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ABSTRACT   

When compared with a traditional planetary 
gearbox, the split torque gearbox (STG) 
potentially offers lower weight, increased 
reliability, and improved efficiency.  These 
benefits have driven the helicopter 
manufacturing community to develop products 
using the STG.  However, this may pose a 
challenge for the current gear analysis 
methods used in Health and Usage Monitoring 
Systems (HUMS).  Gear analysis uses time 
synchronous averages to separates in 
frequency gears that are physically close to a 
sensor. The effect of a large number of 
synchronous components (gears or bearing) in 
close proximity may significantly reduce the 
fault signal (decreased signal to noise) and 
therefore reduce the effectiveness of current 
gear analysis algorithms.  As of today, only a 
limited research on STG fault diagnosis has 
been conducted.  
   In this paper, we investigated fault diagnosis 
for STG using both vibration and acoustic 
emission (AE) signals.  In particular, seeded 
fault tests on a STG type gearbox were 
conducted to collect both vibration and AE 
signals.  Gear fault features were extracted 
from vibration signals using a Hilbert-Huang 
Transform (HHT) based algorithm and from 
AE signals using AE analysis, respectively.  
These fault features were used for fault 
detection using a K-nearest neighbor (KNN) 
algorithm.  Our investigation has shown that 
that both vibration and AE signals were 
capable of detecting the gear fault in a STG.  
However, in terms of locating the source of 

the fault, AE analysis outperformed vibration 
analysis.* 

1 INTRODUCTION 

The requirement for higher energy density 
transmissions (lower weight) in helicopters has lead to 
the development of the split torque gearbox (STG) to 
replace the traditionally planetary gearbox by the drive 
drain designer (White1, 1982).  In comparison with 
traditionally planetary gearbox, STG potentially offers 
the following benefits (White2, 1982): (1) high ratio of 
speed reduction at final stage; (2) reduced number of 
speed reduction stages; (3) lower energy losses; (4) 
increased reliability of the separate drive paths; (5) 
fewer gears and bearings; (6) lower noise.  These 
benefits have driven the helicopter manufacturing 
community to develop products using the STG.  For 
example, the Comanche helicopter was designed with a 
STG, and the new Sikorsky CH-53K will incorporate 
the STG design to transmit over 18,000 hps to the rotor 
blades. It is likely that STG will be incorporated into 
more designs in the future (Gmirya, 2008).   

A simplified split torque gear drawing (White2, 
1982) is shown in Figure 1 and a more representative 
gearbox design, such that seen in (Krantz, 1996) from 
the Comanche STG is given in Figure 2. 

 
 
 
 
 
 

                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 
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Because of the limited experience in building 

helicopter with STG, there is no condition based 
monitoring data on this type of gearbox.  Studies have 
been conducted to model and analyze vibration 
dynamics of the STG (Krantz, 1995), and analysis on 
gear loading has been conducted (Krantz, 1996). Yet, 
these studies do not give insight into fault detection of 
gears on this type of design. Gear diagnostics use time 
synchronous averages to separates in frequency gears 
that are physically close.  As shown in Figure 1, in a 
STG, to divide the torque evenly, several identical 
compound gears will mesh simultaneously with the bull 
gear.  The effect of a large number of synchronous 
components (gears or bearing) in close proximity may 
significantly reduce the fault signal (decrease signal to 
noise ratio) and therefore reduce the effectiveness of 
current gear analysis algorithms.  Only limited research 
on STG fault diagnosis has been conducted to date.  In 

a recent paper (Bechhoefer et al., 2009), an 
investigation on condition indicator performance on a 
STG type gearbox was reported.  In this paper, a 
number of vibration analysis based condition indicators 
were tested on detecting seeded gear faults in the 
gearbox.  These condition indicators were generated 
using a number of vibration analysis techniques 
including: traditional gear analysis algorithms: time 
synchronous average (based on both shaft and mesh 
tones), narrow band signal analysis, Hilbert-Huang 
transform (HHT), and beam forming.  The results of the 
investigation showed that these condition indicators 
were effective in detecting a chipped gear tooth in the 
gearbox.  Among those tested, it was shown those 
condition indicators generated by HHT are powerful in 
detecting gear fault.  No investigation results on how to 
locate the gear faults were reported in the paper.  

In this paper, an investigation on detecting and 
locating gear faults in a STG using both vibration 
analysis and acoustic emission analysis is presented.  In 
our investigation, gear fault features will be extracted 
from vibration signals using a HHT based algorithm.  
The gear fault features will also be extracted from 
acoustic emission (AE) signals using traditional AE 
analysis method.  These fault features will be used for 
fault detection using a K-nearest neighbor (KNN) 
algorithm.  The effectiveness of these methods will be 
compared using a STG type gearbox seeded fault test 
data.  The remainder of the paper is organized as 
follows.  In Section 2, our investigation approach in 
general, HHT, AE analysis and KNN are introduced.  
Section 3 provides a detail description of the 
experimental setup and analytical results for both 
vibration and AE signals.  Finally, Section 4 concludes 
the paper. 

 

2 SPLIT TORQUE GEARBOX FAULT 
DETECTION 

In this paper, the fault detection problem for STG using 
both vibration and AE signals is investigated.   

Until now, vibration-based techniques are the most 
widely used ones for gear fault diagnosis since 
vibration signals are easy to obtain. In the area of 
vibration based gear fault detection, it has been proven 
the time-frequency methods are the most powerful tools.  
The time-frequency methods include short-time Fourier 
transform (SFT), Wigner-Ville distribution, wavelet 
analysis, and HHT. Among these methods, HHT has 
shown to be effective in fault detection in STG  
(Bechhoefer et al., 2009).  In this paper, the gear fault 
features will be extracted by an HHT based algorithm.   

AE signals are widely used in non-destructive 
testing (NDT) of static structures, such as bridge, metal 
structures.  Recently, it has been extended to health 

Figure 1: A simplified STG 

Figure 2: Comanche STG 
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monitoring of rotating machines (Tan et al., 2007). 
Comparing with the vibration signals, AE signals have 
the following advantages: (1) Insensitive to structural 
resonances and unaffected by typical mechanical 
background noise, (2) More sensitive to activity from 
faults, (3) Provides good trending parameters, (4) 
Localization of measurements to the machine being 

monitored. These advantages make the acoustic 
emission based fault diagnostics technique potentially 
more competitive than the vibration based fault 
diagnostics technique for the split torque transmission 
train. In this paper, traditional AE analysis is used to 
extract features from AE signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  The investigation for STG fault detection 
 

2.1 HHT based Fault Feature Extraction 

HHT is first proposed by Huang et al. (Huang et al., 
1998).  HHT can effectively analyze the non-stationary 
signals without the uncertainty introduced by selecting 
a basic function.  It has been proven to be effective in 
various applications, such as rotational machine health 
diagnosis (Yan and Gao, 2006), (Liu et al., 2006), (Li 
and He, 2009), structure health monitoring (Liu et al., 
2006), bio-tech signals processing (Tang et al., 2007), 
and so on.   

HHT uses empirical mode decomposition (EMD) 
method to decompose signal into several intrinsic mode 
functions (IMF).  According to Huang et al (Huang et 
al., 1998), a function f(t) is defined to be an IMF, if it 
satisfies two characteristic properties: (1)  f(t) has 

exactly one zero between any two consecutive local 
extrema. (2) f(t) has zero “local mean”. 

The steps of EMD are provided as below: 
 
1. Find the local maxima and local minima of the 

signals. 
 
2. Construct the lower and upper envelopes of the 

signals by the cubic spline respectively based on the 
local maxima and local minima. 
 

3. Calculate the mean values m(t) by averaging the 
lower envelope and the upper envelope. 
 

4. Subtract the mean values from the original 
signals to produce h1(t)=f(t)-m(t).  If it is the true 
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intrinsic mode function, go to the next step.  And the 
IMF component Ci(t)=hm(t) is saved.  If it is not the 
IMF, go throughout step 1 to step 4.  The stop 
condition for the iteration proposed in (Huang et al., 
1998) is given by Eq. (1).  
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Where hm-1(t) and hm(t) denote the IMF candidates of 
the m-1 and m iterations, respectively and Usually SD 
is set between 0.2 and 0.3.  
 

5. Calculate the residual component by subtracting 
IMF component obtained in step 4 from the original 
signals resi(t)=f(t)-Ci(t).  This residual component is 
treated as new data and is subjected to the same 
processes described above to calculate the next IMF 
component. 

 

6. Repeat the steps 1-5 until the final residual 
component becomes a monotonic function and no more 
IMF component can be extracted or the envelopes 
becomes smaller than a pre-determined value. 
 

Through step (1) to (6), the original signals f(t) can 
be decomposed into N empirical modes (C1-CN)and a 
residue resN as: 
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Once the original signals are decomposed into IMF 
components, one may analyze the properties of each 
component by using the Hilbert transform.  Since we 
use HHT to extract fault features in this paper, the 
scheme of HHT based fault feature extraction (Li and 
He, 2009) is repeated in Figure 4.  As shown in Figure 
4, the vibration signals are first decomposed by EMD 
and then the IMF, which contains the fault information, 
is selected.  The fault features are finally calculated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 AE Analysis based Fault Feature Extraction  

Until now, there are three types of approaches for 
detecting the gear faults: AE analysis, debris 
monitoring and vibration analysis  (Wang et al., 2001).  
Among them, AE has been shown to be the most 
sensitive to the gear damage (Eftekhamejad and Mba, 
2009), (Toutountzakis et al., 2005), (Hamzah and Mba, 
2009). 
 
 
 

 
 
 

AE signals from rotating machines usually involve 
non-stationary, transient characteristics and mixtures of 
various dynamic events.  One challenge in processing 
AE signals is how to extract the relevant features from 
a vast dataset, especially if the emitted signals are 
becomes smaller than a pre-determined value. 
Fortunately, a typical AE waveform usually illustrates 
some of the characteristics of an AE signal and 
therefore correlates to the states of the components 
being monitored by the AE sensors.  In this research, 
traditional AE analysis to compute AE parameters is 
applied to extract gear fault features. 

Extract condition 
indicators 
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Figure 4:  The scheme of the HHT based feature extraction 
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7 AE parameters are computed as gear fault 
features: (1) ring-down count (2) duration (3) peak 
amplitude (4) rise time (5) rise time slope (6) RMS (7) 
Kurtosis. The ring-down count is defined as the 
number of threshold crossing made by an acoustic 
emission event.  The duration is defined as the time 
between the initial rise of acoustic emission energy 
above the threshold and the time at which the acoustic 
emission energy decays below the threshold.  The peak 
value is the absolute value of the highest voltage 
attained by a single acoustic emission event.  The rise 
time is defined as the time between the initial crossing 
of the threshold and the time at which the peak 
amplitude occurs.  The rise time slope is defined as the 
peak amplitude minus the threshold voltage divided by 
the rise time.  RMS is defined by equation (3) and 
Kurtosis is defined by equation (4) as follows: 
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where ix  is the signal and x  is the mean value of 
the signal.   

Totally 200 datasets were collected from the 
healthy gearbox and the value of the threshold is 
chosen to be 0.1 v based on the criteria that for acoustic 
emission signals of the healthy gearbox can seldom 
exceed this value. Waveforms of AE signals are 

selected based on the 7 AE parameters.  There 
following criteria is used: the higher the rise time slope, 
ring-down count, duration, and peak amplitude, and the 
lower the rise time is, the more accurate the extracted  
waveform data is.  To select the valid waveform, data 
point in the AE signal which finds relative maximum 
of the AE parameters is selected.  The waveform 
corresponding to this point is selected as the valid 
waveform. 

2.3 KNN based Fault Classification 

KNN method is a simple passive machine learning 
algorithm.  As shown in (He and Bechhoefer, 2008), 
KNN method was successfully applied to the bearing 
fault diagnostics and prognostics.  KNN algorithm 
assumes all observations correspond to points in the p-
dimensional space (He and Bechhoefer, 2008).  The 
nearest neighbors of an observation are defined in 
terms of the standard Euclidean distance.  Assume 
there are two vectors xi,xj, the Euclidean distance is 
defined in Eq. (5).  An observation is classified by a 
majority vote of its neighbors. 
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where ikx   and jkx  are elements that belong to the 
two vectors xi, and xj.     

In this paper, the KNN method is used for STG 
fault classification based on gear fault features 
extracted by both HHT and AE analysis and the 
classification performance using both vibration based 
and AE based features are compared.  The scheme of 
KNN algorithm based fault classifier is shown in 
Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5: The scheme of the KNN method
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The flowchart of KNN algorithm is shown in 
Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 EXPERIMENTAL SETUP AND ANALYSIS 
RESULTS 

In an effort to gain experience in performing HUMS 
types of analysis on STG, Goodrich working with the 
University of Illinois at Chicago (UIC) has built a test 
gearbox for the purpose of testing condition indicators 
(CI) used in HUMS and condition based maintenance 
practices. The primary design considerations were 
emulation of synchronous gear signals that would be 
found in a STG (see Figures 4 & 5).  The STG type 
gearbox is driven by a 3-Hp AC motor and the 
maximum input rotational speed is 3600 rpm.  A torque 
sensor is installed on the input shaft to measure the 
torque applied to the output shaft.  On the input side of 
gearbox, the input driving gear is a 40-tooth gear, 
driving three driven spur gears of 72 teeth.  On the 
output side, the output driving gears are three 48-tooth 
output spur gears which drive a single 64-tooth output 
driven gear.  A magnetic loading system is connected 
to the output shaft of the output spur gear.  The 
magnetic loading system is controlled by a power 
supply and the load can be adjusted by changing the 
output current of the amplifier. 
 
 
 
 
 

 
Figure 7:  The split torque gearbox 

  
(a) 

  
(b) 

Figure 8: (a) Input drive side and (b) output driven side 
of the STG 
 

Three accelerometers were mounted on the input 
drive pinion and at the locations near the output driving 
gears and two acoustic emission sensors were mounted 
at the locations near the output driving gears.  In the 
experiments, 20% of a tooth in one of the driving gears 
was chipped.  The damaged gear is shown in Figure 9.  
The damaged gear is placed at location 2.  The 
locations of the accelerometers and the acoustic 
emission sensors are shown in Figure 10.  During the 
experiments, the input speed was kept at 3600 rpm.   

Start 
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Figure 6: The flowchart of the KNN algorithm 
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The sampling rate for vibration signals was set to 
be 102.4 kHz.  Vibration data for both the damaged 
gearbox and the healthy gearbox were collected.  For 
each case, there were totally 200 datasets sampled.  For 
AE signals, the sampling rate was set to be 5 MHz.  AE 
data for both the damaged gearbox and the healthy 
gearbox were collected.  For each case, there were 
totally 200 datasets sampled. 

 

 
Figure 9:  The Damaged Gear 

 
Figure 10:  The locations of vibration and acoustic 

emission sensors 
 

3.1 Analysis Results of Vibration Signals  

An example set of the healthy gearbox data is shown in 
Figure 11 (a).  An example of the damaged gearbox 
data is shown in Figure 11 (b). 
 
 
 
 
 
 
 
 
 
 

 
Figure 11:  The vibration signals of the (a) healthy 

gearbox and (b) damaged gearbox 
 

The HHT was applied to the vibration signals and 
the 3rd IMF component was chosen because of this 
IMF component was associated with the gear meshing 
frequency of 1600 Hz.  The RMS, peak value, kurtosis, 
and the amplitude of the shaft frequency of the 
damaged gear in the Fourier spectrum of the 3rd IMF 
component were calculated as the features.   

In our experiment, we first wanted to test whether 
the vibration can detect the fault in the gearbox.  The 
features were extracted for every dataset for both the 
healthy gearbox and the damaged gearbox to generate 
400 feature vectors.  From the generated feature 
vectors, 150 of the healthy gearbox and 150 of the 
damaged gearbox were used as the training features to 
train the KNN classifier.  Then the rest of the feature 
vectors were used for classification. The classification 
results are shown in Table 1.  From Table 1, we can see 
that the classification accuracy is 95%. 
 

Table 1: The confusion matrix for fault detection using 
vibration 

Predicted Classes 
Actual Classes Healthy 

Gearbox 
Damaged 
Gearbox 

Healthy Gearbox 45 5
Damaged Gearbox 0 50

 
To see whether the vibration could locate the fault, 

the vibration signals collected at location 1 (healthy 
gear) and location 2 (damaged gear) were used.  

Damaged Gear ToothDamaged Output Driving Gear 

Vibration Sensors Acoustic Emission Sensors 

1 2 

3 
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Totally 200 data sets were sampled for both the sensor 
located at location 1 and location 2. The vibration 
signals were processed for both the healthy gear and 
the damaged gear to generate 400 feature vectors.  
From the generated feature vectors, 150 of the healthy 
gear and 150 of the damaged gear were used as the 
training features to train the KNN classifier.  Then the 
rest of the feature vectors were used for classification.  
The classification results are shown in Table 2.  From 
Table 2, we can see that the classification accuracy is 
78%. 
 

Table 2: The confusion matrix for fault location 
detection using vibration 

Predicted Classes
Actual Classes Location1 Location2

Location1 37 13
Location2 9 41

 
From Table 1 and Table 2, we can see that when 

using the vibration based fault features, the KNN 
algorithm can accurately classify the damaged gear 
state from the healthy gear state.  However, for fault 
location detection, the vibration based fault features 
provide an accuracy of only 78%. 

3.2 Analysis Results of the AE Waveforms  

An example waveform of the healthy gearbox AE 
signal is shown in Figure 12 (a).   

    

 

 
 

Table 3 shows RMS, kurtosis, peak value, ring-
down count, rise time, duration, and rise time slope of 
the AE signal in Figure 12.   

 

Table 3: The features of the AE signals in Figure 11 

 RMS   
(v) 

Kurtosi
s (v) 

Peak 
Value 

Ring-down 
Count

Rising 
Time 

Duration   
(ms) 

Rise Time 
Slope

Healthy 0.004 4.550 0.015     

Damaged 0.07 6.00 0.33 27 0.03 0.27 7667 
 

The features shown in Table 3 were extracted for 
every dataset for both the healthy gearbox and the 
damaged gearbox to generate 400 feature vectors.  
From the generated feature vectors, 150 of the healthy 
gearbox and 150 of the damaged gearbox were used as 
the training features to train the KNN classifier.  Then 
the rest of the feature vectors were used for 
classification.  The classification results are shown in 
Table 4.   
 
 
 
 
 
 
 

 
Table 4: The confusion matrix for fault detection using 

AE signals 

 Predicted Classes 

Actual Classes Healthy 
Gearbox 

Damaged 
Gearbox 

Healthy Gearbox 50 0 

Damaged Gearbox 0 50
 

From Table 4, we can see that an accuracy of 100% 
to classify healthy or damaged state of the gearbox 
using AE signals was achieved.  By comparing the 
results of AE and vibration, we can see that AE signals 

Figure 12: The acoustic emission signals of the 
(a) healthy gearbox and (b) damaged gearbox 



Annual Conference of the Prognostics and Health Management Society, 2009 

 9 

are sensitive to the damage of the gear in the split 
torque gearbox.  Moreover, the AE signals do not need 
sophisticated algorithm to generate the fault features.  

To see whether the AE signals could locate the 
fault, the AE signals collected at location 1 (healthy 
gear) and location 2 (damaged gear) were used.  
Totally 200 datasets were sampled for both the AE 
sensors located at location 1 and location 2.  Example 
waveforms of the AE signals are shown in Figure 12.  
From Figure 12 we can see the AE signals collected at 
the location 2 reflects more fault features than the 
signals collected at the location 1. 

Table 5 shows RMS, kurtosis, peak value, ring-
down count, rise time, duration, and rise time slope of 
the AE signal in Figure 12.  The threshold was set to be 
0.1 v. 
 
 
 
 
 
 

 

Figure 13: The acoustic emission signals (a) at location 
1 and (b) at location 2 

Table 5:  The features of the acoustic emission signals of the damaged gearbox

 RMS    
(v) 

Kurtosis 
(v) 

Peak 
Value (v) 

Ring-down 
Count 

Rising 
Time (ms) 

Duration   
(ms) 

Rise Time 
Slope 

Location 1 0.03 2.60 0.13 15 0.008 0.26 3750 

Location 2 0.07 6.00 0.33 27 0.03 0.27 7667 
  
 
     To show the effectiveness of the damage source 
detection using AE signals, the AE parameters were 
extracted for both location 1 and location 2 AE signals 
to generate 400 feature vectors.  From the generated 
feature vectors, 150 of location 1 and 150 of location 2 
AE signals were used as the training features to train 
the KNN classifier.  Then the rest of the feature vectors 
were used for classification.  The classification results 
are shown in Table 6.     
 

Table 6:  The confusion matrix for fault location 
detection using AE signals 

 Predicted Classes 

Actual Classes Location1 Location2

Location1 49 1
Location2 2 48

 
 
 

 
 
The results in Table 6 show that 97% accuracy rate 

was achieved by using the AE signals to locate the fault 
source of the gearbox.  In comparison with the 78% 
accuracy using vibration, AE approach performed 
significantly better in terms of identifying the source of 
the fault. 
 

4 CONCLUSIONS  

The benefits potentially offered by STG have driven 
the helicopter manufacturing community to develop 
products using the STG.  However, this may pose a 
challenge for the current gear analysis methods used in 
HUMS.  Gear analysis uses time synchronous averages 
to separates in frequency gears that are physically close 
to a sensor. The effect of a large number of 
synchronous components (gears or bearing) in close 
proximity may significantly reduce the fault signal 
(increase signal to noise) and therefore reduce the 
effectiveness of current gear analysis algorithms.  Up 
to today, only a limited research on STG fault 
diagnosis has been conducted.  
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In this paper, we investigated fault diagnosis for 
STG using both vibration and acoustic emission (AE) 
signals.  In particular, seeded fault tests on a STG type 
gearbox were conducted to collect both vibration and 
AE signals.  Gear fault features were extracted from 
vibration signals using a Hilbert-Huang Transform 
(HHT) based algorithm and from AE signals using AE 
analysis, respectively.  These fault features were used 
for fault detection using a K-nearest neighbor (KNN) 
algorithm.  Our investigation has shown that the fault 
features extracted from both vibration and AE signals 
were capable of detecting the gear fault in a STG.  
However, in terms of locating the source of the fault, 
the fault features extracted from AE analysis 
outperformed those extracted from the vibration 
analysis. 
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