Annual Conference of the Prognostics and Health Management Society, 2009

from missed stuck faults that the new model picked up
correctly.

The new BN model also incorporates a more generalized XT
sensor model. The phase angle measured using these
sensors are not always behaviorally consistent across
scenarios, and thus this sensor was at times coming up
incorrectly as faulty, increasing our false positive rate. This
fix (combined with the new loads model) decreased our false
positive rate to 0%. This helped push our detection accuracy
past 99%.

Our mean detection times dropped by over 50%, in part due
to the wider range of faults ProADAPT2 was now able to
properly detect. The component faults in the load banks can
usually be properly detected within 500ms (faster if no
transients are present). Our >99% detection accuracy is a
testament to the new loads model and updated stuck
detection (Table 7).

8.5 Raw Detection Performance (Inference)

Stuck detection and other factors that pop up during fault
diagnoses can often lead to longer detection and isolation
times. In disregarding these factors, we can get a good
indication of ProDiagnose's inference times.

We ran ProDiagnose through Tier 2 scenarios from the
DXC-09 Competition, including only those that involve
faults that a DA can catch immediately without any other
factors involved. ProDiagnose will calculate and report the
same fault each time sensor readings come in after the fault
injection (not including fault withholding due to parameters
like tCO, and providing all evidence remains the same).
Because of this, we were able to take the detection times as
being the diagnosis after the second sensor sample from the
fault injection.

Raw Fault Detection Times
Fault Type Isolation Time

ISH236=stuck 1 ms

ESH272=stuck 1 ms

ST516=offset 1 ms

ESH284=stuck 1 ms

E281=Offset 1 ms

Average 1 ms

Table 8: Fault detection times for faults that are not
influenced by stuck detection.

ProDiagnose consistently had detection times at 1 ms. This
though is the smallest unit of time that can be measured
before Java starts to break down in accuracy. Also ACE
inference times increase as the BN model increases in size.
However, when factoring in any CPU time used by all
ProDiagnose functions outside of the inference engine, it is

very probable that ProDiagnose's inference times are in fact
< 1 ms on average.

9 CONCLUSION AND FUTURE WORK

There is need for methods that bridge the gap between
complex systems, including electrical power systems, that
are hybrid and may also exhibit other challenging behaviors.
Most existing diagnostic technologies typically have a
discrete or continuous foundation, and diagnostics in a
hybrid, complex setting is an important topic for on-going
research. In this paper, we have presented methods for
hybrid diagnosis by means of discrete probabilistic models
(Bayesian networks and arithmetic circuits), and specifically
discussed novel techniques for handling continuous stuck
faults and continuous offset faults. These techniques are
embedded in the ProDiagnose algorithm.

In experiments with the ADAPT EPS, ProDiagnose turns out
to compute highly accurate diagnoses by means of
probabilistic models. It is characterized by quick detection
and isolation times, with a high degree of accuracy for
detecting faults. Part of this success was due to the presence
of certain BN nodes (Delta nodes, Stuck nodes, and Change
nodes) that address the challenges discussed above and
which are additions compared to an earlier version of the
ADAPT BN (Mengshoel et al. 2008). These novel BN nodes
are coupled with dynamic processing in ProDiagnose to
calculate their discrete states from continuous sensor
measurements. An improved physical loads model in the
ADAPT BN also helped to greatly improve performance and
accuracy in the most recent results reported here.

Future work includes adding dynamic Bayesian network
(DBN) capabilities to ProDiagnose in order to improve
detection accuracy, especially for fault types not discussed
here. Much of this research will be focused on
implementing reliable DBN models from the static models
currently used, as well as possible computational challenges
associated with DBNs.

ACKNOWLEDGMENTS

We would like to thank Scott Poll, David Garcia, David
Nishikawa and numerous others at the NASA Ames
Research Center for generating the ADAPT data for our
experiments, and for helping in many other ways. This
material is based upon work supported by NASA under
awards NCC2-1426 and NNA07BB97C.

REFERENCES

(Bickmore, 1992) T. W. Bickmore. A Probabilistic
Approach to Sensor Data Validation, In Proceedings of
the 28th Joint Propulsion Conference and Exhibit,
(Nashville, TN), 1992.

(Button and Chicatelli, 2005) R. M. Button and A.
Chicatelli. Electrical Power System Health
Management. In Proceedings of the 1st International
Forum on Integrated System Health Engineering and
Management in Aerospace, (Napa, CA), 2005.

18

Annual Conference of the Prognostics and Health Management Society, 2009

(Bunus et al., 2009) Peter Bunus, Olle Isaksson, Beate Frey,
Burkhard Münker. RODON - A Model-Based
Diagnosis Approach for the DX Diagnostic
Competition. In Proceedings of 20th International
Workshop on Principles of Diagnosis (DX-09),
(Stockholm, SE), pp. 423-430, 2009.

(Chavira and Darwiche, 2007) M. Chavira and A. Darwiche.
Compiling Bayesian Networks using Variable
Elimination. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence
(IJCAI-07), (Hyderabad, India), pp. 2443-2449, 2007.

(Chien et al., 2002) C. Chien, S. Chen, and Y. Lin. Using
Bayesian Networks for Fault Location on Distribution
Feeder. IEEE Transactions on Power Delivery, vol. 17,
pp. 785-793, 2002.

(Daigle et al., 2008) M. Daigle, X. Koutsoukos, and G.
Biswas. An Integrated Approach to Parametric and
Discrete Fault Diagnosis in Hybrid Systems. In
Proceedings of 11th International Workshop on Hybrid
Systems: Computation and Control (HSCC-08), (St.
Louis, MO), pp. 614–617, 2008.

(Darwiche, 2000) A. Darwiche. Model-Based Diagnosis
under Real-World Constraints. AI Magazine, vol. 21,
no. 2, pp. 57-73, 2000.

(Darwiche, 2003) A. Darwiche. A Differential Approach to
Inference in Bayesian Networks. Journal of the ACM,
vol. 50, no. 3, pp. 280-305, 2003.

(Gorinevsky et al., 2009) D. Gorinevsky, S. Boyd, and S.
Poll. Estimation of Faults in DC Electrical Power
System. In Proceedings of the American Control
Conference, 2009.

(de Kleer and Williams, 1987) J. de Kleer and B. C.
Williams. Diagnosing Multiple Faults, Artificial
Intelligence, 32(1), pp. 97-130, 1987.

(Koller and Lerner, 2000) D. Koller and U. Lerner. Sampling
in Factored Dynamic Systems. In Sequential Monte
Carlo Methods in Practice, 2000.

(Kurtoglu et al., 2008) T. Kurtoglu, O. J. Mengshoel, and S.
Poll. A framework for systematic benchmarking of
monitoring and diagnostic systems. In Annual
Conference of the Prognostics and Health Management
Society (PHM-08), 2008.

(Kurtoglu et al., 2009a) T. Kurtoglu, S. Narasimhan, S. Poll,
D. Garcia, L. Kuhn, J. de Kleer, A. van Gemund, and A.
Feldman. First International Diagnosis Competition –
DXC’09. In Proceedings of 20th International
Workshop on Principles of Diagnosis (DX-09),
(Stockholm, SE), pp. 383–396, 2009.

(Kurtoglu et al., 2009b) T. Kurtoglu, S. Narasimhan, S. Poll,
D. Garcia, L. Kuhn, J. de Kleer, A. van Gemund and A.
Feldman. Towards a Framework for Evaluating and
Comparing Diagnosis Algorithms. In Proceedings of
the 20th International Workshop on Principles of
Diagnosis (DX-09), (Stockholm, SE), pp. 373–382,
2009.

(Lauritzen and Spiegelhalter, 1988) S. Lauritzen and D. J.
Spiegelhalter. Local Computations with Probabilities on
Graphical Structures and Their Application to Expert
Systems (with Discussion). Journal of the Royal
Statistical Society series B, vol. 50, no. 2, pages 157-
224, 1988.

(Lerner et al., 2000) U. Lerner, R. Parr, D. Koller, and G.
Biswas. Bayesian fault detection and diagnosis in
dynamic systems. In Proceedings of The Seventeenth
National Conference on Artificial Intelligence (AAAI-
00), pp. 531–537, 2000.

(Liu and Zhang, 2002) E. Liu and D. Zhang. Diagnosis of
Component Failures in Space Shuttle Main Engines
using Bayesian Belief Networks: A Feasibility Study. In
Proceedings of the 14th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI-02),
(Washington D.C.), 2002.

(Mengshoel et al., 2006) O. J. Mengshoel, D. C. Wilkins and
D. Roth. Controlled Generation of Hard and Easy
Bayesian Networks: Impact on Maximal Clique Tree in
Tree Clustering. Artificial Intelligence (170), pp. 1137-
1174, 2006.

(Mengshoel, 2007) O. J. Mengshoel. Designing Resource-
Bounded Reasoners Using Bayesian Networks: System
Health Monitoring and Diagnosis. In Proceedings of the
18th International Workshop on Principles of Diagnosis
(DX-07), (Nashville, TN), pp. 330-337, 2007.

(Mengshoel et al., 2008) O. J. Mengshoel, A. Darwiche, K.
Cascio, M. Chavira, S. Poll, and S. Uckun. Diagnosing
Faults in Electrical Power Systems of Spacecraft and
Aircraft. In Proceedings of the Twentieth Innovative
Applications of Artificial Intelligence Conference (IAAI-
08), (Chicago, IL), pp. 1699-1705, 2008.

(Mengshoel et al., 2009) O. J. Mengshoel, M. Chavira, K.
Cascio, S. Poll, A. Darwiche, and S. Uckun.
Probabilistic Model-Based Diagnosis: An Electrical
Power System Case Study. Accepted for publication in
IEEE Transactions on Systems, Man and Cybernetics-
Part A: Systems and Humans, 2009.

(Narasimhan and Biswas 2007) S. Narasimhan and G.
Biswas. Model-Based Diagnosis of Hybrid Systems.
IEEE Transactions on Systems, Man and Cybernetics-
Part A: Systems and Humans, 37(3): pp. 348-361, 2007.

(Olesen, 1993) K. G. Olesen. Causal Probabilistic Networks
with Both Discrete and Continuous Variables. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 15(3), pp. 275-279, 1993.

(Pearl, 1988) J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Mateo,
CA: Morgan Kaufmann, 1988.

(Poll et al., 2007) S. Poll, A. Patterson-Hine, J. Camisa, D.
Garcia, D. Hall, C. Lee, O. J. Mengshoel, C. Neukom,
D. Nishikawa, J. Ossenfort, A. Sweet, S. Yentus, I.
Roychoudhury, M. Daigle, G. Biswas, and X.
Koutsoukos. Advanced Diagnostics and Prognostics
Testbed. In Proceedings of the 18th International
Workshop on Principles of Diagnosis (DX-07),
(Nashville, TN), pp. 178-185, 2007.

(Ricks and Mengshoel, 2009) B. Ricks and O. J. Mengshoel.
The diagnostic challenge competition: Probabilistic
Techniques for Fault Diagnosis in Electrical Power
Systems. In Proceedings of 20th International
Workshop on Principles of Diagnosis (DX-09),
(Stockholm, SE), pp. 415–422, 2009.

(Yongli et al., 2006) Z. Yongli, H. Limin, and L. Jinling.
Bayesian Network-Based Approach for Power System

19

Annual Conference of the Prognostics and Health Management Society, 2009

Fault Diagnosis. IEEE Transactions on Power Delivery,
vol. 21, pp. 634-639, 2006.

Brian Ricks is an undergraduate student at the University of
Texas at Dallas. He worked for the NASA Ames Research
Center, Intelligent Systems Division, as an intern with the
Universities Space Research Program. He will graduate in
Spring of 2010 with a BS in Computer Science from the
University of Texas at Dallas. Mr. Ricks performed part of
the research reported here during his internship, under the
leadership of Dr. Ole J. Mengshoel.

Ole Mengshoel is a Senior Scientist with Carnegie Mellon
Silicon Valley at the NASA Ames Research Center,
Intelligent Systems Division. Dr. Mengshoel has managed
and provided hands-on leadership in a wide range of
research and development projects. He has successfully
developed technical results and software that have or are
being matured and transitioned into the aerospace, defense,
finance, education, electronic commerce, and manufacturing
sectors. His current research focuses on reasoning,
diagnosis, decision support, reasoning, and machine learning
under uncertainty - often using Bayesian networks – with
aerospace applications of interest to NASA. He holds a
Ph.D. in Computer Science from the University of Illinois,
Urbana-Champaign. His undergraduate degree is in
Computer Science from the Norwegian Institute of
Technology, Norway (now NTNU).

20

