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ABSTRACT 

Permanent magnet synchronous motor (PMSM) is a leading 

technology for electric vehicles (EVs) and other high-

performance industrial applications. These challenging 

applications demand robust fault diagnosis schemes, but 

conventional strategies based on models, system knowledge, 

and signal transformation have limitations that degrade the 

agility of diagnosing faults. These methods require extremely 

detailed design and consideration to remain robust against 

noise and disturbances in the actual application. Recent 

advancements in artificial intelligence and machine learning 

have proven to be promising next-generation solutions for 

fault diagnosis. In this paper, a support-vector machine 

(SVM) utilizing sparse representation is developed to 

perform sensor fault diagnosis of a PMSM. A simulation 

model of the pertinent PMSM drive system for automotive 

applications is used to generate a set of labeled training 

example sets that the SVM uses to determine margins 

between normal and faulty operating conditions. The  PMSM 

model includes input as a torque reference profile and 

disturbance as a constant road grade, against both of which 

faults must be detectable. Even with limited training, the 

SVM classifier developed in this paper is capable of 

diagnosing faults with a high degree of accuracy, suggesting 

that such methods are feasible for the demanding fault 

diagnosis challenge in PMSM. 

1. INTRODUCTION 

Permanent magnet synchronous motor (PMSM) is one of the 

most critical technologies for electric vehicle (EV) 

powertrains. As a combination of an induction motor and a 

brushless direct current (DC) motor, PMSM is typically used 

in high-performance and high-efficiency applications, like 

EVs. PMSM has a permanent magnet rotor and windings on 

the stator similar to those of a brushless DC motor. The 

symmetrical three-phase stator windings produce a sinusoidal 

distribution of flux in the air gap and thus a sinusoidal back 

electromotive force (EMF). PMSM has low mass and 

moment of inertia with a smooth rotational drive over the 

speed range and maximum torque at zero speed. The primary 

advantages of PMSM are simple structure, high efficiency, 

low mass, large overload capacity, and high dynamic 

performance. These advantages lead PMSM to many 

applications in manufacturing systems, marine drives, wind 

generators, EVs (Zheng, Wang, Wang, Li, and Li, 2017), and 

other industrial equipment (Kalimov & Shimansky, 2015). 

However, due to the diverse applications and highly dynamic 

operating conditions of PMSM, the long-term reliability and 

robustness are critical. Various load conditions and 

application environments make PMSM susceptible to faults 

throughout its service life. Because the reliability is essential 

for the high-performance applications of PMSM, the timely 

detection, diagnosis, and countermeasure of faults are crucial 

(Chen, Liang, Li, Liang, and Wang, 2019). Thus, a robust, 

agile, and reliable fault diagnosis strategy is of great interest 

for PMSM. In this study, the main focus is on the sensor 

faults in the PMSM drive systems, and a methodology via 

SVM is proposed to assess the trustworthiness of signals 

obtained by various sensors. The main objective is therefore 

to develop an SVM based fault diagnosis approach to detect 

and isolate sensor faults in PMSM, which is also robust to 

disturbance and noises. 

The paper is organized as follows. Section 2 shows related 

work in the field of fault diagnosis of PMSM. Section 3 

introduces the problem statement. Section 4 presents the 

PMSM drive model and the proposed diagnosis approach 
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using SVM. In Section 5, the simulation results are reported, 

and conclusions are presented in Section 6.  

2. RELATED WORK 

Faults in PMSMs can be classified into three types: electrical 

faults, mechanical faults, and magnetic faults (Chen, Liang, 

Li, Liang, and Wang, 2019). Electrical faults occur primarily 

due to incorrect connections of the motor windings, inter-turn 

short circuits of the stator phase windings, grounding issues, 

and open circuits. Mechanical faults are those damaging the 

electric machine due to shaft bending, loose bolts or fixtures, 

air gap eccentricity, or bearing wear. Magnetic faults degrade 

the magnetization of the permanent magnet and can occur due 

to high temperature, excessive stator current, short circuit of 

the inverter or stator, or aging. To maintain the reliability of 

the PMSM in service, it is critical to quickly and precisely 

identify any faults that may occur and their type, location, and 

severity. Fault diagnosis methods for these machines 

typically fall into one of three categories: model-based 

approach, signal processing approach, and data-driven 

intelligent approach.  

2.1. Model-based Approach 

Model-based fault diagnosis predicts the behavior and 

performance of the system’s signals after the occurrence of 

various faults in the motor. The actual performance is 

compared with the predicted data and any difference, or 

residual, between the two can indicate a faulty state. A basic 

model is based on the electrical equivalent circuit (EEC), 

which is fast but less accurate (Chen, Liang, Li, Liang, and 

Wang, 2019). In order to get a higher accuracy, magnetic 

equivalent circuit (MEC) and inductance are utilized by Faiz, 

Nejadi-Koti, and Exiri (2017) to detect inter-turn faults. 

Digital simulation models such as the finite element model 

(FEM) have also been commonly used for almost all PMSM 

faults, which could give even better accuracy. Fitouri, 

BenSalem, and Abdelkrim (2016) presented a finite element 

analysis and equivalent circuit simulation for PMSM. The 

simulation model is exploited to analyze the system with 

faults caused by an electric component such as the short 

circuit in the stator. Li and Liang (2015) utilized finite 

element analysis to study the inter-tern short circuit fault of 

PMSM. Khan, Okonkwo, Usman, and Rajpurohit (2018) 

developed and analyzed a FEM for the PMSM system with 

demagnetization faults. Usman, Joshi, and Rajpurohit (2017) 

compared commonly used models including analytical 

mathematical models, magnetic equivalent circuit models, 

and digital simulation models. 

2.2. Signal Processing Approach 

Signal processing approach typically includes time domain 

methods, frequency domain methods, and the time-frequency 

domain methods. Time domain statistical methods are used 

in the initial period of fault diagnosis development, but they 

are not accurate enough (Chen, Liang, Li, Liang, and Wang, 

2019). The most powerful frequency domain method is the 

Fast Fourier Transform (FFT). It shows the frequency 

distribution of the signal using amplitude and frequency of 

harmonic components as features (Rosero, Romeral, Cusido, 

Garcia, and Ortega, 2007). Hang, Ding, Zhang, Cheng, Chen, 

and Wang (2016) defined a simple fault indicator as the sum 

of the absolute values of amplitude differences between the 

stator currents by using a frequency-tracking algorithm. 

Stack, Harley, and Habetler (2004) utilized frequency 

characteristics of machine vibration signals to identify single-

point defects in rolling element bearings. However, FFT is 

unable to provide time domain information, and sometimes 

similar harmonics are difficult to be distinguished. Therefore, 

time-frequency methods like Short-time Fourier Transform 

(STFT), Wavelet Transform (WT), and Hilbert-Huang 

Transform (HHT) were introduced to generate time-

frequency domain data. Rosero, Cusido, Espinosa, Ortega, 

and Romeral (2007) analyzed stator current by means of 

STFT and used the results to detect damaged bearings in 

PMSM. Obeid, Battiston, Boileau, and Nahid-Mobarakeh 

(2017) discussed the stator incipient fault diagnosis by 

studying reference voltage using WT. Strangas, Aviyente, 

and Zaidi (2008) presented and compared different methods 

to identify electrical faults, which are based on Short-time 

Fourier Transform, Undecimated Wavelet Transform, and 

Wiger and Choi-Williams distributions of the field-oriented 

currents.  

2.3. Artificial Intelligence Approach 

As artificial intelligence and machine learning rise in 

popularity and prevalence, data-driven intelligent diagnosis 

systems begin to emerge as prospective strategies for fault 

diagnosis in a wide range of applications (Chen, Liang, Li, 

Liang, and Wang, 2019). Data from the PMSM can be fed to 

a machine learning algorithm as training examples to predict 

normal and faulty operating states. These systems have the 

advantage of not requiring advanced knowledge of machine 

characteristics or a sophisticated model of PMSM. Methods 

like fuzzy logic, neural networks, and support vector 

machines (SVM) can be used to identify faults directly using 

only the states of the PMSM drive system like three-phase 

current signals, rotor position signals, and motor speed 

signals. 

Çira, Arkan, and Gümüş (2015) detected stator winding short 

circuit faults and estimated severity by utilizing an artificial 

neural network (ANN) based pattern recognition system. 

Wen, Li, Gao, and Zhang (2017) proposed a two-dimensional 

(2D) Convolutional Neural Network (CNN) for fault 

diagnosis, which is tested on three famous datasets, including 

a motor bearing dataset, self-priming centrifugal pump 

dataset, and axial piston hydraulic pump dataset. Luo, Qiu, 

and Shi (2018) also proposed a deep learning algorithm for 

motor fault detection using Long Short-Term Memory 

(LSTM). Liang, Chen, Liang, and Li (2019) utilized sparse 
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representation and SVM to detect inter-turn short-circuit 

fault. The sparse representation is used to extract signal 

features and SVM is used to classify normal conditions or 

faulty conditions. 

In this paper, an SVM based machine learning approach is 

used to detect sensor faults in a PMSM. Machine learning is 

advantageous because it doesn’t require sophisticated 

modeling of the motor, instead it only requires enough data. 

System nonlinearity can be handled, and a high accuracy can 

be achieved by a good selection of datasets (Lee, Wu, Zhao, 

Ghaffari, Liao, and Siegel, 2014). In addition, machine 

learning methods tend to perform better when dealing with 

multi-dimension and continuous features (Liu, Yang, Zio, 

and Chen, 2018). As there are many sensors for an 

automotive application (e.g. current sensors, voltage sensors, 

vehicle speed sensors, etc.), a large scale of data can be 

generated. In order to reduce the time spent on data collection 

and training, SVM is chosen as it can work pretty well with 

even little data. According to Shin, Lee, and Kim (2005), 

SVM can achieve a similar performance as neural networks 

with a training set that is 50% or less in classification tasks. 

More specifically, inspired by Liang et al. (2019), a sparse 

representation based SVM classifier is proposed to detect 

different sensor faults in a PMSM drive system on electric 

vehicles. Different from just a single type of fault considered 

by Liang et al. (2019), various sensor faults under the 

presence of disturbances are considered here, specifically for 

an electric vehicle application. Therefore, input features are 

different, and the types of features are also expanded.  

3. PROBLEM  STATEMENT 

Consider an EV traveling on a straight lane, which is driven 

by a PMSM drive system. As the PMSM works relying on 

multiple sensor data (e.g. motor speed, vehicle speed, etc.), 

those data should be identified as faulty or not. This is 

achieved by a fault diagnosis algorithm in the Electronic 

Control Unit (ECU), which could evaluate the 

trustworthiness of the sensor data. ECU can access data from 

different sensors through Controller Area Network (CAN) 

with their unique identification numbers. Ten types of 

different sensor data are assumed to be accessible in this 

project as shown in Eq. (1). 

𝑆𝑡 = [𝑆1
𝑡 … 𝑆10

𝑡 ] (1) 

where is 𝑆𝑡  is the total accessible sensor data at time 𝑡 ;  

𝑆1
𝑡 , . . . , 𝑆10

𝑡  represent three-phase abc current signals 

(𝐼𝑎 , 𝐼𝑏 , 𝐼𝑐), three-phase abc voltage signals (𝑉𝑎 , 𝑉𝑏 , 𝑉𝑐), motor 

angular position (𝜃𝑚 ), motor speed (𝜔𝑚 ), vehicle speed 

(𝑉𝑣𝑒ℎ) and motor torque (𝑇𝑒), respectively. 

Among all the ten sensors, eight types of sensor faults are 

considered here, which are phase ab current sensor fault, 

phase abc voltage sensor fault, motor angular position sensor 

fault, motor speed sensor fault, and vehicle speed sensor 

fault. All the eight faults also occur with road grade 

disturbance.  

The goal is to generate a fault diagnostic algorithm which is 

able to detect and isolate the occurrence of a single fault from 

the given list of potential faults. The algorithm must be robust 

to disturbance and inherent noise.  

4. METHODOLOGY 

The proposed approach is an SVM classifier based on 

features extracted by sparse representation. The sensor data 

presented in Eq. (1) is streamed directly from vehicle on-

board sensors and fed to a sparse representation algorithm to 

extract features. Then the features will be cascaded into an 

SVM classifier to output the conditions of the PMSM system, 

which could tell a faulty sensor or normal state. In lieu of real-

world test data from the vehicle or a hardware-in-the-loop 

(HIL) bench, this paper employs a PMSM simulator to 

generate data and perform a diagnosis algorithm. The PMSM 

drive model is designed to accept a torque reference profile 

in the motor controller. This torque reference is the command 

that the PMSM simulator will follow as it is subject to fault 

injection and disturbance. The command is an input to the 

motor controller block and mimics the actual type of input 

that would be received from an accelerator pedal position 

sensor as the driver requests tractive torque. In the following 

subsections, subsection 4.1 introduces details of the PMSM 

drive model, subsection 4.2 introduces details of sparse 

representation design and subsection 4.2 introduces SVM 

classifier design. 

 

Figure 1. PMSM drive system for automotive applications. 

4.1. PMSM Model Description 

The PMSM drive model used in this paper is shown in Fig. 

1, which is comprised of three main subsystem blocks: the 

inverter and battery, the motor controller, and the PMSM and 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

4 

vehicle dynamics. Since the PMSM model is typically 

described in the rotor dq axis, Park’s transformation matrices 

are employed to change to and from the three-phase abc axis 

between subsystems. The transformation matrix is given by 

Eq. (2), where 𝜃 is the angle between the coordinate systems, 

𝑓𝑎𝑏𝑐  is the original state in the abc axis and 𝑓𝑑𝑞  is the 

transformed state in the dq axis. 

𝑓𝑑𝑞 = √
2

3
[
cos(𝜃) cos (𝜃 −

2

3
𝜋) cos (𝜃 +

2

3
𝜋)

−sin(𝜃) − sin (𝜃 −
2

3
𝜋) −sin (𝜃 +

2

3
𝜋)

] 𝑓𝑎𝑏𝑐 (2) 

The motor controller takes the reference torque profile, motor 

position, and measured abc phase currents as inputs and 

generates the S1~S6 switching sequence for the inverter. Both 

motor position and measured abc phase currents are subject 

to faults. The motor controller is assumed to be free of 

disturbance. 

The inverter and battery subsystem block actuate the abc axis 

voltages which are then transformed into the dq axis for the 

PMSM subsystem. Interaction between the motor controller 

and the inverter/battery system is assumed fault-free, so the 

subsystem is not subject to any input sensor faults. However, 

the sensors measuring abc phase voltages are subject to 

faults. The inverter and battery are assumed to be free of 

disturbance. 

As the dynamics of the PMSM and its fault diagnosis are the 

focus of the model, the vehicle dynamics are simulated with 

a simple model. The motor speed is coupled with the 

vehicle’s road wheel speed through the radius of the wheel 

and the gear ratio. In this subsystem, the motor speed sensor 

and vehicle speed sensor also experience faults, all of which 

are independent and of finite duration. The PMSM and 

vehicle dynamics subsystem are also subject to disturbances 

in the form of road grade variation. 

The load torque due to road forces is given by Eq. (3) where 

𝜌𝑎 is the density of air, 𝐶𝑑 is the drag coefficient, 𝐴𝑓 is the 

front cross-sectional area of the vehicle, 𝑉𝑣𝑒ℎ is the vehicle 

speed, 𝐶𝑓  is the rolling resistance, M is the mass of the 

vehicle, g is the acceleration due to gravity, 𝛾  is the road 

grade, 𝑅𝑤 is the radius of the tire, and GR is the gear ratio. 

𝑇𝐿 = (
1

2
𝜌𝑎𝐶𝑑𝐴𝑓𝑉𝑣𝑒ℎ

2 + 𝐶𝑓𝑀𝑔𝑐𝑜𝑠𝛾 +𝑀𝑔𝑠𝑖𝑛𝛾)
𝑅𝑤

𝐺𝑅
(3)  

The electromechanical dynamics of the PMSM are given by 

the five state equations of Eq. (4) where 𝑖𝑞  and 𝑖𝑑  are the 

currents in the dq axis, 𝑉𝑞  and 𝑉𝑑 are the voltages in the dq 

axis, 𝐿𝑞 and 𝐿𝑑 are the inductances in the dq axis, 𝜆𝑚 is the 

magnetic flux generated by the rotor permanent magnets, 𝜔𝑚 

is the motor speed, P is the number of pole pairs, 𝑇𝑒 is the 

electromagnetic torque produced by the PMSM, 𝜃𝑟  is the 

angular position, J is the effective inertia of the rotating 

components, and b is the coefficient of friction.  

{
 
 
 
 

 
 
 
 
𝑑𝑖𝑞

𝑑𝑡
= −

𝑅𝑠

𝐿𝑞
𝑖𝑞 −

𝐿𝑑

𝐿𝑞
𝜔𝑚𝑖𝑑 −

𝜆𝑚

𝐿𝑞
𝑃𝜔𝑚 +

𝑉𝑞

𝐿𝑞
𝑑𝑖𝑑

𝑑𝑡
=
𝐿𝑞

𝐿𝑑
𝑃𝜔𝑚𝑖𝑞 −

𝑅𝑠

𝐿𝑑
𝑖𝑑 +

𝑉𝑑

𝐿𝑑
𝑑𝜔𝑚

𝑑𝑡
=
1

𝐽
𝑇𝑒 −

𝑏

𝐽
𝜔𝑚 −

1

𝐽
𝑇𝐿

𝑇𝑒 = 1.5𝑃𝜆𝑚𝑖𝑞
𝑑𝜃𝑟

𝑑𝑡
= 𝑃𝜔𝑚

                    (4) 

4.2. Sparse Representation Design 

The purpose of sparse representation is to represent the 

original signal as a sparse linear combination of the 

dictionary atoms in an overcomplete dictionary matrix 

(Zhang, Xu, Yang, Li, and Zhang, 2015). The main idea is to 

utilize as fewer dictionary atoms as possible to obtain a 

simpler representation of the digital signal. Sparse 

representation can extract basic information from the signal 

and avoid the interference of small noise in the signal, such 

as inherent measurement noises. In our case, there are ten 

signals from ten different sensors, given the sensor signal 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] with length 𝑛 = 10. For each 𝑥𝑖 ∈ 𝑥  

𝑥𝑖 = 𝐷
𝑖𝑎𝑖 =∑ 𝑎𝑗𝑑𝑗

𝑚

𝑗=0
(5) 

where 𝐷𝑖 = [𝑑1, 𝑑2, … , 𝑑𝑚] is the dictionary matrix which is 

a subset of basis dictionary 𝐷𝑖
∗
= [𝑑1

∗, 𝑑2
∗ , … , 𝑑𝑀

∗ ] , the 

column vector 𝑑𝑗 with a dimension of 𝑁 × 1 is the dictionary 

atom (i.e. sample), 𝑁 is the length of 𝑥𝑖 which depends on the 

sampling time interval and ||𝑑𝑗|| = 1. The dictionary is an 

overcomplete dictionary with 𝑀 > 𝑁. 𝑎𝑖 = [𝑎1, 𝑎2, … , 𝑎𝑚]
𝑇 

is the solution to the sparse representation of the original 

signal and for each 𝑎𝑗 ∈ 𝑎
𝑖  is the sparse representation 

coefficient. The goal of sparse representation is to find a 

subset 𝐷𝑖  from 𝐷𝑖
∗
 and the corresponding 𝑎𝑖 . A commonly 

used dictionary is discrete cosine transform (DCT) basis 

which is defined as 

𝐷∗(𝑘, 𝑡) = {

1

√𝑁
, 𝑘 = 0

√
2

𝑁
𝑐𝑜𝑠 (

𝜋

𝑁
(𝑡 +

1

2
) 𝑘) , 𝑘 = 1,2, . . . , 𝑁 − 1

(6)  

The coefficient solution can be obtained by solving the linear 

representation problem with 𝑙0 − 𝑛𝑜𝑟𝑚  minimization 

constraint: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑎𝑖

||𝑥𝑖 − 𝐷
𝑖𝑎𝑖||2

2 + 𝜆||𝑎𝑖||0 (7) 

where 𝜆  refers to the Lagrange multiplier associated with 

||𝑎𝑖||0. ||𝑎𝑖||0 represents the number of nonzero elements in 

𝑎𝑖.  
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In order to solve this optimization problem, a greedy iterative 

algorithm called orthogonal matching pursuit (OMP) is used 

in this paper (Liang et al., 2019). First, it chooses the atom 𝑑1 

that matches the input signal best from the basis dictionary 

matrix and calculates 𝑎1 and residual, which is orthogonal to 

the span of the atoms already selected. Then it continues to 

select the second atom 𝑑2 that matches the signal best using 

updated residual and iterates over until it meets a residual 

criterion.  

After the OMP algorithm is used to obtain the sparse 

coefficients vector 𝑎𝑖  for ten sensor signals (𝑖 = 1, . . . ,10), 

the variance of 𝑎𝑖, the largest and second largest elements of 

𝑎𝑖  are selected for each sensor signal as features, because 

they show obvious differences under normal condition and 

faulty condition as further discussed in Section 5. Therefore, 

there are ten sensor signals with three features for each signal 

and 30 features in total. Mark the extracted features as 

𝐹1𝑗 , 𝐹2𝑗 , 𝐹3𝑗, … , 𝐹10𝑗  respectively for three-phase current 

signals, three-phase voltage signals, motor angular position, 

motor speed, vehicle speed, and motor torque, where 𝐹1,1is  

the maximum coefficient feature of phase a current, 𝐹1,2 is 

the second maximum coefficient feature of phase a current, 

𝐹1,3 is the variance feature of phase a current and so on. Then 

the input to the SVM classifier becomes 𝐹 in Eq. (8). 

𝐹 = [𝐹1,1𝐹1,2𝐹1,3𝐹2,1…𝐹10,3] (8) 

4.3. SVM Classifier Design 

The aim of using SVM is to find a hyperplane to segment all 

the data points. Segmentation is the process of defining the 

hyperplane such that the margin from the hyperplane to the 

nearest data point on each side is maximized. Considering a 

binary SVM classifier, let the sample points for training be 

(𝐹𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑙. The input is 𝐹𝑖 ∈ ℝ
30 as illustrated in 

Eq. (10) and the output is 𝑦𝑖 ∈ {−1, 1}. If 𝛽 is the normal 

vector of the hyperplane and b is the displacement, the 

equation of the hyperplane is 

𝑓(𝐹) = 𝐹𝑇𝛽 + 𝑏 = 0 (9) 

The best hyperplane (i.e. largest margin) could be obtained 

by solving  

min
𝛽,𝑏

||𝛽|| (10) 

  𝑠. 𝑡. 𝑦𝑖𝑓(𝐹𝑖) ≥ 1   ∀(𝐹𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑙 

Its Lagrange function could be obtained by taking a positive 

Lagrange multiplier 𝛼𝑖  multiplied by the constraint and 

subtract from Eq. (10). 

𝐿(𝛽, 𝑏, 𝛼) =
𝛽𝑇𝛽

2
−∑ 𝛼𝑖(𝑦𝑖(𝐹𝑖

𝑇𝛽 + 𝑏) − 1)
𝑙

𝑖=1
(11) 

It is computationally simpler to solve a dual quadratic 

programming problem. The dual formulation is given by 

𝑚𝑎𝑥
𝛼

∑ 𝛼𝑖
𝑙

𝑖=1
−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐹𝑖

𝑇𝐹𝑗
𝑙

𝑗=1

𝑙

𝑖=1
(12) 

𝑠. 𝑡. {
∑ 𝛼𝑖𝑦𝑖 = 0

𝑙

𝑖=1

𝛼𝑖 > 0

 

and it is derived by setting the gradient of 𝐿(𝛽, 𝑏, 𝛼) to zero, 

which leads to the following equations  

{
 

 𝛽 =∑ 𝛼𝑖𝑦𝑖𝐹𝑖
𝑙

𝑖=1

0 =∑ 𝛼𝑖𝑦𝑖
𝑙

𝑖=1
    

(13) 

and by substituting Eq. (13) into Eq. (11). 

From the solution of Eq. (12), the hyperplane equation could 

be obtained. Note that sometimes the original data is not 

linear separable, in order to make it linear separable, a 

nonlinear transformation is usually performed on original 

data by use of kernel function. A kernel function 𝐾(𝐹𝑖 , 𝐹𝑗) is 

usually used to replace 𝐹𝑖
𝑇𝐹𝑗, which could transform data into 

the required form. For example, in Fig. 2, there is an original 

dataset 𝑥 = [ −1, 1, −2, 2]  and a linear boundary is not 

feasible if we’d like to separate between [-1, 1] and [-2, 2], 

but they can be separated by 𝑦 = 2 after transformed into a 

dataset 𝑥′ =[1, 1, 4, 4] using transformation 𝑥′ = 𝑥2. There 

are two most commonly used kernels which are gaussian 

kernel and polynomial function kernel. A Gaussian kernel is 

defined as 

 𝐾(𝐹𝑖 , 𝐹𝑗) = 𝑒
−‖𝐹𝑖−𝐹𝑗‖

2

(14) 

Polynomial function kernel is defined as 

 𝐾(𝐹𝑖, 𝐹𝑗) = (1 + 𝐹𝑖
𝑇𝐹𝑗)

𝑝 (15) 

where 𝑝 indicates the order of the polynomial function.  

 

Figure 2. An example of kernel functions. 
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In our case, the input vector of the sample point is 30-

dimensional as illustrated in Eq. (8), which means 𝐹𝑖 ∈ ℝ
30. 

As for the output, 𝑦𝑖 ∈ {1…9}, where represents phase a 

current sensor fault, phase b current sensor fault, phase a 

voltage sensor fault, phase b voltage sensor fault, phase c 

voltage sensor fault, motor angular position sensor fault, 

motor speed sensor fault, vehicle speed sensor fault, and 

normal condition. In order to implement the multi-class SVM 

classifier, a one-vs-the-rest (OVR) strategy is utilized here 

(Hsu & Lin 2002). As a single SVM is a binary classifier, this 

strategy consists in fitting one classifier per class. For each 

classifier, the class is fitted against all the other classes. For 

example, the first classifier outputs phase a sensor fault or 

not, the second classifier outputs phase b sensor fault or not. 

Therefore, there are 9 classifiers in the whole SVM model as 

shown in Fig. 3. 

  

Figure 3. OVR SVM model. 

5. SIMULATION AND RESULTS 

5.1. Simulation Setup 

The PMSM motor and vehicle parameters used in this 

simulation are listed in Table 1. The parameters come from 

the modeling of a typical electric vehicle with a PMSM drive 

system. The sensors’ measurements are simplified as a 

summation of true value and random bias. 

During the simulation, a scheme showed in Table 2 is used to 

implement faults and disturbance, all of which are 

independent and of finite duration. Figure 4 shows the profile 

of the torque reference for the motor controller. The simulator 

injects all the eight faults and the two disturbance events as 

shown in Fig. 5 where values of 1 or 0 indicate that the fault 

disturbance is active or inactive, respectively. 

In order to generate training and testing datasets from the 

simulation, the sampling period is set to 0.0001s. One 

thousand data points are bundled as one set, which means the 

time of each set is 0.1s. Sixty sets collected under different 

fault conditions are used as the training dataset and 15 sets 

are used as the testing dataset. The selected kernel function 

for the SVM classifier is a gaussian kernel. The comparison 

of different kernels is presented in subsection 5.2. An outlier 

fraction is considered as 0.1, which means 10% of the 

training data is regarded as expected outliers. 

 

 

Since sparse representation is time-consuming, and it cannot 

be done within the sampling time for one set of data which is 

0.1s, real-time implementation cannot be done. In order to 

show the detection time in a real-time operating environment, 

data preprocessing for time-series data fault detection is 

implemented. First, during the running of the PMSM drive 

model, all the sensor data are saved with corresponding 

timestamps. Then the sequential data is sliced into multiple 

slices and each slice contains 1000 data points, which has the 

same size as one training set used to train the SVM classifier. 

Finally, all the sliced sequential data is fed into the SVM 

Table 1. Vehicle and motor parameters. 

 

 Parameters Value 

Vehicle 

Mass (𝑀) 2000 kg 

Aero coefficient (𝐶𝑑) 0.295 

Frontal area (𝐴𝑓) 2.295 m2 

Rolling resistance 

coefficient (𝐶𝑓) 

0.015 

Wheel radius (𝑅𝑤) 0.35 m 

Gear ratio (𝐺𝑅) 1.5 

Motor 

Stator resistance (𝑅𝑠) 0.0048 Ω 

q axis inductance (𝐿𝑞) 8.51e-3 H 

d axis inductance (𝐿𝑑) 8.51e-3 H 

Number of poles (𝑃) 6 

Magnetic flux (𝜆𝑚) 0.09145 Wb 

Hysteresis Band (ℎ) 0.1 

Lumped inertia of the 

rotating elements (𝐽) 
0.0258 kg/m2 

Friction coefficient (𝑏) 0.0024  

Others 

Density of air (𝜌𝑎) 1.29 kg/m3 

Acceleration of gravity (𝑔) 9.81 kg/m3 

Road grade (𝛾) 0 

 

Table 2. Injected faults and disturbance. 

 

 Type Duration Value 

Fault 

Phase a current 3 ~ 3.5s +10A 

Phase b current 26 ~ 26.5s -10A 

Phase a voltage 22 ~ 22.5s +10% 

Phase b voltage 30 ~ 30.5s -10% 

Phase c voltage 45 ~ 45.5s +5% 

Rotor position 7 ~ 9s -2deg 

Motor speed 14 ~ 15s  +15rad/s 

Vehicle speed 18 ~ 19s +5% 

Disturbance 
Road grade 6 ~ 13s +2% 

Road grade 20 ~ 28s +3% 
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classifier to determine the highest probability state which is 

faulty conditions or normal conditions. In this conditional 

real-time scenario, the execution time of feature extraction 

and SVM classification is ignored, and only the delay due to 

the sample size is considered. More details about delay time 

are discussed in subsection 5.2. 

 

Figure 4. Torque reference profile for PMSM. 

 

 

Figure 5. Time visualization of fault injection and disturbance 

events. 

5.2. Simulation Results  

First, the dataset from 10 sensor signals is created, which are 

three-phase abc current signals, three-phase abc voltage 

signals, motor angular position signals, motor speed signals, 

vehicle speed signals, and motor torque signals under 8 faulty 

conditions and 1 normal condition. One set of the collected 

phase a current under normal condition and under rotor 

angular position sensor fault are shown in Fig. 6. 

After the dataset is generated, sparse representation is 

implemented to extract features. Features extracted from 

phase a current data under motor speed sensor fault and 

normal conditions are shown in Fig. 7 as an example. The 

values of most small sparse coefficients of the fault signal and 

the normal signal are almost the same, but the difference 

between the large sparse coefficients is obvious. The 

amplitude of large sparse coefficients of fault signals is 

usually higher than them of the normal signal, especially the 

maximum sparse coefficient. Also, the sparse coefficients of 

fault signals always have a larger variance than those of 

normal signals. 

 

Figure 6. Phase a current under normal and faulty condition. 

 

Figure 7. Sparse coefficients for phase a current signal under 

normal and faulty conditions. 

The extracted features are fed into the SVM classifier to get 

the support vectors and hyperplanes. Support vectors are data 

points that are closer to the hyperplane and influence the 

position and orientation of the hyperplane. As there are 30 

features in total, which is high-dimensional data, the overall 

hyperplane cannot be visualized. However, support vectors 

using only 2 predictors could be visualized. As shown in Fig. 

8, the maximum coefficient feature of phase a current and 
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coefficient variance feature of phase a current act as the 

coordinate axes,  where support vectors are circled. 

With minimal processing time, the SVM is able to detect and 

isolate all eight fault conditions from normal operation, 

robust of disturbance. As shown in Table 3, a simple linear 

kernel function only gives 66.67% accuracy on the testing 

dataset, which indicates the data is not linear separable and 

nonlinearity should be included by adopting a Gaussian 

kernel or polynomial function kernel. The best accuracy of 

the training dataset is 100%, which is achieved by a second 

and higher order polynomial kernel function. However, this 

perfect accuracy may result from the overfitting problem due 

to the small training dataset. The decreasing accuracy on the 

test dataset also shows the effect of overfitting. Therefore, the 

Gaussian kernel function is selected with 93.33% accuracy 

on the testing dataset. The testing results prove that the 

features extracted by sparse representations can be used for 

fault diagnosis of PMSM, and the SVM method proposed is 

effective. 

 

Figure 8. Support vectors and sample points for all faulty 

conditions and normal conditions. 

 

An example of conditional real-time implementation is 

shown in Fig. 9. In the given fault injection scheme, a phase 

a current sensor bias fault of +10A is injected at t = 3~3.5s 

and a motor position sensor bias fault of -2° is injected at t = 

7~9s. The values on the ‘Fault’ axis are arbitrary scalars that 

identify the various fault states. In the case of Fig. 9, a fault 

value of ‘1’ indicates the presence of a phase a current sensor 

fault, and ‘2’ indicates the presence of a motor position sensor 

fault. Note that the delay in detection after the fault injection 

event is equal to the size of discrete sample slices used to 

determine the highest probability state, which is 0.1s. As the 

length of the sample slice decreases, so will the detection 

delay. However, there is a practical limit to the minimum 

sample length that can effectively match the features to high-

probability states. 

 

Figure 9. Comparison of actual fault injection timing and 

corresponding detection via pre-processed SVM approach. 

Note in this case, the execution time of sparse representation 

and SVM classification is override because it is found that 

sparse representation is time-consuming and cannot be done 

in real time. Table 4 shows the execution time of sparse 

representation and SVM classification for the first 5 sampling 

set, which is generated using true real-time simulation instead 

of the above-mentioned conditional approach. 

 

As shown in Table. 4, the time interval for each sampling set 

is 0.1s, the execution time of SVM classification is around 

0.003s and the execution time of sparse representation is 

around 6.6s. It shows that SVM classification is fast and can 

Table 3. Results of SVM classifier. 

 

Kernel function 
Accuracy of 

train dataset 

Accuracy of 

test dataset 

Linear 65.00% 66.67% 

Gaussian 98.33% 93.33% 

2nd Polynomial  100% 100% 

3rd Polynomial 100% 93.33% 

4th Polynomial 100% 86.67% 

 

 

Table 4. Execution time of sparse representation and 

SVM classifier. 

 

Sampling set 

(0.1s time 

interval) 

Execution time of 

sparse 

representation 

Execution time of 

SVM 

classification 

1 6.70867s 0.00308s 

2 6.64316s 0.00342s 

3 6.58546s 0.00298s 

4 6.61523s 0.00318s 

5 6.64958s 0.00357s 
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run in real-time but sparse representation needs more than 6s 

to handle data generated in 0.1s. 

5.3. Discussion  

As we see from the simulation results, the proposed SVM 

classifier can achieve a 93.33% accuracy on the collected 

datasets given the torque input shown in Fig. 4. This indicates 

that the SVM is able to learn the characteristics of sensor 

data, detect and isolate the abnormal data. The input torque 

profile is quite simple and becomes constant after 20 s, but 

we believe that this  is an important part of the training data, 

which helps the SVM to better learn the patterns of normal 

data and faulty data. The SVM trained with this simple torque 

profile may not work well if tested against a more complex 

torque profile, because the SVM cannot learn the dynamic 

characteristic of the motor from static inputs. In order to make 

SVM achieve good results also with a complex torque profile, 

it has to be trained with dynamic and complex inputs. Also, a 

deep neural network (DNN) is another option to replace the 

SVM classifier because DNN has more parameters, which 

gives it a stronger ability to learn more complex 

characteristics of the system. 

In this paper, not all the sensor faults are considered. For 

example, the phase c current sensor fault is not considered 

because that phase abc currents belong to the same kind of 

sensor signals. Phase ab currents are used to train the 

classifier and the identification of faulty phase c current can 

be inferred from the relationship between 3 phase currents. 

As for more potential sensor faults, the classifier can be 

trained with an additional class which is “Other faults”. This 

class includes all the different types of faults which have not 

been considered before (i.e. the fault is not assigned with one 

specific faulty label in the training phase) but still result in an 

abnormal performance of the system. In this case, although 

the classifier cannot isolate these faults, it can still detect 

them. 

Training a robust classifier is always a research hotspot in the 

field of machine learning. In this paper, the robustness refers 

to the best threshold which can distinguish between normal 

condition (with noises) and faults under disturbances. The 

duration and magnitude of faults can be determined by 

evaluating the performance of the vehicles, which means to 

find out the minimum duration or magnitude which results in 

a significantly negative effect on vehicles. The threshold in 

SVM refers to the hyperplane (boundary) and a good 

hyperplane is usually selected to maximize the margin 

between two classes. This selection is similar to the optimal 

threshold method which is to minimize the probability of 

false alarms (i.e. false positive rate) and the probability of 

misdetection (i.e. false negative rate). In order to train a 

classifier robust to noises, noisy data should be included in 

the training dataset in order to form a new distribution of data 

with noises. Once there is a slight change of the distribution, 

SVM is able to use the optimization (i.e. Eq. (10)) to generate 

a new hyperplane which considers the noises. In reality, noisy 

normal data may have some overlapping area with faulty data 

and SVM can have a penalty for a hyperplane resulting in 

overlaps. In this way, the hyperplane can be adjusted 

considering the tradeoff between misclassification and false 

alarms, and the tradeoff can be also set manually by 

considering which one is more important.  

6. CONCLUSION 

PMSMs are an important propulsion technology for EVs and 

other high-performance industrial applications. Their 

demanding operating conditions and application-critical use 

require that PMSMs be protected against faults and failures 

in practice. For this reason, a robust fault diagnosis scheme is 

imperative for PMSMs. Inspired by emerging research in the 

application of artificial intelligence for fault diagnosis in 

PMSMs, an SVM based fault diagnosis scheme is proposed 

in this paper. The simulated PMSM system is equipped with 

ten sensors, all of which are utilized to generate training data 

for the SVM classifier. Sparse representation is adopted to 

extract features which are used to identify sensor data as 

normal or one of the eight possible fault conditions. 

Ultimately, the SVM is able to detect the presence of each of 

the eight injected faults in the presence of noise and 

disturbance with 93.33% accuracy. A conditional simulation 

of real-time operation shows that the detection time of fault 

injection is around 0.1s, which is determined by sample size. 

Although the sparse representation seems unable to be done 

in real-time in this case, there should be a possibility to 

increase the computational power or reduce one-time 

computational cost. As future work, more research and 

experimentation are required to shorten the time required for 

sparse representation. Another direction could be looking for 

an alternative feature extraction method which is not time-

consuming. In total, the SVM based fault diagnosis approach 

is still effective. As the complexity of control strategies for 

automotive ECUs increases, so do the advantages of agile 

machine learning methods like SVM for robust fault 

diagnosis. 
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