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ABSTRACT

Timed failure propagation graph (TFPG) is a
causal model that captures the causal and tempo-
ral aspects of failure propagation in a wide vari-
ety of engineering systems. In this paper we in-
vestigate the problem of failure prognosis within
the TFPG model settings. The paper introduces
a formal definition for system reliability based on
measures of failure criticality, proximity between
alarm observations, and plausibility of the esti-
mated current system condition. An algorithm to
compute the time to reach a given criticality level
of the system, referred to as time to criticality,
based on the current conditions of the system is
introduced. The time to criticality, also known as
the system’s Remaining Useful Life (RUL), can
be used as a measure for system reliability at any
given time in the future.

1 INTRODUCTION

Large engineering systems such as manufacturing sys-
tems, power networks, and chemical plants are usually
designed for autonomous or semi-autonomous opera-
tion. With age, these systems become vulnerable to
failures and degradations, and therefore requires ex-
tensive and expensive maintenance. A proactive main-
tenance approach in which operation problems can be
predicted and handled at an early stage can signifi-
cantly reduce the cost of operation and enhance the
system performance. One of the key enabling tech-
nique for proactive maintenance is failure prognosis.

Failure prognosis is the process of evaluating the re-
liability of the system at certain time in the future by
assessing the consequence of degradation and devia-
tion of the system from its expected normal operat-
ing settings. The ISO standard (ISO-13381-1, 2004)
corresponds failure prognosis to the estimation of the
operating time until failure and to the risk of exis-
tence or future appearance of one or more failure
modes. This operating time until failure is known
in the health management community as the Remain-
ing Useful Life (RUL). Failure prognosis for engineer-
ing systems provides data that can be used to meet
several vital and safety-critical goals, including giv-

ing advance warning of potential failures, minimiz-
ing unscheduled maintenance, extending maintenance
cycles, and maintaining system effectiveness through
timely repair actions, and reducing the life-cycle cost
of equipment by decreasing inspection costs, down-
time, and inventory (Vichare and Pecht, 2006).

Three main prognosis approaches are proposed
in the literature (Vachtsevanos et al., Wiley Sons)
and (Lebold and Thurston, 2001): model-based prog-
nosis, data-driven prognosis, and experience-based
prognosis. The first approach depends on the avail-
ability of a mathematical model of system failure
which is used to estimate the future evolution of
degradation (Luo et al., 2003; Chelidze et al., 2002;
Provan, 2003). The second approach uses data pro-
vided by the data collection (sensors) infrastructure
to predict future faults and degradation (Medjaher et
al., 2009). Tools and techniques employed in this ap-
proach are generally those used by the artificial intel-
ligence community. The third approach proposes an
estimation of the RUL by using reliability models ob-
tained from the historical data of the machine. A sur-
vey of the techniques used in each approach can be
found in (Medjaher et al., 2009; Jardine and Lin, 2006;
Muller et al., 2008).

In earlier work (Abdelwahed et al., 2004) a model-
based diagnosis approach was developed for a general
class of engineering systems based on the timed fail-
ure propagation graph (TFPG) model. Timed failure
propagation graphs (Misra et al., 1994; Padalkar et al.,
1991) are causal models that describe the system be-
havior in presence of faults. The TFPG structure cap-
tures the effect of time delays and switching dynam-
ics on the propagation of failures in practical discrete
event and hybrid systems. A TFPG-based modeling
and reasoning tool has been developed as a part of
an integrated fault diagnoses and process control sys-
tem toolsuite (Karsai et al., 2003) and has been suc-
cessfully used in practical real-time vehicle subsys-
tems (Ofsthun and Abdelwahed, 2007).

This paper addresses the prognosis problem for
TFPG models. The proposed technique falls within
the model-based approach, in which a mathematical
model of the degradation (in our case the TFPG model)
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is used to estimate the RUL. We define the progno-
sis problem for this class of real-time systems based
on notions of failure criticality, measures of distance
between alarms (monitored discrepancies), and plau-
sibility of state estimation based on current observed
discrepancies. These measures are then used to define
the time-to-criticality metric which corresponds to the
minimum time to reach a known critical failure con-
dition from the current state of the systems. The time-
to-criticality, which is semantically equivalent to RUL,
can be used as a measure for system reliability at any
future time.

The paper is organized as follows. In Section 2, the
timed failure propagation graph model is introduced.
Section 3 presents an overview of the consistency
based diagnosis approach for TFPG models. Sec-
tion 4 introduces the formal definitions for the main
aspects of failure prognosis problem within the TFPG
model settings and provides an algorithm to compute
the time-to-criticality for a given TFPG model at any
given state. Conclusion and future works are discussed
in Section 5.

2 TIMED FAILURE PROPAGATION GRAPHS

A TFPG is a labeled directed graph where nodes rep-
resent either failure modes, which are fault causes, or
discrepancies, which are off-nominal conditions that
are the effects of failure modes. Edges between nodes
in the graph capture the effect of failure propagation
over time in the underlying dynamic system. To rep-
resent failure propagation in multi-mode (switching)
systems, edges in the graph model can be activated or
deactivated depending on a set of possible operation
modes of the system. Formally, a TFPG is represented
as a tuple (𝐹,𝐷,𝐸,𝑀,ET,EM,DC), where:

∙ 𝐹 is a nonempty set of failure modes.

∙ 𝐷 is a nonempty set of discrepancy nodes.

∙ 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges connecting the set
of all nodes 𝑉 = 𝐹 ∪𝐷.

∙ 𝑀 is a nonempty set of system modes. At each
time instance 𝑡 the system can be in only one
mode.

∙ ET : 𝐸 → 𝐼 is a map that associates every edge
in 𝐸 with a time interval [𝑡1, 𝑡2] ∈ 𝐼 .

∙ EM : 𝐸 → 𝒫(𝑀) is a map that associates every
edge in 𝐸 with a set of modes in 𝑀 . We assume
that EM(𝑒) ∕= ∅ for any edge 𝑒 ∈ 𝐸.

∙ DC : 𝐷 → {AND,OR} is a map defining the class
of each discrepancy as either AND or an OR node.

∙ DS : 𝐷 → {A,I} is a map defining the moni-
toring status of the discrepancy as either A for the
case when the discrepancy is active (monitored
by an online alarm) or I for the case when the
discrepancy is inactive (not monitored)1.

1In this paper we will use the terms alarms and monitored
discrepancies interchangeably as they mean the same thing.
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Figure 1: A TFPG model (𝑡 = 10, Mode = A for 𝑡 ∈
[0, 10])

In the above model, the map ET associates each edge
𝑒 ∈ 𝐸 with the minimum and maximum time for the
failure to propagate along the edge. For an edge 𝑒 ∈ 𝐸,
we will use the notation 𝑒.tmin and 𝑒.tmax to indi-
cate the corresponding minimum and maximum time
for failure propagation along 𝑒, respectively. That is,
given that a propagation edge is enabled (active), it will
take at least (at most) tmin (tmax) time for the fault
to propagate from the source node to the destination
node. The map EM associates each edge 𝑒 ∈ 𝐸 with
a subset of the system modes at which the failure can
propagate along the edge. Consequently, the propa-
gation link 𝑒 is enabled (active) in a mode 𝑚 ∈ 𝑀
if and only if 𝑚 ∈ EM(𝑒). The map DC defines the
type of a given discrepancy as either AND or OR. An
OR type discrepancy node will be activated when the
failure propagates to the node from any of its parents.
On the other hand, an AND discrepancy node can only
be activated if the failure propagates to the node from
all its parents. We assume that TFPG models do not
contain self loops and that failure modes are always
root nodes, i.e., they cannot be a destination of any
edge. Also, a discrepancy cannot be a root node, that
is, every discrepancy must be a successor of another
discrepancy or a failure mode.

Figure 1 shows a graphical depiction of a failure
propagation graph model. Rectangles in the graph
model represent the failure modes while circles and
squares represent OR and AND type discrepancies, re-
spectively. The arrows between the nodes represent
failure propagation. Propagation edges are parameter-
ized with the corresponding interval, [𝑒.tmin, 𝑒.tmax],
and the set of modes at which the edge is active.
Figure 1 also shows a sequence of active discrepan-
cies (alarm signals) identified by shaded discrepan-
cies. The time at which the alarm is observed is shown
above the corresponding discrepancy. Dashed lines are
used to distinguish inactive propagation links.

The TFPG model captures observable failure propa-
gations between discrepancies in dynamic systems. In
this model, alarms capture state deviations from nom-
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inal values. The set of all observed deviations corre-
sponds to the monitored discrepancy set in the TFPG
model. Propagation edges, on the other hand, corre-
spond to causality (for example, as defined by energy
flow) in the system dynamics. Due to the dynamic na-
ture of the system, failure effects take time to prop-
agate between the system components. Such time in
general depends on the systems time constants as well
as the size and timing of underlying failure. Propa-
gation delay intervals can be computed analytically or
through simulation of an accurate physical model.

Failure propagation in a TFPG system has simple
semantics. The state of a node indicates whether the
failure effects reached this node. For an OR type node
𝑣′ and an edge 𝑒 = (𝑣, 𝑣 ′) ∈ 𝐸, once a failure effect
reaches 𝑣 at time 𝑡 it will reach 𝑣′ at a time 𝑡′ where
𝑒.tmin ≤ 𝑡′ − 𝑡 ≤ 𝑒.tmax. On the other hand, the
activation period of an AND alarm 𝑣 ′ is the composi-
tion of the activation periods for each link (𝑣, 𝑣 ′) ∈ 𝐸.
For a failure to propagate through an edge 𝑒 = (𝑣, 𝑣 ′),
the edge should be active throughout the propagation,
that is, from the time the failure reaches 𝑣 to the time
it reaches 𝑣′. An edge 𝑒 is active if and only if the cur-
rent operation mode of the system, 𝑚𝑐 is in the set of
activation modes of the edge, that is, 𝑚𝑐 ∈ EM(𝑒).
When a failure propagates to a monitored node 𝑣 ′
(DS(𝑣′) = A) its physical state is considered ON, oth-
erwise it is OFF. If the link is deactivated any time
during the propagation (because of mode switching),
the propagation stops. Links are assumed memory-
less with respect to failure propagation so that cur-
rent failure propagation is independent of any (incom-
plete) previous propagation. Also, once a failure ef-
fect reaches a discrepancy its state will change perma-
nently and will not be affected by any future failure
propagation.

3 THE CONSISTENCY-BASED REASONING
APPROACH

The reasoning algorithm for TFPG model diagnosis
is based on a consistency relationship defined using
three state mappings for the graph nodes of the TFPG
model: physical, observed, and hypothetical.

A physical system state corresponds to the current
state of all nodes in the TFPG model. At any time
𝑡 the physical state is given by a map 𝐴𝑆𝑡 : 𝑉 →
{ON, OFF}×ℝ, where 𝑉 is the set of nodes in the TFPG
model. An ON state for a node indicates that the failure
(effect) reached this node, otherwise it is set to OFF.
The physical state at time 𝑡 is denoted 𝐴𝑆𝑡(𝑣).state,
while 𝐴𝑆𝑡(𝑣).time denote the last time at which the
state of 𝑣 is changed. Failure effects are assumed per-
manent, therefore, the state of a node once changed
will remain constant after that. A similar map is used
to define the state of edges based on the current mode
of the system.

The observed state at time 𝑡 is defined as a map
𝑆𝑡 : 𝐷 → {ON, OFF} × ℝ. Clearly, observed states
are only defined for discrepancies. The observed state

of the system may not be consistent with the failure
propagation graph model temporal constraints, due to
potential failures in the alarm monitors. However, we
assume that monitored discrepancy indicators are per-
manent so that once the observed state of a discrepancy
is changed, it will remain constant after that.

The aim of the diagnosis reasoning process is to find
a consistent and plausible explanation of the current
system state based on the observed state. Such ex-
planation is given in the form of a valid hypothetical
state. A hypothetical state is a map that defines node
states and the interval at which the node changes its
state. Formally a hypothetical state at time 𝑡 is a map
𝐻𝑉 ′

𝑡 : 𝑉 ′ → {ON, OFF} × ℝ × ℝ where 𝑉 ′ ⊆ 𝑉 .
Similar to actual states, hypothetical states are defined
for both discrepancies and failure modes. The esti-
mated earliest (latest) time of state change is denoted
𝐻(𝑣).terl (𝐻(𝑣).tlat).

A hypothetical state is an estimation of the current
state of all nodes in the system and the time period at
which each node changed its states. An estimation of
the current state is valid only if it is consistent with the
TFPG model. State consistency in TFPG models is
a node-parents relationship that can be extended pair-
wise to arbitrary subsets of nodes. Formally, let Pr(𝑣)
denotes the set of parents of 𝑣 in a TFPG model 𝐺. We
can define observable consistency at time 𝑡 as a rela-
tion OCons𝑡 ⊂ 𝒫(𝑉 )×𝑉 such that (𝑉 ′, 𝑣) ∈ OCons
if and only if 𝑉 ′ = Pr(𝑣) and the observable state of 𝑣
is consistent with that of all its parents 𝑉 ′ based on the
map 𝑆𝑡 and the failure propagation semantics. The ob-
servable state consistency relationship can be directly
extended to any set of nodes representing a subgraph
of 𝐺. In this case we overload the relationship OCons
so that OCons𝑡 ⊆ 𝒫(𝑉 ), where for each 𝑉 ′ ⊆ 𝑉 :

𝑉 ′ ∈ OCons𝑡 ⇔ ∀𝑣 ∈ 𝑉 ′ (Pr𝑉 ′(𝑣), 𝑣) ∈ OCons

where Pr𝑉 ′(𝑣) is the set of parents of 𝑣 restricted to
𝑉 ′. The set of maximally consistent set of nodes is
denoted by Φ𝑡 where 𝑉 ′ ∈ Φ𝑡 if and only if

𝑉 ′ ∈ OCons𝑡 and (∀𝑉 ′′ ⊆ 𝑉 ) 𝑉 ′ ⊂ 𝑉 ′′ ⇒
𝑉 ′′ ∕∈ OCons𝑡

The set Φ𝑡 can be efficiently computed incremen-
tally based on Φ𝑡−1 based on a new event 𝑒𝑡. The
event 𝑒𝑡 corresponds to either a new triggered moni-
tored discrepancy or a time-out event generated when
a sensor alarm is not observed with state ON while
it is supposed to be based on its current hypotheti-
cal state. The underlying procedure will be denoted
UpdateMCO(Φ𝑡−1, 𝑒𝑡). Note that initially Φ0 =
{𝑉 }.

Based on the semantics of failure propagation it is
possible to define a constructive notion of hypotheti-
cal consistency such that given a consistent hypotheti-
cal state 𝐻𝑉 ′

𝑡 it is possible to extend this map forward
(procedure BProp(𝐻𝑉 ′

𝑡 , 𝑣))by assigning the maximal
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hypothetical state of the node 𝑣 based on the hypothet-
ical state of its parents in 𝑉 ′, or backward (operation
FProp(𝐻𝑉 ′

𝑡 , 𝑣)) by assigning the maximal hypotheti-
cal state for 𝑣′ based on the state of its children in 𝑉 ′.
The following algorithm outlines the incremental rea-
soning procedure.

Algorithm 1 The diagnosis procedure Diag(Φ𝑡−1, 𝑒𝑡)

Φ𝑡 ← UpdateMCO(Φ𝑡−1, 𝑒𝑡)
𝐻𝑆𝑡 ← ∅

define
In(𝑋) := {𝑣 ∈ 𝑋 ∣(∀𝑣′ ∈ 𝑋) (𝑣, 𝑣′) ∕∈ 𝐸}
PSet(𝑋) := {𝑣 ∈ 𝑉 −𝑋 ∣(∃𝑣′ ∈ In(𝑋)) (𝑣, 𝑣′) ∈
𝐸}
ODC(𝑋) := ∪𝑣∈𝑋Reach(𝑣)−𝑋
TSet(𝑋) := {𝑣 ∈ 𝑉 −𝑋 ∣ODC(𝑋)× 𝑣∩𝐸 = ∅}
CSet(𝑋) := {𝑣 ∈ TSet(𝑋)∣(∃𝑣′ ∈ 𝑋) (𝑣′, 𝑣) ∈
𝐸}
end define
for all 𝑉 ′ ∈ Φ𝑡 do
𝐻 ← 𝑆𝑡∣𝑉 ′

while PSet(𝑉 ′) ∕= ∅ do
select 𝑣 from PSet(𝑉 ′)
𝐻 ← BProp(𝐻, 𝑣)
𝑉 ′ ← 𝑉 ′ ∪ {𝑣}

end while
while CSet(𝑉 ′) ∕= ∅ do

select 𝑣 from CSet(𝑉 ′)
𝐻 ← FProp(𝐻, 𝑣)
𝑉 ′ ← 𝑉 ′ ∪ {𝑣}

end while
for all 𝑣 ∈ 𝑉 − 𝑉 ′ do
𝐻(𝑣).state← OFF
𝐻(𝑣).terl, 𝐻(𝑣).terl← 0

end for
𝐻𝑆𝑡 ← 𝐻𝑆𝑡 ∪ {𝐻}

end for
return Φ𝑡, 𝐻𝑆𝑡

In the above algorithm, for a given subset, 𝑋 , of
the TFPG nodes, In(𝑋) is the set of all nodes in 𝑋
that do not have children in 𝑋 . These nodes forms
the interior boundary for 𝑋 . PSet(𝑋) is the set of all
nodes outside 𝑋 that are connected (as children to the
interior boundary of 𝑋 , In(𝑋). ODC(𝑋) is the set
of nodes outside 𝑋 that is reachable from nodes in-
side 𝑋 (Reach(𝑣) is the set of nodes reachable from
𝑣). TSet(𝑋) is the set of terminal nodes (those with-
out children in the TFPG model) outside of 𝑋 that are
reachable from 𝑋 . CSet(𝑋) is the set of terminal
nodes outside of 𝑋 that are directly connected (as a
child) to a node from 𝑋 .

The above diagnosis algorithm returns a set of new
hypotheses that can consistently explain the current
observed state of the TFPG system. A failure report
is then generated from the computed set of hypotheses
𝐻𝑆𝑡. The failure report enlists the set of all consistent
state assignments that maximally matches the current

set of observations. Any observed state that does not
match the current hypothesis is considered faulty. A
detailed description and analysis of the diagnosis al-
gorithm can be found in (Abdelwahed et al., 2005).

3.1 Hypotheses Ranking

The quality of the generated hypotheses is measured
based on three independent factors:

∙ Plausibility is a measure of degree to which a
given hypothesis group explains the current fault
signature. Plausibility is typically used as the first
metric for sorting the hypotheses, focusing the
search on the failure modes that explain the data
that is currently being observed.

∙ Robustness is a measure of the degree to which a
given hypothesis is expected to remain constant.
Robustness is typically used as the second metric
for sorting the hypotheses, helping to determine
when to take action to repair the system.

∙ Failure Rate is a measure of how often a particu-
lar failure mode has occurred in the past.

The plausibility metric considers two independent
factors, namely, alarm consistency and failure mode
parsimony. The alarm consistency factor is defined as
the ratio of the active consistent alarms to that of all
(currently) identified alarms. The failure mode factor
is defined as the ratio of identified failure modes (ac-
cording to the underlying hypothesis) to the total num-
ber of failure modes in the system. This factor is a
direct representation of the parsimony principle (a hy-
pothesis with the least number of failed components is
more plausible). Hypotheses plausibility metrics are
ordered, with the alarm consistency factor being the
most dominant.

The diagnoser selects the current set of hypothe-
sis incrementally in an attempt to improve the current
plausibility measure. In other words, the diagnoser
will update a given hypothetical state map only if such
update can increase the plausibility of the underlying
hypothesis. In addition, changes are restricted so that
the updated hypothesis remains valid.

4 ASPECTS OF FAILURE PROGNOSIS IN
TFPG MODELS

In general, the aim of failure prognosis is to estimate
the system reliability, given a set of conditions and ob-
servations, by assessing how close the system is to a
critical manifestation of current failures. The reliabil-
ity estimation can then be used to reconfigure the sys-
tem, change the operating settings, or schedule specific
maintenance procedures targeting the faulty compo-
nents. In the TFPG modeling and reasoning settings,
the prognosis problem and the associated reliability
measure can be defined based on three main factors,
namely failure criticality levels, diagnosis or hypothe-
sis plausibility, and the time distance from the current
state to the critical failure.
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Figure 2: The main factors affecting the evaluation of the system reliability for TFPG models.

The first factor addresses the fact that different sec-
tions of the system may correspond to different levels
of criticality with respect to system operation. These
sections can be identified using a measure of criticality
level for all discrepancies in the systems. The second
factor address the current estimated (diagnosed) con-
dition of the system and the plausibility of the corre-
sponding hypothesis. The third factor, is the timing
proximity of the current estimated state relative to a
given critical region of the system. All these factor
directly contribute to the reliability of the system at a
given time. These three factors as illustrated in Fig-
ure 2. We will discuss these factors in details in the
reminder of this section.

4.1 Failure Criticality
In typical practical situations, failure progresses start-
ing from the initial failure modes into several stages
with increasing level of criticality. To capture this sit-
uation, we define the map CL : 𝐷 → ℕ that assign to
each discrepancy, 𝑑 ∈ 𝐷, a criticality level CL(𝑑). The
lowest criticality level, 0, is reserved for non-critical
discrepancies and all failure modes. To capture the in-
creasing criticality with respect to propagation depth,
we assume that

(∀𝑑′, 𝑑 ∈ 𝐷) (𝑑′, 𝑑) ∈ 𝐸 −→ CL(𝑑′) ≤ CL(𝑑)

The above condition states that if 𝑑′ is a parent of
𝑑 in a TFPG model then the criticality level of 𝑑′

should be less than of equal to that of 𝑑. As a con-
sequence, the criticality levels along any given path
in a TFPG model form a monotonically increasing se-
quence. Note that we only assign a criticality level to
all monitored and non-monitored discrepancies 𝐷 and
assign failure modes the default 0.

Based on the definition of criticality levels, we can
define criticality fronts associated with a given TFPG
model by the map, CF : ℕ→ 𝒫(𝐷), as follows.

(∀𝑑 ∈ 𝐷) 𝑑 ∈ CF(𝑛) ←→ CL(𝑑) ≥ 𝑛 and

(∀(𝑑′, 𝑑) ∈ 𝐸) CL(𝑑′) ≤ 𝑛

The set of criticality fronts are essentially the
codomain of the above map, and the set of criticality
front levels CFL are the set {𝑛 ∈ ℕ ∣ CF(𝑛) ∕= ∅}.
It can be shown that CFL corresponds bijectively to
the codomain of CL. Based on the above definitions,
a criticality front level, 𝑛 ∈ ℕ, corresponds to a graph
cut of the TFPG model in which the nodes on one side
of the cut have criticality levels less than 𝑛 and the
remaining nodes have criticality level greater than or
equal to 𝑛. Figure 3 shows an example TFPG model
with assigned criticality levels and the corresponding
criticality fronts.

Criticality levels are typically assessed based on the
requirements for system operation and functionality.
In particular, the criticality value for a given discrep-
ancy depends on the operation cost associated with the
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Figure 3: A TFPG model with assigned criticality levels and the corresponding criticality fronts.

fault reaching and progressing from the discrepancy.
This will include the cost of maintenance, reconfigura-
tion, and recovery when applicable. However, in some
situations, it is not possible to have a precise value for
the criticality of a sensor. In such situations, an enu-
meration of criticality levels (ex. low, medium, and
high) can be used to distinguish between sensors with
respect to fault severity. Such enumeration can be as-
signed an approximate integer value, that reflects its
relative importance, which can be used later to com-
pute a reliability measure for the system, in terms of
the remaining useful life (RUL) or the time to critical-
ity, as discussed later in this paper.

4.2 State Estimation Plausibility
As discussed in the previous section, the TFPG rea-
soning algorithms relies on sensor signals (alarms) and
the TFPG model structure to identify the most plausi-
ble estimates of the current system condition as a set of
state hypotheses. The plausibility of each hypothesis is
defined based on the number of supporting sensor sig-
nals (alarms) versus the inconsistent and missing ones.
We will write 𝐴(𝐻) for the set of discrepancies (mon-
itored or not) that are presumed active (ON) according
to the 𝐻 and 𝐼(𝐻) for the set of discrepancies (moni-
tored or not) that are presumed inactive (OFF) accord-
ing to 𝐻 . That is,

𝐴(𝐻) = {𝑑 ∈ 𝐷 ∣ 𝐻(𝑑).state = OFF

The state front of a hypothesis 𝐻 is denoted SF𝐻 and
is defined as a set of discrepancies 𝐷 ′ ⊆ 𝐷 such that
(∀𝑑 ∈ SF𝐻)

𝑑 ∈ 𝐴(𝐻) and (∃(𝑑, 𝑑′) ∈ 𝐸) 𝑑′ ∈ 𝐼(𝐻)

That is, the state front SF𝐻 is the set of discrepancies
that are currently active as estimated by 𝐻 but some
of their children discrepancies are not active according
to 𝐻 . Given that any discrepancy in 𝐷 can either be
in 𝐴(𝐻) or 𝐼(𝐴) but not both. The set SF𝐻 is well-
defined and the boundary line between 𝐷 ′ and 𝐷−𝐷′
forms a graph cut for the underlying TFPG model.

The intuitive meaning of the state front for a hypoth-
esis, is that all the discrepancies on this front are have
the same likelihood of being active at the current time
and they are forming the front of fault propagation in
the sense that they are the discrepancies that could be-
come active based on the next set of alarms as the fault
propagation continues to progress.

The plausibility of a state front is equal to the plau-
sibility of the underlying hypothesis. As it is possible
that several hypotheses can have the same plausibility
level, several state front may have the same plausibility
level.

4.3 Time Proximity

The time proximity factor measures how close the cur-
rent state of the system is to a future failure. As dis-
cussed earlier, future failures are identified by their
criticality level front as defined by the map CF. Each
front is defined as a set of discrepancies at the bound-
ary of a graph cut for the TFPG model. Similarly, the
current state is defined by a set of hypotheses with
a given plausibility level and is identified by the dis-
crepancies at the boundaries of the cut formed by the
underlying hypothesis level state front. Accordingly,
the time proximity factor is a measure for the temporal

6
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distance between two fronts (graph cuts) each corre-
sponding to a set of discrepancies in the TFPG model.

To define such distance, consider two sets of dis-
crepancies 𝐷1, 𝐷2 ⊆ 𝐷. Assuming that all discrepan-
cies in 𝐷1 are either ancestors of some discrepancies
in 𝐷2 or not connected to any discrepancy in 𝐷2, we
define the propagation time between 𝐷1 and 𝐷2 with
respect to a hypothesis 𝐻 , denoted 𝑡𝐻(𝐷1, 𝐷2) as the
minimum time to trigger discrepancy in 𝐷2 as a re-
sult of a set of failure propagation from discrepancies
in 𝐷1. We write 𝐷1 ≺ 𝐷2 if the above condition is
satisfied.

To compute 𝑡𝐻(𝐷1, 𝐷2), we consider the set of all
discrepancies that are children of𝐷1. We computer the
earlier propagation time to these discrepancies based
on the activation times of their parent nodes accord-
ing to 𝐻 . The computation of the earliest propagation
time for all subsequent nodes continues as the earlier
propagation times becomes available for their parents.
The computation will continue until the earlier propa-
gation time is computed for all the nodes in 𝐷2. The
minimum time is selected as the output. Algorithm 2
outlines the computation procedure.

Algorithm 2 The propagation time procedure
𝑡𝐻(𝐷1, 𝐷2)

assumption: 𝐷1 ≺ 𝐷2

if 𝐷1 ∩𝐷2 ∕= ∅ then
return 0

end if
define RSet(𝑋) := {𝑑 ∈ 𝐷 − 𝑋 ∣(∀𝑑′ ∈
𝐷) (𝑑′, 𝑑) ∈ 𝐸 → 𝑑′ ∈ 𝑋}
TNodes = {(𝑑,𝐻(𝑑).terl) ∣ 𝑑 ∈ 𝐴(𝐻)}
𝑡min =∞
while 𝐷2 ∕⊂ TNodes.nodes do

select 𝑑 from RSet(𝐷1)
compute terl(TNodes, 𝑑)
if 𝑑 ∈ 𝐷2 then
𝑡min = min(𝑡min, terl(𝑑))

end if
end while
return 𝑡min

In algorithm 2, for a given subset of nodes 𝑋 in the
TFPG model, RSet(𝑋) is the set of discrepancies out-
side of 𝑋 where all their parents belongs to 𝑋 . The
function terl(TNodes, 𝑑) computes the earliest time
for 𝑑 to be activated based on the earlier time the par-
ents of 𝑑 are activated. This function can be directly
computed based on the semantics of failure propaga-
tion in TFPG models.

4.4 Time to Criticality

Given a set of criticality levels, the associated criti-
cality fronts can be computed directly from the earlier
definition. The state front for a given hypothesis can
be directly computed based on the given definition. Let
𝑌 be the set of hypothesis with the highest plausibility

value at a time 𝑡. We define the time to criticality level
𝑛 at a give time 𝑡, denoted TTC(𝑌, 𝑛), as follows

TTC(𝑌, 𝑛) = min{𝑡𝐻(SF𝐻 ,CF(𝑛)) ∣ 𝐻 ∈ 𝑌 }
That is, the time to criticality level 𝑛 is the minimum of
all propagation times for all hypotheses with the max-
imum plausibility. In practice, there are typically few
enumerated criticality levels. The time to criticality,
therefore, follows the increasing order of the critical-
ity. That is, the time to reach a high criticality level is
usually longer than the time to reach a lower criticality
level, as expected. However, this is not always the case
as shown the in Figure 4. In this example, there are
three different paths from the state (estimation) front
SF𝐻 to the criticality front level 1 (CFL=1), where
𝐻 is the most plausible hypothesis in which D2, D3,
D4 are assumed active and D1 is assumed faulty. In
this example, the time to criticality to the first level is
3 (time units) while the time to criticality for the next
higher level is 1.

5 CONCLUSION

In this paper we addressed a model-based prognosis
problem in the TFPG settings. We presented the three
main factors that directly affect the system reliability
at a given state, namely, criticality levels, current state
front, and time proximity. Based on the formal defi-
nitions of these factors, we introduced an algorithm to
compute the time to reach a given critical level based
on the current conditions of the system. The time to
criticality can be used as a measure for system relia-
bility.

In future work we will consider a more general con-
cept of system reliability that integrate different criti-
cality levels as well as states with different plausibil-
ity values. We will also investigate the reliability as-
sessment for systems in which propagation times are
not provided. In another research direction we will in-
vestigate the problem of sensor assignment to achieve
certain minimum time to criticality levels at specific
system conditions.
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