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ABSTRACT

Rolling element bearings are the key components
in many rotating machinery. It is necessary to
determine the condition of the bearing with rea-
sonable degree of confidence. Many techniques
have been developed for bearing fault detection.
Each of these techniques have their own strengths
and weaknesses. In this paper various features
are compared for detecting inner race defects in
rolling element bearings. Mutual information be-
tween the feature and defect is used as a quan-
titative measure of quality and the features are
ranked appropriately. Often, a combination of
different features is used for bearing fault detec-
tion. Hence it is important to understand the in-
teraction of features for classification purposes.
This paper addresses this issue and determines
the optimal feature set for best detection perfor-
mance.

1 INTRODUCTION

Bearings are the key load carrying members in a rotat-
ing machinery. It is necessary to determine the state
of the bearing with reasonable degree of confidence to
prevent catastrophic failure. Bearing failure has been
studied extensively and numerous methods have been
developed for fault detection. Bearing failure can take
place because of wear and improper installation. One
of the common modes of failure in a rolling element
bearing is a point defect on the inner race or the outer
race of the bearing. Of these the inner race defect is
more difficult to detect.

The techniques developed involve measuring vibra-
tion signals and processing them using signal pro-
cessing techniques to obtain the features. Based on
the techniques used the features can be classified into
time (Tandon, 1994), frequency(Barkova and Barkov,
1995; Randall and Gao, 1994; Ypma, 2001) and time-
frequency(Cadeet al., 2005; Moriet al., 1996; Ypma,
2001) domains.
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One of the first feature extraction techniques for
rolling element bearing fault detection were the time
domain techniques. Rolling element bearings with
faults showed higher peak to peak vibration com-
pared to a healthy bearing(Tandon, 1994; Barkova and
Barkov, 1995). Some of the common time domain fea-
tures considered are skewness and kurtosis.

Frequency domain methods are among the most
used feature extraction techniques for bearing fault de-
tection. When the rolling element enters a defect an
impulse acts on the casing. The impulse is exerted at
a frequency with which the rolling elements enter the
defect. This frequency can be calculated from the ge-
ometry of the bearing and rotating speed(Harris, 2002;
Nataraj and Pietrusko, 2005; Harshaet al., 2004). The
frequency domain techniques use this excitation to de-
tect the defects in the bearing. The frequency com-
ponent associated with the inner race defect is called
the inner race ball pass frequency. The rotation of
cage also produces some frequency components. The
other frequency components present in a typical bear-
ing signal are the 1X response, its harmonics and
sub-harmonics. The presence of harmonics and sub-
harmonics indicates nonlinear behavior in general.

Fast Fourier Transform is the most common method
to extract the frequency components in a signal. How-
ever, in most cases the inner race defect’s spectrum
does not contain a peak corresponding to the ball pass
frequency. This is because the excitation signals need
to travel through the rolling element, casing and then
be detected at the sensor by which time the signal is
masked by other excitations. However, in the spec-
trum the frequency components spaced at the bear-
ing defect frequency can be found around the bear-
ing resonance frequency. Further, the impulse’s excita-
tions are amplitude modulated and can be recognized
as side bands. Envelope Spectrum can be the used to
obtain this frequency information(Randall and Gao,
1994). Feature extraction in the frequency domain is
still a subject of much fascinating research. Novel
techniques for optimal filtering, weak signal detection
and demodulation are still being developed.(Ran-
dall and Sawalhi, 2009; Sawalhi and Randall, 2008;
Ho and Randall, 2000; Ypma, 2001) are some inter-
esting publications in this area.

Discrete wavelet transforms (DWT) is a method for
obtaining the time-frequency information of the signal.
These are useful to extract the transients in the signal
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and are hence popular for inner race defect detection.
The divide the signal into various levels based on the
frequency range in the signal. The energies in these
levels are used as a features. More information about
the wavelet transforms can be found in(Chan, 1995).
Some of the recent work on bearing diagnostics using
DWT are(Ocaket al., 2007; Cadeet al., 2005; Pan
et al., 2009; Djebalaet al., 2008; Wu and Liu, 2008;
Feng and Schlindwein, 2009; Moriet al., 1996).

Bearing defect detection can be formulated as a
classification problem. Classification involves two
steps. First extracting features from the measured sig-
nal (usually vibration from accelerometers) and then
training a classifier such as ANN (Artificial Neural
Network) and ANFIS (Adaptive Neuro-Fuzzy Inter-
ference System). These trained classifiers can then be
used to classify the new data.

The performance of the classifier depends on the
quality of data and the quality of features. In this re-
search the quality of features is analyzed. The inter-
action between the features is also important for clas-
sification performance. Too few or too many features
would degrade the classifier’s performance. Also since
some the features are better at lower speeds and some
at higher speeds a combination of features is neces-
sary. The optimal feature set must be able to pro-
vide superior classification at varying speeds. Some
general computational intelligence based algorithms
that can be used for feature selection are(Sugumaran
et al., 2007; Penget al., 2005; Guoet al., 2004;
Malhi and Gao, 2004; Raymeret al., 2000).

Although there are many studies on optimal fea-
ture selection there are only a few that analyze bear-
ing defects quantitatively in particular(Sugumaranet
al., 2007). The aim of this study is to develop an op-
timal feature set based on strong mathematical foun-
dations that can be sufficiently generalized with less
human expertise. Some general computational intel-
ligence based algorithms that can be used for feature
selection are(Guoet al., 2004; Malhi and Gao, 2004;
Raymeret al., 2000).

In this research, information theoretic approach is
used to quantify the quality of the features. These tech-
niques measure the quality of features as the mutual-
information content between features and the state of
the bearing (faulty or healthy). Mutual information is
a statistical measure that correlates different random
variables(Dudaet al., 2001). It can be calculated from
the probability distribution between the random vari-
ables(Cover and Thomas, 1991).

The advantage to using information theoretic ap-
proach is that it is independent of the classifier used.
Also, among the various features used, some of them
might have similar information among them. Hence
using such features together increases the uncertainty
and degrades the performance. Information theoretic
approach addresses this important issue of interaction
of features with each other for classification purposes.

Using mutual information, this paper address three
important issues. First, it illustrates a quantitative sta-
tistical method to compare features for detection of
faults in bearings, second it provides an optimal fea-
ture set comprising of features from different domain
that together provide good classification accuracy and
third it provides a guideline for the features that need
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Figure 1: Algorithm for feature selection

to be considered for fault monitoring purposes. In this
paper time (skewness, kurtosis), frequency (FFT, enve-
lope) and time-frequency (discrete wavelet transform)
domain features are compared with each other.

The methodology is explained in the next section.
Section three explains the details of feature ranking
using mutual information and a simple algorithm for
feature subset selection. The details of the experimen-
tal setup and data collection are explained in the fourth
section. In the fifth section the typical features ob-
tained from a bearing and the results obtained form
the algorithm are shown. The final section deals with
conclusions and future work to be done.

2 METHODOLOGY

The flowchart of the process is provided in the Fig. 1.
Data collection is the first step in the proposed

method. Vibration data is collected from a system with
a faulty bearing and a defect-free bearing over a span
of rotating speeds and used for training, validation and
testing of the algorithm. The faulty bearing has a lo-
calized inner race defect.

Moments, Fast Fourier Transform, Envelope Trans-
form and Discrete Wavelet Transforms are used to
obtain the relevant features. Skewness, Fast Fourier
Transform (FFT), Envelope magnitudes at Ball Pass
Frequency (BPF), Cage Frequency (CF), 1/2X, 1X,
2X, and Discrete Wavelet Transform (DWT) energies
and skewness up to level six are used as features. The
data is divided into a training set, a validation set and a
test set. Care is taken that data in each set is distributed
evenly over the entire operating range.

Next, a greedy search algorithm is used to rank
the features based on the mutual information con-
tent. Greedy search algorithm is a popular sequential
search technique used in statistical research(Dudaet
al., 2001).

Now the validation set is used to extract an optimal
feature subset for classification using an ANN as the
classifier. The feature subset selection is performed
incrementally using the ordered feature set obtained in
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the previous stage. The subset with the best ANN clas-
sification performance is the optimal solution. This
optimal feature subset is then used to test the perfor-
mance using the test set data.

3 FEATURE RANKING AND SELECTION

3.1 Feature Ranking
As explained earlier the feature ranking is based on
mutual information. Letxi be the random variable
with pdf p(xi) corresponding to theith feature. LetC
be any classifier that maps the features intoNC classes
and ck the corresponding random variable with pdf
p(ck), k = 1, , 2, ..., NC . Note thatck is a discrete
random variable. The entropy and mutual information
are the defined as in Eqs. 1 and 2.

H(xi) = −

∫
p(xi) log p(xi)dx (1)

I(xi; ck) = −

∫
p(xi, ck) log

p(xi, ck)

p(xi)p(ck)
dx(2)

Further, the entropy and mutual information are related
by Eq. 3.

I(xi; ck) = H(ck) − H(ck|xk) (3)

In order to calculate the mutual information we need
to find p(ck) andp(ck|xi) from the data. It is easy
to find p(ck) as it is a discrete random variable. By
Bayesian rule we have

p(ck|xi) =
p(xi|ck)p(ck)

p(xi)
(4)

The pdf of a continuous random variablex can be cal-
culated from a given data using a Parzen’s Window.

p(x) =
1

N

N∑
i=1

φ(x − xi, h) (5)

where, N is the number of samples,h is a parameter
that defines the size of the window,xi are the data
points andφ is a finite valued non-negative density
function called the window function. In this work a
Gaussian function is used forφ (as is done typically).

Using Eqs. 5 and 6,p(xi|ck) can be calculated.

p(xi|ck) =
1

Nk

Nk∑
i=1

φ(x − xki
, h) (6)

where,Nk are the number of data points in thekth

class andxki
are the data points belonging tokth class.

Using Eqs. 4, 5 and 6 mutual information between a
feature and a class can be calculated using Eq. 7.

I(xi, c) =
∑NC

k=1
p(ck) log p(ck) −∫ ∑NC

k=1
p(xi|ck)p(ck) log p(xi|ck)dx (7)

However, in order to calculate the mutual informa-
tion between a set of features,x = [x1 x2 , ..., xn] and
a class, we would need to calculate the joint pdfp(x)
of the feature set and the conditional joint pdfp(x|c).

Although it is possible to do this, it is cumbersome and
often inaccurate. A simpler procedure is to use Eq. 8.

I(x; c) =
1

|S|

∑
xiǫS

I(xi; c) −
1

|S − 1|2

∑
xi,xjǫS

I(xi; xj)

x = {x : xǫS ⊂ X} (8)

The first part of the right hand side of Eq. 8 is the mean
of the mutual information of each of the features and
class; it is a measure of relevance of the setS. The
second part consists of the information between the
features themselves; it is a measure of redundancy of
the setS. Using this method it is necessary to only
calculate the joint pdf of two features at a time. This
method, when used in a sequential search, has similar
performance to the actual value(Penget al., 2005).

The feature selection process using these measures
is an optimization problem and can be formally de-
fined as in Eq. 9.

max I(x; c), x = {x : xǫS ⊂ X} (9)

where,X is the set containing the features andS is
some subset of it. If the size ofS is equal to size of
X then the solution to Eq. 9 will be an ordered set of
features.

Equation 9 can be solved using the greedy search
technique. In the first step of this technique, setS is
initialized to an empty set and a feature pool set de-
fined asF is initialized toX . Next, S is populated
iteratively with a feature from the feature pool such
that it maximizesI(x; c) at each stage. The selected
feature is then removed from the feature pool. This
process is continued till the feature pool is empty.

The algorithm for ranking can be summarized as
follows.

1. From the data findp(ck) and H(ck), k =
1, 2, 3, ..., NC .

2. SetS = {}, F = X .

3. While F is not an empty set, DO

(a) Seti = 1, Start Loop 1

(b) Append theith element ofF to S, i.e. Si =
{S, Fi}.

(c) Setj = 1, Start Loop 2
(d) Using Eq. 7 findI(xj , c).

(e) Using Eq. 5 findI(xi, xj).
(f) If reached the end ofSi End Loop 2, else

incrementj → j + 1 and go to Step d.
(g) Estimate mutual information of setSi,

I(Si, c) using Eq.8.
(h) If reached the end of F End Loop 1, else in-

crementi → i + 1 and go to Step b.
(i) Find the elementx∗

i corresponding to Maxi-
mumI(Si, c).

(j) Appendx∗

i to S and remove it fromF .

4. END WHILE

5. The final setS is the ordered feature set.
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3.2 Feature Selection
The aim of this stage is to extract an optimal subset
Sopt from the ordered featureS set obtained in the
previous stage. The criterion for optimization is to
achieve the least classification error using as few fea-
tures as possible. The validation data is used to train an
ANN and the classification accuracy is the measure of
the classification. The algorithm for this is as follows.

1. Initializei = 1 andSi=S(1).
2. Start Loop
3. Train an ANN usingSi and evaluate classification

accuracyai.
4. If Si = S Stop Loop and proceed to step 6, else

continue.
5. Incrementi → i + 1 andSi → {Si, S(i + 1)}

and proceed to step 3.
6. Fromai find i∗ corresponding to maximum accu-

racy and optimal set size.
7. ObtainSopt asSi∗ .

4 EXPERIMENTAL SETUP
All the experimental data was collected on a ‘Machine
Fault Simulator (MFS)’(Spectra Quest, 2009) Fig. 2.
It is a test rig with a rotating shaft on a two ball bear-
ings. The shaft and the motor are connected using a
flexible coupling to minimized misalignment effects.
The shaft is loaded using a bearing loader and balanc-
ing disks. The different parts of the system can be con-
veniently assembled and disassembled. The bearings
are placed in the bearing casing and can easily be re-
placed. The bearing parameters for the system used
are given in Table 1. The bearing defect was three mils
deep and four degrees wide. The system was loaded
with a 5 kg mass. The signals from the MFS were
collected using accelerometers placed on the bearing
casing; once with a defect-free bearing and once with
a bearing with an inner race defect. The signals were
captured at a sampling rate of 25 kHz.

The rotating speed was varied between 120 rpm and
3360 rpm with increments of 120 rpm. At each rotat-
ing speed, 10 sets of data were collected. Five of these
were used in training set, two in validation set, and
three in test set. There were 280 samples in all; 140
of these were used for training, 56 for validation and
84 for testing. In each of these sets half of the samples
were from a defect-free system and the other half from
a system with an inner race defect.

Parameter Value
Number of Rolling Elements (Nb) 8
Pitch Diameter (Dm) 1.319 in
Rolling Element Diameter (Db) .3125 in
Ball Pass Frequency (ωbpfi) 4.93Ω

Table 1: Bearing Parameters

5 RESULTS
5.1 Features
The data collected from the experimental setup agree
with the typical observations in similar systems. The

Figure 2: Experimental setup
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Figure 3: FFT of the measured signal

FFT of the signal for a bearing with defect is shown
in Fig. 3. The bearing casing resonance is observed at
3.5 kHz. To evaluate the envelope spectrum the signal
is bandpass filtered about this frequency.

Typical spectra of a defect-free and a faulty bearing
at lower frequency range are shown in Figs. 4 and 5 re-
spectively. The rotating speed was 30 Hz and the ball
pass frequency which can be calculated using Eq. 10
was about 148 Hz. In Eq. 10Nb is the number of
rolling elements,Db is the diameter of the rolling el-
ement,Dm is the mean diameter of bearing andΩ is
the rotating speed. It can be seen that there is no peak
in the spectrum at the inner race ball pass frequency.
However, in the envelope spectrum clear peaks are vis-
ible at ball pass frequency and its harmonics.

Ωbpfi = Nb(1 + Db/Dm)Ω/2 (10)

The reconstructed DWT detail signal from a defect-
free bearing and a bearing with inner race defect are
shown in Figs. 6, and 7 respectively. For brevity sig-
nals only between level 3 and level 5 are shown, it can

4



Annual Conference of the Prognostics and Health ManagementSociety, 2009

0 0.1 0.2 0.3 0.4 0.5
−20

0

20

time (sec)

A
m

pl
itu

de
 (

m
/s

2 )

0 50 100 150 200 250 300 350 400
10

0

10
2

10
4

Frequency (Hz)

F
F

T
 m

ag
ni

tu
de

100 150 200 250 300 350 400 450 500 550
0

200

400

Frequency (Hz)

E
nv

 F
F

T
 m

ag
ni

tu
de

Figure 4: Feature extraction for a defect-free bearing
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Figure 5: Feature extraction for a bearing with an inner
race defect

be seen that the signal from a bearing with inner race
defect has more energy at lower orders. It is impor-
tant to note that the features are strong nonlinear func-
tions of rotating speeds. The rotating speed contains
useful information and therefore needs to be a part of
the feature set.

5.2 Mutual Information Based Feature Selection
Twenty eight features were input to the mutual infor-
mation based ranking algorithm. The final ordered fea-
ture set obtained using the feature ranking algorithm
explained in section 3 is given in Table 2. The initial
order of the feature set input to the algorithm is arbi-
trary. It can be seen that DWT based features ended up
higher in the table. Also, the rotating speed is second
in the list and clearly contains important information.
DWT energies at levels four and three have more infor-
mation than other features. The envelope magnitude at
ball pass frequency is next feature in the list. This is
an important observation, it suggests that DWT based
features are better than envelope spectrum based fea-
tures in this data. Hence DWT based features should
be used for studies like fault monitoring and prognos-
tics.
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Figure 6: DWT of a defect-free bearing signal
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Figure 7: DWT of a bearing signal with an inner race
defect
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Figure 8: Mutual information

Another observation is that envelope and FFT mag-
nitude at 1/2X , 2X are also important features. It
is a measure of the nonlinearity in the system. The
general observation in many studies is that these fre-
quency components are dominant in a bearing with
a defect. This has been verified in our experiments
and their importance has been validated by this proce-
dure. As had been suggested by many previous studies
(Randall, 1987; Cadeet al., 2005; Panet al., 2009)
time domain, FFT, DWT approximation signal based
features are not effective for ball bearing fault detec-
tion. This has been corroborated by this procedure,
they rank low in the table. The mutual information
calculated is shown in Fig. 8. The mutual information
estimate has a steep increase till the first six features
then peaks at about the twelfth feature which is DWT
detail energy at level 1. Features up to eleven or thir-
teen would probably give similar performance but for
the present data we use the first twelve features as a
reasonable mean value. The FFT magnitude atωbpfi

ended up at eleventh place and has added very little
relevant information to feature set. It should be noted
that even though DWT energy at third and fourth level
have higher information content they alone are not suf-
ficient for accurate classification.

Using the ordered feature set and the algorithm ex-
plained earlier for feature selection, an ANN was used
for classification of the validation data. The mean ac-
curacy of ten ANN runs on the validation set was the
criterion for feature selection.

The ANN had one hidden layer with five neurons.
Tan-Sigmoid activation function was used and a ter-
mination criterion was the error being less than10−10

units or thousand iterations. The mean performance of
the ANN per feature is shown in Fig. 9. The accu-
racy of classification shows a trend similar to mutual
information.

The optimum feature set consists of the first twelve
features. When this feature set was used with the
validation data, the algorithm correctly classified a
defect-free system with an accuracy of 97.8 %, a sys-
tem with a faulty bearing with an accuracy of 96.4
% and overall accuracy of the algorithm was 97.1 %.
The corresponding performance on the test set was

Ordered Features
1 DWT Detail Energy at Level 4
2 Rotating Frequency (Ω)
3 DWT Detail Energy at Level 3
4 Env Mag atωbpfi

5 Env Mag atΩ/2
6 FFT Mag atΩ/2
7 Env Mag atωcage

8 Env Mag at2Ω
9 FFT Mag atωcage

10 FFT Mag at2Ω
11 FFT Mag atωbpfi

12 DWT Detail Energy at Level 1
13 DWT Skewness at Level 4
14 DWT Detail Energy at Level 2
15 DWT Skewness at Level 3
16 DWT Approx Energy at Level 6
17 DWT Approx Energy at Level 2
18 DWT Skewness at Level 5
19 DWT Approx Energy at Level 5
20 DWT Approx Energy at Level 3
21 DWT Detail Energy at Level 5
22 DWT Approx Energy at Level 4
23 DWT Approx Energy at Level 1
24 Skewness
25 DWT Skewness at Level 6
26 DWT Skewness at Level 2
27 DWT Detail Energy at Level 6
28 DWT Skewness at Level 1

Table 2: Features

DF IRD
DF 97.8% 2.2% Validation set

97.2 % 2.8% Test set
IRD 3.6% 96.4% Validation set

4.2% 95.8% Test set

Table 3: Confidence Matrix

97.2%, 95.8% and 96.5% respectively. The variance
was 2.56% for the defect-free case and 4.32% for the
bearing with an inner race defect. The confidence ta-
ble for validation set and test set is shown in Table 3.
These indicate excellent performance.

6 CONCLUSION
Mutual information was used to rank and compare fea-
tures for detecting inner race defects in rolling element
bearings. Time, frequency and time-frequency domain
features were extracted and ranked. DWT detail en-
ergy at level four was ranked the highest. However,
this feature alone was not capable of good classifica-
tion performance. As expected the envelope magni-
tude at the ball pass frequency ranked higher than the
FFT magnitude at the same frequency. The DWT ap-
proximation based energies and skewness features de-
graded the information content in the feature set. An
ANN was used to determine the optimal feature sub-
set from the ranked feature set. The ANN classifica-
tion accuracy showed similar trend to the mutual in-
formation content. Another interesting observation is
the presence of FFT and envelope magnitudes atΩ/2
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Figure 9: Classification performance on validation
data

and2Ω. These features are a measure of the nonlinear-
ity in the system, which means that the bearing with an
inner race defect excites higher nonlinear behavior of
the system. It would be interesting to perform nonlin-
ear analysis on a bearing model with a defect; this will
be pursued in future work.

Using a validation data set an optimal feature sub-
set was extracted. The optimality condition was mean
minimum classification error using ten ANN simula-
tions. The optimal feature set in this case had twelve
features. The method showed excellent performance
on a test data set. The other advantage of this method is
that this feature set guarantees high performance over
a range of rotating speeds. Further work is in progress
to compare the outcomes of the proposed technique
with some other benchmark techniques and to incor-
porate model based features and evaluate their advan-
tages and disadvantages for the purpose of diagnostics
and prognostics. A study on the relationship between
defect magnitude and various features using mutual in-
formation is also being pursued.
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