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ABSTRACT

Many of today’s mechatronic systems – such
as automobiles, automated factories or chem-
ical plants – are a complex mixture of hard-
ware components and embedded control soft-
ware, showing both continuous (vehicle dynam-
ics, robot motion) and discrete (software) behav-
ior. The problems of estimating the internal dis-
crete/continuous state and automatically devising
control actions as intelligent reaction are at the
heart of self-monitoring and self-control capabil-
ities for such systems. In this paper, we address
these problems with a new integrated approach,
which combines concepts, techniques and for-
malisms from AI (constraint optimization, hid-
den markov model reasoning), fault diagnosis in
hybrid systems (stochastic abstraction of contin-
uous behavior), and hybrid systems verification
(hybrid automata, reachability analysis). Prelimi-
nary experiments with an industrial filling station
scenario show promising results, but also indicate
current limitations.

1 INTRODUCTION
Many complex systems today – such as automobiles,
automated factories or chemical plants – consist of
hardware components whose functionality is extended
or controlled by embedded software. Model-based di-
agnosis and planning algorithms using a discrete Hid-
den Markov Model (HMM) of the system’s internal
behavior have been proposed to address the problems
of self-monitoring under partial observations and intel-
ligent self-control to compensate for faults and other
contingencies in such systems (Williams et al., 2003).
Specifically, (Williams et al., 2001) introduced Proba-
bilistic Hierarchical Constraint Automata (PHCA) as
a compact means of HMM encoding, which allows
to conveniently model uncertain hardware behavior as
well as complex software behavior. In previous work
(Mikaelian et al., 2005), we have introduced an ap-
proach to efficiently compute best diagnoses and plans
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for systems modeled as PHCAs, which is based on
encoding PHCA as soft constraints and then using
a decomposition-based constraint optimization algo-
rithm to compute best solutions over a given time hori-
zon of N steps.

However, many real-world components, like the silo
of a filling station shown in figure 1, involve not only
discrete behavior but also continuous dynamics; fail-
ures often manifest themselves as a subtle combination
of the system’s continuous dynamics, and its evolution
through discrete behavior modes.

Hybrid systems have long been at the center of
interest in model-based verification and increasingly
gain attention in areas such as model-predictive con-
trol, model-based diagnosis and reconfiguration. Hen-
zinger introduced the formalism of hybrid automata as
a modeling framework for hybrid systems (Henzinger,
1996), which is nowadays a widely accepted standard
not only in hybrid systems verification. Recent ad-
vances in modeling concurrent stochastic hybrid sys-
tems have been published by Alur et al. (Alur et al.,
2006; Bernadsky et al., 2004).

In this paper, we propose an extension of the PHCA
formalism to Hybrid PHCAs (HyPHCAs), which al-
low modeling of continuous behavior as linear ordi-
nary differential equations (ODEs). Since HyPHCAs
allow an infinite number of system trajectories, the
main challenge is then to make computation of best
trajectories on HyPHCAs tractable. We address this
problem with an abstraction-based approach that com-
bines concepts, techniques and formalisms from AI
(constraint optimization, hidden markov model rea-
soning), fault diagnosis in hybrid systems (stochastic
abstraction of continuous behavior), and hybrid sys-
tems verification (hybrid automata, reachability analy-
sis).

Model-based diagnosis/monitoring of hybrid sys-
tems is also addressed by the works of Lunze et al.
(Lunze and Nixdorf, 2001; Blanke et al., 2006) and
Williams et al. (Hofbaur and Williams, 2002). Lunze
and co-workers introduced a method which abstracts
continuous system models with stochastic automata,
which encode Markov chains. The stochastic automa-
ton formalism is similar to PHCA, but doesn’t allow
for complex hierarchical structures. Therefore they are
less suited for creating models during the design phase
of a technical system. Williams et al. introduced Prob-
abilistic Hybrid Automata and describe a hybrid track-

1



Annual Conference of the Prognostics and Health Management Society, 2009

Figure 1: Filling station.

ing algorithm, which combines discrete tracking using
hidden markov models with continuous tracking using
extended Kalman Filters.

The key difference between these existing ap-
proaches and our work is that we avoid specialized al-
gorithms fitted to the modeling formalism (HyPHCAs
in our case). Instead, we employ the general frame-
work of constraint optimization (Pedro Meseguer et
al., 2006), and can therefore use existing, highly opti-
mized off-the-shelf constraint solvers (Bouveret et al.,
2004) to solve the problems of monitoring/state esti-
mation and intelligent control. To take advantage of
specific model features, we plan to develop formalism
or model specific heuristics. For example, the gen-
eral dynamic programming method cluster tree elimi-
nation used in constraint optimization (Dechter, 2003)
could be guided by a HyPHCA-specific heuristic, tak-
ing advantage of the often refined model structure due
to design. This makes our approach very flexible and
it is a lot easier to incorporate new developments such
as, e.g., Quantified Constraint Optimization (Benedetti
et al., 2008). Furthermore, by extending PHCAs, a
modeling framework which is explicitly designed for
model-based development of embedded systems, we
are moving closer to the over-arching ideal of one-
model-fits-it-all, i.e. from system design to system ver-
ification and online model-based monitoring and con-
trol.

We do not address the problem of hybrid control
(Kleissl and Hofbaur, 2005) in this paper, since we ex-
clusively focus on discrete, finite control inputs (com-
mands). However, this is mostly a question of the tools
we use in our framework, and hence it should be pos-
sible to extend our method to hybrid control problems.

In the next section, we introduce our motivating ex-
ample, which we also used for our experiments. Then
we introduce the HyPHCA formalism in section 3, de-
scribe how we abstract HyPHCAs to receive discrete
models in section 4 and show how monitoring and con-
trol problems can be solved based on a soft-constraint
encoding of the discrete models in section 5. Finally,
we present results and conclude with a discussion and
future work.

2 INDUSTRIAL FILLING STATION
EXAMPLE

As an example we use an industrial filling station em-
ployed in teaching (Dominka, 2007). The station fills
a granulate material in small bottles, which are trans-
ported to and away from the station on a conveyor
belt. A pneumatic arm moves bottles from the con-
veyor onto a swivel and back when they are finished.
The swivel positions the bottles below a silo, where
they are filled by a screw mechanism powered by an
electrical motor. A photo sensor (binary signaled) in-
dicates when the silo is empty. We created a simpli-
fied model of the filling station (shown in figure 2),
which consists only of the silo and the sensor model.
The silo fill level, during filling, is continuously mod-
eled as u̇lvl = −fR ∗ ulvl (where fR is the fill rate).
This equation, while not realistic, demonstrates that
our approach can handle such equations. We experi-
mented with a scenario in which we address the com-
bined problem of monitoring and control, and a second
scenario which demonstrates how varying degrees of
abstraction influence the monitoring quality.

In the first scenario (referred to as scenario 1, shown
in table 1), which ranges over 10 time steps (duration
of a single step4t = 2s), the silo receives motor com-
mands to fill two bottles. It has an initial fill level
of 50 units. Within the first 7 time steps, the motor
switch breaks, causing the motor to continue running
and emptying the silo (referred to as motor-switch-
fault). At t0 the sensor indicates an empty silo.

The monitoring problem is to choose among three
possible hypotheses explaining the signal: (1) the silo
emptied nominally (2) the silo emptied too quickly due
to the motor-switch-fault or (3) the sensor is stuck-on.
A model which respects the continuous behavior al-
lows a reasoner to detect an inconsistency with the
sensor signal: the silo couldn’t have emptied nomi-
nally, without the motor running. Thus, hypothesis (1)
is ruled out. Since the sensor fault is much less likely
than the motor fault, the reasoner correctly assumes
hypothesis (2) as most probable.

The control problem is to find suitable actions, com-
mands in our case, to deal with the fault and reach a
given goal stated by a high level control program. In
this scenario the goal is that at t3 in the future, the
silo must have a fill level between 5 and 10 and be in
its initial location wait (see table 1). In the follow-
ing, we describe an approach, combining several well
known methods, which at the same time allows to de-
duce the correct fault hypothesis and the sequence of
commands to reach the goal.

The second scenario (referred to as scenario 2,
shown in figure 5) is a slight variation of the first,
where we know that the motor control doesn’t break.
Again the sensor indicates an empty silo, but now
earlier at t−3. The reasoner, knowing about the
continuous behavior, can deduce that even with the
motor-switch-fault, the silo couldn’t have emptied that
quickly, ruling this fault out. Therefore, it correctly
assumes that the sensor must be stuck-on, given the
model abstraction is not too coarse.

Throughout the remaining text, we will use the fol-
lowing abbreviations: m-s-f refers to the motor-stuck-
fault, m-s-f.ne and m-s-f.e refer to the primitive lo-
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Figure 2: HyPHCA modeling the silo and the silo empty sensor of a filling station. The bolt indicates failure
states (e.g., silo.motor-switch-fault, sensor.stuck-on).

cations notEmpty and empty of m-s-f, s-on refers to
stuck-on and nom. to nominal. Furthermore, dx refers
to a partitioning of ulvl with x partition elements
(e.g., d10 if we partition ulvl with 10 elements, yield-
ing a discrete variable lvl with 10 values).

3 MODELLING HYBRID SYSTEM
BEHAVIOR WITH HYBRID PHCAS

Systems with mixed discrete/continuous behavior can
be modeled using the well known Hybrid Automata
(Henzinger, 1996), capturing continuous system evo-
lution with ordinary differential equations (ODEs)
over real-valued variables and discrete, commanded
switches with guarded transitions. They however don’t
support hierarchical structure and probabilistic transi-
tions in order to uniformly model both uncertain hard-
ware behavior (e.g., likelihood of component failures)
and complex software behavior (such as control pro-
grams). In contrast, probabilistic hierarchical con-
straint automata (PHCA) (Williams et al., 2001) have
the required expressivity.
Definition 1. A PHCA is a tuple A =
〈Σ, PΘ,Π, C, PT 〉, where:
• Σ = Σc ∪ Σp is a set of composite and primi-

tive locations. Each composite location denotes
another PHCA. A location may be marked or un-
marked. A marked location represents an active
execution branch.
• PΘ is a probability distribution over subsets Θi ⊆

Σ, denoting the probability that Θi is the set of
start locations.
• Π = ΠD ∪ ΠObs ∪ ΠCmd is a set of dependent,

observable and commandable variables, all hav-
ing finite domains. C[Π] denotes the set of finite
domain constraints over Π.
• C : Σ→ C[Π] associates with each location li ∈

Σ a finite domain constraint C(li).
• PT (li), for each li ∈ Σp, is a probability distribu-

tion over a set of transition functions T (li) : Σ(t)
p

× C[Π](t) → 2Σ(t+1). Each transition function
maps a marked location into a set of locations to
be marked at the next time point, provided that
the transition’s guard constraint is entailed.

Definition 2. (PHCA state, PHCA trajectory) The
state of a PHCA at time t is a set of marked loca-
tions called a marking m(t) ⊂ Σ. A sequence of such
markings θ = {m(t),m(t+1), . . . ,m(t+N)} is called a
PHCA trajectory.

In the remainder, we will use the notation Dx to re-
fer to the domain of a variable x, and DX to refer to
the cross product Dx1 × . . . ×Dxn of the domains of
variables x1, . . . , xn ∈ X .

One important set of parameters in PHCA models
are the transition probabilities, e.g., failure probabil-
ities. These are typically a) specified by domain ex-
perts or b) learned, e.g., through an online learning
component as described in (de Kleer et al., 2009). A
combination of the two options is possible as well. In
our example, the probabilities have simply been cho-
sen following our intuition, but our approach could be
extended by a learning component such as (de Kleer et
al., 2009).

PHCA don’t allow to model continuous state evo-
lution over real-valued variables. Therefore, in style
of hybrid automata, we extend PHCAs to so called
Hybrid PHCAs (HyPHCAs). We adopt linear ODEs
for the HyPHCA formalism, a widely used standard
for modeling continuous system evolution. A system
of linear ODEs u̇ = Au + b, describes the time-
continuous evolution of a vector of variables u =
[u1, . . . , un]T as a set of equations over u and their
first derivatives u̇ = [u̇1, . . . , u̇n]T . b = [b1, . . . , bn]T
is a vector of constants and A the n× n-matrix of co-
efficients for the equation set.
Definition 3. A HyPHCA is a tuple HA =
〈Σ, PΘ,Π,U , C,F , PT 〉 where

• U = U ∪ U̇ ∪ U ′ is a set of real-valued vari-
ables U = {u1, . . . , un}, their first derivatives
U̇ = {u̇1, . . . , u̇n} and a set U ′ = {u′1, . . . , u′n}
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representing values of U right after discrete tran-
sitions.
• C : Σ → C[Π ∪ U ∪ U ′] is a function associat-

ing locations with constraints over discrete and/or
real-valued variables. C[Π ∪ U ∪ U ′] denotes the
set of constraints over Π ∪ U ∪ U ′.
• F : Σ→ F [U∪U̇ ] is a function associating loca-

tions with constraints over real-valued variables
and their derivatives in the form of linear ordi-
nary differential equations. F [U ∪ U̇ ] denotes the
set of these differential equations.
• PT is a probability distribution over a set of tran-

sition functions T (li) : Σp×C[Π∪U ∪U ′]→ 2Σ

for locations li ∈ Σ. Each transition function
T (li) maps a primitive location marked at time t
to the set of locations to be marked at the next
time instant, given the location’s guard is en-
tailed.

Σ, PΘ and Π are analog to the PHCA definition.
Definition 4. (HyPHCA state, HyPHCA trajectory)
The state of a HyPHCA at time t is a tuple S(ti) =
(S(ti)
U ,m(ti)), where S(ti)

U ∈ R|U | is an assignment to
all variables u ∈ U at time t, called continuous state,
and m(ti) ∈ M a marking analogous to PHCA states
(with M ⊆ 2Σ the set of all markings). A function
∆ : R → R|U | × M, mapping time points (real-
valued) to HyPHCA states, is called a HyPHCA trajec-
tory function. A finite sequence θHA = ∆(〈ti〉), re-
sulting from evaluating ∆ on a finite sequence of time
points, is called a discrete-time HyPHCA trajectory.

Discrete Flow and Clocked PHCAs
Our purely discrete approach to simultaneous tracking
and control of hybrid system evolution requires a dis-
crete abstraction of the hybrid model. We achieve this
by converting a HyPHCA to a discrete flow PHCA,
conservatively abstracting continuous variables and
their evolution over time with Markov chains. The
evolution of a continuous variable u ∈ U in between
two time points ti and ti+1 is thereby mapped to a
discrete, timed transition between the quantized states
of u at time ti and time ti+1. These discrete evo-
lutions are encoded as discrete flow constraints of a
discrete flow PHCA (dfPHCA). A dfPHCA is a tu-
ple Adf(4t) = 〈Σ, PΘ,Π,ΠU , C,Fd, PT ,4t〉 (pa-
rameterized with fixed-length time interval4t) where
ΠU = ΠU ∪ΠU ′ is analogous to U of a HyPHCA, ex-
cept that derivatives are omitted and variables have fi-
nite domains now. Fd : Σ→ Fd[ΠU ∪ΠU ′ ] is the dis-
crete flow, a function associating locations with con-
straints encoding Markov chains over the discrete flow
variables of the location. C is defined as for HyPHCAs
with real-valued variable sets U and U ′ replaced by
ΠU and ΠU ′ . The rest is analog to the PHCA def-
inition. The state of Adf(4t) at time t is a tuple
S(ti) = (S(ti)

ΠU
,m(ti)), where S(ti)

ΠU
is an assignment of

values to discretized continuous variables xu ∈ ΠU at
time t, andm(ti) a marking analogous to PHCA states.
A function ∆df : {ti} → DΠU

×M, mapping the in-
finite set of real-valued time points {ti} := {ti|∀i ∈
N : 4t = ti − ti+1} to dfPHCA states, is called a

dfPHCA trajectory function. Evaluating ∆df for a fi-
nite subset of {ti} yields a finite sequence of dfPHCA
states θ = {S(ti), S(ti+1), . . . , S(ti+N )}, called a df-
PHCA trajectory.

In order to bridge the gap from dfPHCAs to PH-
CAs, we define clocked PHCAs as dfPHCAs (also pa-
rameterized with 4t) with discrete flows and discrete
flow variables omitted. A clocked PHCA trajectory is
consequently a function ∆cl : {ti} → M mapping
to markings only. Clocked PHCAs can be seen as PH-
CAs with a forced, fixed duration between time points.
The key difference is the trajectory semantic. For a
PHCA trajectory, only the indices of successive time
points are relevant. I.e. the PHCA trajectory function
∆phca : N → M maps natural numbers to markings,
rather than real-valued time points.

To avoid confusion when referring to trajectories,
we write θx with x = A,Acl(4t), Adf(4t), HA for
PHCA, clocked PHCA, dfPHCA and HyPHCA trajec-
tories.

4 FROM HYBRID TO ABSTRACT DISCRETE
MODELS

We will see that discrete flow constraints encode spe-
cial case PHCAs and that a dfPHCA can thus be turned
into an equivalent clocked PHCA. The discrete flows
then form sub-PHCA embedded into composite loca-
tions. So intuitively, a discrete abstraction of a Hy-
PHCA is obtained by abstracting continuous flows
to discrete flows of a dfPHCA, then converting the
dfPHCA to a clocked PHCA and finally abstracting
from time intervals, leaving a PHCA. However, certain
non-trivial issues with hierarchical execution of PH-
CAs arise. One problem is that the PHCA formalism
doesn’t allow transitions originating from a composite
location l ∈ Σc, they must originate from primitive lo-
cations within l. A second, more demanding problem
is this: Let’s assume we simply embed a discrete flow
Fd(l) as a sub-PHCA Asub into a location l, rendering
it composite. The PHCA marking semantics demand
that sub-locations of l can only be marked when l itself
is marked. Let’s further assume that l is marked at ti
and that a transition occurs such that l is not marked at
ti+1. Specifically, all locations of Asub are unmarked
at ti+1. However, if location l with discrete flow Fd(l)
is marked at ti, Fd(l) should determine the values for
variables in its scope at ti+1. But since it is now en-
coded as sub-PHCAAsub, which determines these val-
ues via its marked locations, this becomes impossible.

These issues make it hard to define and understand
the abstraction of HyPHCAs using clocked PHCAs or
PHCAs directly. Therefore, we describe the abstrac-
tion using dfPHCAs. Also, discrete flow constraints
can be directly encoded as soft-constraints (discussed
later in the paper), which yields a very compact en-
coding. It remains for future work to show that dfPH-
CAs, if time intervals are abstracted, like PHCAs en-
code HMMs. This can be done by showing that an ar-
bitrary dfPHCA has an equivalent clocked PHCA (and
thus a PHCA, after time abstraction).
Proposition 5. (Equivalence dfPHCA, clocked
PHCA) Let 〈oi, ci〉 be an arbitrary sequence of
observations and commands. Then for an arbitrary
dfPHCA Adf(4t) exists an equivalent clocked PHCA
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Acl(4t) , such that
P (ρ(θAdf (4t))|〈oi, ci〉) = P (θAdf (4t)|〈oi, ci〉)

The function ρ : DΠU
×Mdf → Mcl maps (se-

quences of) dfPHCA states to (sequences of) clocked
PHCA states, specifically discrete flow variable as-
signments to markings of sub-PHCAs which en-
code the discrete flow. P (ρ(θAdf (4t))|〈oi, ci〉) and
P (θAdf (4t)|〈oi, ci〉) are the probabilities of a clocked
and discrete flow PHCA trajectory occurring, respec-
tively, given the sequence 〈oi, ci〉.

We now describe the conversion of HyPHCAs to df-
PHCAs (illustrated in figure 3) and then in detail how
discrete flows are generated from continuous flows.

4.1 Converting HyPHCAs to Discrete Flow
PHCAs

First, we define further required entities. Let HA =
〈Σ, PΘ,Π,U , C,F , PT 〉 be a HyPHCA. The set T de-
notes all transitions T defined through PT . source(T ),
dest(T ) and guard(T ) are a transition’s source, desti-
nation set and guard constraint, respectively. GR|U| =
{Gλ} is a set of disjunct grid cells (also called
quantization cells) partitioning the continuous state
space of HA:

⋃
λGλ = R|U |. Let Adf(4t) =

〈Σ, PΘ,Π,ΠU , C,Fd, PT ,4t〉 be the dfPHCA with
discrete flow constraints generated from HA. In the
following, we refer to elements of the respective au-
tomatons, like Σ, by HA.Σ and A.Σ, HA.PΘ and
A.PΘ (where we abbreviate Adf(4t) with A), etc.,
except for those elements which are unique to one or
the other formalism (e.g. U ).

The conversion of locations, initial probability dis-
tributions, discrete variables and probabilistic transi-
tions is straight forward: A.Σ = HA.Σ, A.PΘ =
HA.PΘ, A.Π = HA.Π and A.PT = HA.PT . The
discretized counterparts to U , ΠU and ΠU ′ form ΠU
(discrete versions of the derivatives U̇ are not needed
and thus omitted): ΠU = ΠU ∪ ΠU ′ . The con-
straints over finite domain and continuous variables
in HA can be split into a purely discrete set of fi-
nite domain constraints and constraints over both fi-
nite and continuous variables: HA.C[HA.Π ∪ U ∪
U ′] = HA.C[HA.Π] ∪ HA.C′[HA.Π ∪ U ∪ U ′].
The finite domain constraints of Adf(4t) are accord-
ingly A.C[A.Π ∪ A.ΠU ∪ A.ΠU ′ ] = HA.C[HA.Π] ∪
conv(HA.C′[HA.Π ∪ U ∪ U ′]). The function conv
maps simple arithmetic constraints such as u ≤ 1 or
u1 ≥ u2 to corresponding finite domain constraints.

The finite domains of discretized variables ΠU ,ΠU ′

are derived from the quantizationGR|U| . The grid cells
Gλ ∈ GR|U| can be mapped directly onto intervals of
the variables U and U ′. Index sets of these intervals
then form the domains of the discretized, finite domain
variables ΠU and ΠU ′ . That is, the values of, e.g., a
variable xu ∈ ΠU represent intervals of corresponding
variable u ∈ U .

Now for each primitive location L ∈ HA.Σ, its
continuous flow F(L) is converted to a discrete flow
constraint Fd(L). The evolution of continuous vari-
ables u ∈ U in between two time points ti and ti+1
is mapped to discrete, unguarded probabilistic tran-
sitions between locations of a special clocked PHCA

AMarkov
4t , encoded in Fd(L). It has only primitive lo-

cations, corresponding to grid cells of GR|U| , and rep-
resents a Markov chain that conservatively approxi-
mates the continuous evolution. The discrete flow con-
straint encodes AMarkov

4t by directly relating variables
xu ∈ A.ΠU for two time points ti and ti+1. Fd(L)
is added to the corresponding location L ∈ A.Σ.
If Fd(L) conflicts with transition guards determining
variable values for ti+1 via x′u ∈ A.ΠU ′ , the guard
takes precedence over Fd(L) (see, e.g., figure 3).

Figure 3: HyPHCA (above) is converted to a dfPHCA
(below).

4.2 Discrete Abstraction of Continuous Flow
To conservatively estimate transition probabilities of
AMarkov
4t we use the geometric abstraction method in-

troduced in (Lunze and Nixdorf, 2001). We recap this
method shortly. The quantized state space is combined
with a partition of the time interval [ti, ti+1]. Start lo-
cations of transitions of AMarkov

4t are associated with
quantization cells within the first partition element in
[ti, ti+1] and destination locations with the last. Let
now Gstart,ti be the quantization cell of start location

[45, 50)

[20, 25)

[25, 30)

[30, 35)

ulvl

ti

ti+1

0.41

0.57

0.03

Figure 4: Reachable set Rstart for u̇lvl = −fR ∗ ulvl
starting from the marked grid cell Gstart,ti . Right: the
derived PHCA AMarkov

4t .
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Lstart and Gλ,ti+1 the cells of all possible destination
locationsLλ (with λ indexing cells and locations). The
reachable set Rstart is computed, which is as small
as possible yet guaranteed to include all continuous
states reachable from Gstart,ti within [ti, ti+1]. Now
the probabilities for the transitions Lstart to destina-
tion locations Lλ are computed as

P (Lλ|ti+1, Lstart) =
V (Gλ,ti+1 ∩Rstart)
V (

⋃
x
Gx,ti+1 ∩Rstart)

,

where V () measures the volume of the given set. The
process is illustrated in figure 4.

The volume of the sets (which are polyhedrons)
is computed using the vinci tool by (Büeler et al.,
2000), cutsets (Gλ,ti+1 ∩ Rstart) are computed using
the Parma Polyhedra Library (Bagnara et al., 2002).

Currently we use PHAVer (Frehse, 2005) for reach-
ability analysis, but different approaches can be em-
ployed. Regarding abstraction of hybrid models, we
can build on a lot of related work in the area of auto-
mated verification of model properties. Stursberg et al.
address the problem of online verification of properties
such as that the planned path of a cognitive vehicle
doesn’t cross the path of another vehicle (M. Althoff
et al., 2007). In (M. Althoff et al., 2007) they combine
Markov chains abstracting continuous behavior with a
more advanced reachability analysis.

A too coarse state space quantisation can lead to
spurious solutions, as scenario 2 demonstrates. Cur-
rently, the right number of partitions must be deter-
mined empirically. Hofbaur and Rienmüller intro-
duced a method to intelligently quantize the contin-
uous state space based on qualitative properties of
piecewise affine systems (Hofbaur and Rienmüller,
2008). The method might be a useful extension to our
approach as it automatically chooses a good number
of partition elements, balancing precision of the ab-
straction against tractability, and reduces the number
of spurious solutions.

4.3 dfPHCAs as Conservative Abstraction
It remains to show that a dfPHCA Adf(4t) , gener-
ated as described above from a HyPHCA HA , is a
conservative abstraction in terms of the probabilities
of system trajectories, or formally:
Definition 6. (Set of abstracted HyPHCA trajec-
tories) Let θAdf (4t) be a trajectory of Adf(4t)
with corresponding timepoint sequence 〈ti〉, then
χ(θAdf (4t)) := {∆|∀ ti : (S(ti)

U ,m(ti)) ∈ ∆(〈ti〉) ∧
(Ŝ(ti)

ΠU
, m̂(ti)) ∈ θAdf (4t) ⇒ m(ti) = m̂(ti) ∧ S(ti)

U ∈
G(Ŝ(ti)

ΠU
)}1 is the set of all HyPHCA trajectories con-

tained in θAdf (4t).

Proposition 7. Let G : DΠU
→ GR|U| be a function

that maps assignments to discretized continuous vari-
ables ΠU to grid cells Gλ ∈ GR|U| . Let 〈oi, ci〉 an ar-
bitrary finite sequence of observations oi ∈ DΠObs and

1The hat ˆ is used to differentiate the HyPHCA state
(S

(ti)
U , m(ti)) from the dfPHCA state (Ŝ

(ti)
ΠU

, m̂(ti))

commands ci ∈ DΠCmd and 〈ti〉 the corresponding se-
quence of time points. Then, for a trajectory θAdf (4t)
consistent with 〈oi, ci〉 (i.e. P (θAdf (4t)|〈oi, ci〉) > 0),
the following holds:

∀∆ ∈ χ(θAdf (4t)) :

fHA(∆(〈ti〉)|〈oi, ci〉) ≤ P (θAdf (4t)|〈oi, ci〉)

fHA(∆(〈ti〉)|〈oi, ci〉) is the density function of a
distribution over discrete-time HyPHCA trajectories,
conditioned on the sequence 〈oi, ci〉.

5 MONITORING AND CONTROL AS
CONSTRAINT OPTIMIZATION

Given a discretized model, partial observations, known
commands and a goal state S(ti+n), we combine the
problems of system monitoring/diagnosis and finding
goal achieving commands into a single problem of
finding the most probable system trajectory over N
time steps which is consistent with the observations
and contains S(ti+n). From this trajectory the goal
achieving commands can be easily derived. We frame
this problem as a discrete constraint optimization prob-
lem (COP)R = (X,D,C) (Schiex et al., 1995) with
transition probabilities as preferences by translating
the discretized model to soft-constraints following our
framework in (Mikaelian et al., 2005). The diagnosis
part of the problem is an instance of maximal proba-
bility diagnosis (Sachenbacher and Williams, 2004).

The translation unfolds a given PHCAA over a time
window of N steps as follows: X = {X1, ..., Xn}
is a set of variables with corresponding set of finite
domains D = {D1, . . . , Dn}. For all time points
ti, i = 0..N , it consists of Π(ti) ⊆ X encoding
PHCA variables, auxiliary variables (needed to, e.g.,
encode hierarchical structure) and the solution vari-
ables of the COP, a set of binary variables Y =
{X(ti)

L1
, X

(ti)
L2

, . . .} ⊆ X representing location mark-
ings of A. C = {C1, . . . , Cn} is a set of constraints
(Sj , Fj) with scope Sj = {Xj1, . . . , Xjm} ⊆ X and a
constraint function Fj : Dj1×· · ·×Djm→ [0, 1] map-
ping partial assignments of variables in Sj to a prob-
ability value in [0, 1]. For all time steps ti, i = 1..N ,
hard constraints in C (Fj evaluates to {0, 1}) encode
hierarchical structure as well as consistency of obser-
vations and commands with locations and transitions,
while soft constraints in C encode probabilistic choice
of initial locations at t0 (here, i = 0 marks the start of
the time window, not the time point corresponding to
present) and probabilistic transitions. All assignments
to Y form a set ordered by the global probability value
in terms of the functions Fj (evaluated on the assign-
ments extended to X). The k assignments with high-
est probability are the k-best solutions to R , which
correspond to the most probable PHCA system trajec-
tories. Their extension to X provides assignments to,
e.g., goal achieving commands.

To encode dfPHCAs, we extended the framework
with a soft-constraint encoding of discrete flow con-
straints. A flow constraint is “active” if and only
if its associated location is marked and not overrid-
den by a transition guard. We encode this logic with
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hard constraints for each location and time step, which
implement the formula O(ti)

l = FALSE ∧ X(ti)
l =

MARKED ⇔ X
(ti)
Fd(l) = ACTIVE. The auxiliary

variables O(ti)
l with domain {TRUE,FALSE} and

X
(ti)
Fd(l) with domain {ACTIVE, INACTIVE} indi-

cate an override of a discrete flow and its activation,
respectively. The discrete flow itself is a function
mapping discrete flow variables in Π(ti)

U and Π(ti+1)
U

to transition probabilities. Again for each location
and time point we encode these functions as soft con-
straints, extending the scope by X(ti)

Fd(l). If the flow is

active (X(ti)
Fd(l) = ACTIVE) we keep the former map-

pings, and map to one if the flow is inactive. In the
latter case the discrete flow is not determined, since all
possible transitions are allowed.

Of course the soft-constraint encoding of dfPHCAs
leads to a certain overhead in terms of auxiliary vari-
ables and constraints, which however is linear in the
model size. For a single time point, the PHCA encod-
ing creates per location l one marking variable X(ti)

l
and one consistency variable for the location’s behav-
ior constraint C(l). Per transition, two variables en-
code whether the transition is enabled and whether
its guard is satisfied or not (again for a single time
point). Thus, the PHCA encoding creates an over-
head of O(2|T | + 2|Σ|) auxiliary variables. The en-
coding of discrete flow constraints for dfPHCAs adds
the two variables O(ti)

l and X(ti)
Fd(l) for each discrete

flow, yielding O(2|T |+ 4|Σ|). Note however that this
estimate is very conservative as it assumes that every
location has a discrete flow. Typically only the com-
ponents with dedicated continuous behavior will have
discrete flows in their abstraction, the dfPHCA.

All described steps up to now — discretizing, gen-
erating Markov chains, encoding as COPR — can be
done offline. Online, we iteratively add observations
and known commands toR and solve the COP to gen-
erate the k most likely system trajectories. For this step
we employ existing off-the-shelf solvers such as Toul-
bar22, which requires another minor (offline) transla-
tion step: R must be translated to a Weighted Con-
straint Satisfaction Problem (WCSP), a widely used
formalism in soft-constraint optimization.

6 RESULTS
We created COP instances with different discretiza-
tions for ulvl (d2, d5, d10 and d25) for our example
scenarios and some variations, and solved them using
Toulbar2. We tried its default and a second, decompo-
sition based configuration. The problem size was for
all instances 843 variables and ≈ 920 constraints (the
latter number varies with the different variations).

For scenario 1 with d10 table 1 shows the most
probable system trajectory the solver deduced from the
given observations and goals as variable assignments
in bold face. The generated solution correctly iden-

2https://mulcyber.toulouse.inra.fr/
projects/toulbar2/

Table 2: Runtime (mean time in sec.) for all scenarios
and discretizations for ulvl .

Online Runtime
Toulbar2 Discreti- Scenario
config. sation 1 1.1 1.2 2
default d2 0.016s 0.026s 0.028s 0.023s

d5 0.007s 0.013s 0.010s 0.037s
params d10 0.014s 0.026s 0.016s 0.037s

d25 0.030s 0.054s 0.032s 0.103s
with d2 0.126s 0.172s 0.200s 0.250s

d5 0.118s 0.130s 0.158s 0.252s
tree d10 0.122s 0.156s 0.164s 0.240s

decomp. d25 0.138s 0.178s 0.178s 0.327s

tifies the motor-switch-fault and provides the neces-
sary commands to reach the goal: repair = ON for
t0, refill = ON and waitRefill = ON for t1 and
waitRefill = OFF for t2.

The most probable system trajectories for scenario
2 with d5 and d10 are shown in figure 5 as trellis di-
agrams depicting discrete transitions of the dfPHCA.
Big black arrows and black filled circles mark the tra-
jectory found as most probable solution, grey arrows
show possible transitions. It can be seen that in this
scenario, the reasoner misses the fault sensor.stuck-on
if the continuous variable is abstracted too coarsely
(d5). We assume spurious solutions to be the cul-
prit: The coarser the abstraction, the more probable
become evolutions of ulvl which in reality are very
unlikely or impossible. With too coarse an abstrac-
tion (d5), the combination of the more likely motor-
switch-fault and a spurious evolution of ulvl with
heightened probability becomes most probable. With
a sufficiently fine grained abstraction (d10), the spu-
rious evolution’s probability is reduced to near zero,
which rules out the incorrect motor-switch-fault and
leaves the sensor.stuck-on fault as most probable.

Table 2 shows the average online runtimes for all
scenarios. The columns show results for scenario 1,
its two variations 1.1 and 1.2, and 2. The variations
are diagnose motor-switch-fault only (1.1) and nomi-
nal behavior (1.2). As one would expect, a slight in-
crease in runtime can be seen for the more fine grained
discretization d25. The variations 1.1 and 1.2 take
roughly the same time as scenario 1. Small differ-
ences are probably due to the fact that the variations
are the same COP with some constraints omitted. E.g.,
when diagnosing the motor-switch-fault only, the goal
is omitted. This makes the problem slightly harder
because more future evolutions are possible. We ex-
pected the offline decomposition of the problem to
lower online computation effort, but surprisingly, it
had a negative effect in our scenario.

The runtimes of the three offline steps discretization,
Markov chain generation and soft constraint encoding
for d2, d5, d10 and d25 are 16.5, 39.0, 138.5 and 215.4
seconds. They show that the effort for hybrid model
abstraction and encoding is considerable, even for such
a small model. However, runtime is still within man-
ageable bounds. Memory consumption might be a big-
ger issue (the offline steps for d25 consumed ≈ 300
MB), it remains for future experiments to show the
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Figure 5: The inferred system trajectories (black filled circles and arrows) for the sensor-fault scenario as trellis
diagram for d10 for ulvl (left) and for d5 (right). Grey shaded arrows show possible transitions (probability > 0).

Table 1: The monitoring/control results for our example scenario 1 (discretization with 10 partition elements of
ulvl ). The rows show: Known sensor values (1 row), known commands (4 rows), marked locations for sensor
and silo (2 rows) and finally the fill level (1 row). Table entries are variable values; bold values are derived
automatically by our method.

Time step
Past Present Future

Variable t−7 t−6 t−5 t−4 t−3 t−2 t−1 t0 t1 t2 t3
sensor.out OFF OFF OFF OFF OFF OFF OFF ON - - -
silo.motor ON OFF ON OFF OFF OFF OFF OFF - - -
silo.repair OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF

silo.waitRefill OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF
silo.refill OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF

silo location wait fill wait m-s-f.ne m-s-f.ne m-s-f.ne m-s-f.ne m-s-f.e empty waitRefill wait (goal)
sensor location nom. nom. nom. nom. nom. nom. nom. nom. nom. nom. nom.

ulvl [45, 50) [45,50) [25,30) [25,30) [10,15) [5,10) [0,5) [0,5) [0,5) [0,5) [10, 15) (goal)
Legend: nom. → nominal; m-s-f.ne→ motor-switch-fault.notEmpty; m-s-f.e→ motor-switch-fault.empty

limits of our method. The biggest portion of the re-
sources are consumed by the Markov chain generation,
which is not surprising: Converting the discrete part of
a HyPHCA to a discrete PHCA and encoding the fi-
nal discrete model as soft-constraints is linear in the
size of the model, whereas the step of Markov chain
generation is exponential in the dimension of the con-
tinuous subspace associated with the abstracted con-
tinuous flow.

Scalability of the Approach
Our intuition on the scalability of our approach is
that it scales well as long as the number of compo-
nents showing different continuous behavior is com-
parably small. The most expensive step is the gener-
ation of Markov chains to retrieve the discrete flows.
Scalability can be improved, if unnecessary genera-
tion is avoided, i.e. by sharing the same abstraction
among components with the same continuous behav-
ior. Also, the expensive reachability analysis could be

improved,e.g., by optimizing PHAVer parameters (or
use a better tool). Finally, intelligent state space quan-
tization (Hofbaur and Rienmüller, 2008) would reduce
the number of quantization cells, resulting in fewer
Markov chain states and thus a much less expensive
abstraction step and smaller abstract models.

7 CONCLUSION
Estimating the internal discrete/continuous state, and
automatically devising control actions as intelligent re-
action to identified failures and contingencies are at the
heart of self-monitoring and self-control capabilities
for embedded (mixed hardware/software) systems. We
introduced HyPHCAs, an extension to PHCAs, as a
modeling framework and showed how to combine sev-
eral methods from AI (constraint optimization, hidden
markov model reasoning), fault diagnosis in hybrid
systems (stochastic abstraction of continuous behav-
ior), and hybrid systems verification (hybrid automata,
reachability analysis) to track the state and compute
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reactive actions for mixed discrete/continuous systems
modeled as HyPHCAs. In an offline step, the approach
abstracts the differential equations of the HyPHCA to
Markov chains encoded as PHCAs, embeds them in
the discrete part of the HyPHCA, and encodes the dis-
crete abstraction with soft-constraints, such that on-
line monitoring and control of the system can be done
by solving a discrete constraint optimization problem.
Our experimental results demonstrate the feasibility of
the approach on a small, but real-world factory sce-
nario. Our next steps are to refine the semantics of Hy-
PHCAs in terms of probability distributions over tra-
jectories, to develop an estimator module which itera-
tively shifts the time window (based upon (Mikaelian
et al., 2005)) to monitor systems over long time pe-
riods and verify our results on larger factory settings
such as (Buss et al., 2007). In this and in other settings,
accurate model-based monitoring and control can only
be achieved by considering both hybrid hardware and
software behavior.

NOMENCLATURE
A,Acl(4t), Adf(4t), HA A PHCA, clocked PHCA,

dfPHCA or HyPHCA.

AMarkov
4t Special clocked PHCA encoding a markov

chain.
∆ Function mapping time to HyPHCA states.
∆x For x = df, cl,phca the function mapping

time to dfPHCA, clocked PHCA or PHCA
states.

dfPHCA Probabilistic hierarchical constraint au-
tomata with discrete flow constraints.

F ,Fd Functions associating a continuous flow
(HyPHCA)/discrete flow(dfPHCA) constraint
with a location.

fR Model parameter encoding the fill rate of bot-
tles being filled from the silo.

Gλ A grid cell, a hyper cuboid in the state space
Rn of a continuous flow involving n variables.

Gλ,ti A grid cell with time added, i.e. a hyper
cuboid in the state space Rn+1 with an addi-
tional dimension for time.

HyPHCA Hybrid probabilistic hierarchical constraint
automata, which support modelling of contin-
uous behavior with linear ordinary differential
equations.

Σ The set of all locations of a *PHCA.
lvl Finite domain variable representing the dis-

cretized fill level of the silo.
m-s-f.e Primitive location empty within composite lo-

cation motor-stuck-fault.
m-s-f.ne Primitive location not-empty within compos-

ite location motor-stuck-fault.
m-s-f Fault/Composite location motor-stuck-fault.

m(t) PHCA state/marking.
ODE Ordinary differential equation.
PHCA Probabilistic hierarchical constraint automata.

ΠU The set of discrete flow variables of a df-
PHCA, generated from real-valued variables
U of a HyPHCA. In the context of a constraint
optimization problem R = (X,D,C), Π(ti)

U
is the set of variables in X representing the
discretized flow at time ti.

R A constraint optimization problem.

S(ti) HyPHCA/dfPHCA state.

S
(ti)
x For x = U,ΠU an assignment to real-valued

variables U (HyPHCA) or finite domain vari-
ables ΠU (dfPHCA).

θx For x = A,Acl(4t), Adf(4t), HA a trajec-
tory of a PHCA, clocked PHCA, dfPHCA or
HyPHCA.

T The set of all transitions of a *PHCA.

U The set of real-valued variables of a HyPHCA.

ulvl Real-valued variable representing the fill level
of the silo.
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