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ABSTRACT 

Increased capabilities in data storage and exploration provide 

significant insights for quality assurance in a high volume 

manufacturing environment. However, these opportunities 

are associated with great challenges in analytical model 

development, application deployment, system throughput 

and reliability assurance. While no commercial software 

system fully meets the needs of recording head factories in 

Seagate, a novel strategy named optical inspection with 

centralized analysis (OPICA) has been developed to detect 

defects of trailing edges of the recording heads of hard disk 

drives, and fail the parts when necessary.  

Leveraging the robust state-of-the-art artificial intelligence 

technologies, a deep learning based semantic segmentation 

engine is built using convolutional neural networks for 

optical inspection. It has shown an improved accuracy to that 

of visual inspection performed by human. Meanwhile, a high 

performance computation engine has been built as a 

Kubernetes cluster with multiple GPU and CPU units. It is 

able to achieve the target throughput of three million high-

resolution images in each day (i.e., 12 TB image data and 35 

images per second). With the high fidelity offered by a 

Kubernetes cluster, the developed applications (image 

inference engine, preprocessor, postprocessor, etc.) serve as 

containerized microservices independently. Such an 

architecture ensures the vertical and horizontal scalabilities 

according to the computation of each individual deployment, 

while all deployments communicate through an Advanced 

Message Queuing Protocol (AMQP) cluster without human 

interference. This analytic framework enables Industry 4.0 

recording head manufacturing by integrating advanced AI 

technologies with a robust edge computation architecture. 

1. INTRODUCTION 

The exponentially increasing demands of device storage in 

industries such as communications, cloud computation and 

autonomous vehicle provide a unique opportunity for high 

volume hard drive manufacturing (Yang et al., 2017; 

Ramanujam, 2018). As a hard drive manufacturer, the 

assurance of product quality becomes ubiquitously critical 

and challenging due to the boosted productivity on a daily 

base. Therefore, the methodologies and best practices to 

achieve an effective inspection system for high volume 

manufacturing has attracted more and more attention in the 

past decades (Sadeghian, Koster & van den Dool, 2013; 

Bonam al., 2016). As an example, the recording heads factory 

at Seagate requires a peak throughput of approximately three 

million images of the recording heads per day, which greatly 

challenges the traditionally developed metrology and 

analysis.  

In this paper, as no commercial software or system fully 

meets the needs of availability and flexibility, we present the 

development of a novel optical inspection system in a high 

volume smart manufacturing, named optical inspection with 

centralized analysis (OPICA). This system is designed for 

defect detection and classification of trailing edges (TE) of 

the recording heads in hard disk drives (HDDs). For a 

demonstrative purpose, Figure 1 presents two optical TE 

images captured by high-speed cameras, and the dimensions 

of each image are 1591×491×3 in pixel with a size of 

approximate 2.2 MB in bitmap (BMP) format. Figure 1(a) 

refers to a qualified image that is expected to go through next 

inspection/test stage. The image in Figure 1(b), on the other 

hand, presents an image with one type of defect (details of 

defects will be discussed in the later sections). It should be 

noted that the specifications of defects vary in different 

images with one or more defects. More importantly, the 

appearance of defect(s) does not necessarily indicate the 

failure or rejection of the particular image. Instead, the 

decision of rejection or acceptance for an image depends on 

if the specifications of the defect (i.e., types, sizes and 

locations) exceed defined criteria/thresholds. 
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(a) 

 

(b) 

Figure 1. Optical images of TE in recording head including 

(a) accepted image and (b) defected image. 

 

For analyzing the TE optical images, two strategies have been 

considered including rule-based computer vision approaches 

and machine learning based models. Rule-based approach 

generally involves the analysis of image specifications such 

as RGB colors, contrast, sharpness, spatial configurations, 

etc., with the empirical knowledge to make decisions (Khan, 

2014). The machine learning based approach relies on 

building a trainable model to make predictions based on the 

available training examples without empirical knowledge. 

Specially, for analyzing the target high-resolution images, the 

effectiveness of convolutional neural networks (CNNs) has 

been widely proven, since the convolutional filters are 

specially suitable for compressing the information in the 

images (Krizhevsky, Sutskever & Hinton, 2012; Zhang et al., 

2015). However, either rule-based or machine learning based 

approach could not fully meet the mentioned requirement of 

the desired inspection system. First, rule-based inspection 

strategies are limited by the requirement of domain 

knowledge including computer vision, which might not be 

realistic in a factory environment. On the other hand, as the 

evolutions of product and inspection criteria, the machine 

learning models, especially the deep learning based CNNs, 

will consume significant amount of time and labor including 

retraining, hyperparameter tuning, image labelling, model 

validation, etc. In addition, the number of examples with 

defects may not be sufficient for training the model to provide 

decisions with an acceptable accuracy. In order to overcome 

these challenges, the OPICA system is designed to be a 

combination of CNNs model and rule-based classifier. The 

CNN based semantic segmentation model works as a 

computer vision engine. It provides pixel-wise labels for the 

optical images (Moeskops et al., 2016) without making 

predictions for the final decisions (rejection/acceptance). 

Based on the predicted masks, the rule-based algorithm could 

incorporate the defined inspection criteria, and provide the 

predicted decision on each image.  

The next challenge is how to deploy the trained deep learning 

model as a factory tool. A factory workstation could not meet 

the required throughput, while the trained CNN model has 

additional supportive components such as the rule-based 

classifier. It indicates that the inspection system needs 

functional, vertical and horizontal scalabilities (Bernstein, 

2014) in the computation hardware. Moreover, the 

communications between subcomponents of the system 

should be automatic, which requires a robust message 

queuing system (Vinoski, 2006). In order to achieve these, a 

high performance computation engine is built as a 

Kubernetes cluster with multiple GPU and CPU units. In the 

cluster, the concept of application containerization is applied, 

which is a virtualization method used to deploy and execute 

services without launching an entire virtual machine for each 

application (Scheepers, 2014). Therefore, the number of 

replicated applicable pods (i.e., the number of replicas in a 

ReplicaSet) could be scaled for each application based on its 

need of computation power and corresponding hardware 

limitations. With this computation architecture, the 

developed applications such as image segmentation engine, 

preprocessor, postprocessor and rule-base classifier are 

containerized as Docker containers and running as multiple 

microservices independently. Their communications are built 

via a high availability RabbitMQ cluster without human 

interference, which supports the Advanced Message Queuing 

Protocol (AMQP). 

The rest of this paper is organized as follows. Section 2 

introduces the selection and evaluation of the deep learning 

CNNs that used to build the inference engine, followed by a 

discussion of currently achieved model’s accuracy. Then, the 

computation architecture and corresponding deployment 

strategy are introduced in section 3 including the current 

system level throughput. A summary with key observations 

are presented in section 4. 

2. TRAINING AND EVALUATION OF DEEP LEARNING 

MODELS 

This section introduces the detailed investigation on the 

performance of the chosen state-of-the-art CNNs as semantic 

segmentation engines for the defect inspection in TE images. 

Then, leveraging the widely accepted model assessment 

strategy and the demands of the factory, the customized 

evaluation metrics are introduced in details followed by 

corresponding results and observations. 

2.1. Investigation of convolutional neural networks  

CNN based image segmentation has been applied to an 

extensive range of applications and its effectiveness has been 

widely proven (Minaee et al., 2020). An image segmentation 

model generally has two main neural components, encoder 

and decoder. The encoder compresses the input information 

into a latent space, while the decoder decompress the 

information to a defined size with pixel-wise labels. For the 
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application of defect detection, semantic image segmentation 

is a suitable candidate because it provides prediction for each 

pixel with aspects of defect type (Huang, 2018). This research 

considers three widely accepted neural networks in recent 

years to explore their effectiveness on TE defect detection, 

including DeepLab, Mask R-CNN and SegNet. DeepLab 

(Chen et al., 2017) is a hybrid neural network system 

combines deep convolutional nets, atrous convolution and 

fully connected conditional random fields. Based on the 

authors’ observations and the consideration of computation 

efficiency, the CNNs of DeepLab system in this research is 

built based on the ResNet-50 (He et al., 2016). The Mask R-

CNN (He et al., 2017) is an extension of Fast R-CNN 

(Girshick, 2015) with adding the functionality of predicting 

the object mask with a bounding box recognition, which is a 

unique feature in the family of CNN based semantic image 

segmentation. In addition, the SegNet CNN was developed 

by Badrinarayanan, Kendall, and Cipolla, R. (2015), whose 

encoder part was built based on VGG16 (Simonyan & 

Zisserman, 2014). Based on the authors’ recommendation, 

this research implements the first four encoders of VGG16 

network. Meanwhile, Badrinarayanan, Handa & Cipolla 

(2015) reported that the implementation of upsampling 

operation in the decoders, with the maxpooling indices used 

in corresponding encoders, could improve the accuracy of the 

SegNet model. This strategy is applied in this research by 

incorporating customized layers in the CNN model and the 

improvement has been observed. It should be noted that, for 

effectively training these three models, the pre-trained 

weights obtained by the ImageNet through Keras Application 

Programming Interface (API) (Chollet, 2015) are loaded as 

the initial weights of encoders. 

2.2. Design of evaluation metrics  

It is critical to establish a reliable evaluation methodology to 

ensure that the chosen model possesses an optimal 

performance among the introduced models, while its 

accuracy meets the requirement of the recording head factory. 

In this aspect, two evaluation metrics have been designed. 

To compare the performance of the introduced semantic 

segmentation models on the prediction of defects, the F1-

score criterion, as known as dice coefficient, is implemented. 

One of its original formulation can be expressed as: 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (1) 

where the 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are true positive, false positive and 

false negative, respectively. However, it is difficult to apply 

this equation to the current application, because 

1) There are multiple types of defect but this formulation is 

formed as a binary approach (a TE image could has one 

or more types of defects or no defect). 

2) This formulation is limited by the situation that the 𝑇𝑃, 

𝐹𝑃 and 𝐹𝑁 are zeros and the true negative (𝑇𝑁) equals 

to total number of pixels. This situation occurs when 

calculating F1 score for defect classes (“good” pixels 

would be in the negative class), and the image has no 

defect while the model provides a perfect prediction (i.e., 

all pixels are predicted to be “good”). 

 

 

Figure 2. Schematic of workflow to calculate the F1 score 

for image i. 

 

The second issue can be address by setting the F1 score to be 

1 when 𝑇𝑃 , 𝐹𝑃  and 𝐹𝑁  are zeros. To address issue 

associated with multiclass prediction, the F1 score should be 

calculated for each defect (i.e., each output channel of the 

semantic segmentation model). Meanwhile, a cumulative 

calculation scheme is necessary, i.e., the F1 score should be 

calculated based on a dataset that has images with all possible 

types of classes instead of calculated with individual images 

then conducting averaging. Figure 2 shows the evaluation 

workflow for one channel/class of image 𝑖 as an example. It 

is worth mentioning that one of the key steps is to transfer the 

multiclass mask to a binary class based on the target class that 

the F1 score is calculated for. For example, when calculating 

the F1 score for defect type one, all pixels belong to defect 

type one are regarded as positive class, while all others are 

set to be negative class. Therefore, for a selected class, the F1 

score can be calculated as 
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𝐹1𝑐𝑙𝑎𝑠𝑠 =
2∑ 𝑇𝑃𝑛

𝑖=0

2∑ 𝑇𝑃𝑛
𝑖=0 + ∑ 𝐹𝑃𝑛

𝑖=0 + ∑ 𝐹𝑁𝑛
𝑖=0

 (2) 

where 𝑛 refers to the number of images to be evaluated.  

The factory’s inspection standard is, however, the accuracy 

of final decision made by the rule-based classifier using the 

predicted masks. Even the F1 score is convincible in 

comparing different CNN models, it does not necessarily 

indicate that the selected model achieves the same level of 

performance as human. Therefore, a second metric named 

attribute gage (AG) is defined for ensuring the accuracy of 

final decision. To be clear, this evaluation is conducted after 

the completion of CNN model comparison. Since the 

objective of the presented research is to implement the deep 

learning based computer vision instead of the factory labors, 

the set standard is that the AG of the trained model is at least 

equivalent to that of trained human. To design an unbiased 

evaluation, the following steps are taken. First, a test dataset 

is built with evenly distributed images for each class to ensure 

the data balance. Then, a subject matter expert (SME) 

reviews the images and give the decision on rejection or 

acceptance for each image. If a decision were rejection, the 

SME would provide the reason of rejection (i.e., which 

criterion and defect type the decision of rejection are made 

based on). Such aspects are regarded as the ground truth of 

the decision. Following the same procedure, multiple human 

are trained on rejection/acceptance criteria of TE images and 

provide their decisions for the same dataset. Finally, the 

trained CNN model is used to provide a mask for each image, 

and the rule-based classifier provides the decision of rejection 

or acceptance based on the predicted masks. Based on these 

steps, the AG of the developed system can be calculated as 

the percentage of the classifier’s decisions that are agree with 

the ground truth in relation to the total number of made 

decisions. Similarly, the AG of one person is the percentage 

of number of decisions made by this person that are 

consistent with ground truth in relation to the total number of 

made decisions. The final AG of human is the averaged value 

of AGs calculated by each individual. 

2.3. Results and discussion 

2.3.1. Model Comparison 

To compare F1 scores of the trained DeepLab, Mask-RCNN 

and SegNet, a dataset is built with 788 images (563 as 

training images and 252 as test images). There are roughly 

150 and 50 images for each class (six classes in total) in 

training and test sets, respectively. The datasets include one 

“good” class and five different types of defects. The five 

defects include AChipA, AChipB, Contam, Wirebond and 

CopperExp. The models are built and trained using Keras 

API modules with the Tensorflow running at the backend 

(Abadi et al., 2016). The results obtained from the three 

models are listed in Table 1. In order to keep a consistent 

input size, all the images are resized to 224×896×3 before 

fitted into the CNNs. It can be seen that the DeepLab has 

higher F1 score in the “good” class; the three models achieve 

very similar F1 scores of AChipA, AChipB and Contam; 

SegNet’s F1 scores of Wirebond and CopperExp are better 

than those of the other two models’.  

The results suggest that, regardless which model to use, the 

F1 scores of the first four defect types are generally higher 

than CopperExp’s. Based on the analysis of images, it is 

found that the size of CoppeExp are relatively small and its 

color is more likely to be mixed with the background (normal 

features). The demonstrative images are shown in the section 

2.3.2 (Figure 4). Table 1 also concludes that the values of F1 

scores are in the range of those reported in the literature 

(Kumar, 2018; Vuola, Akram & Kannala, 2019; Bertels, 

2019), which indicates that the models are reasonably built 

and trained. Based on the comparison, SegNet is chosen 

because it performs better than the other two models in 

detecting the Wirebond and CopperExp.  

 

 
Models 

Defects 
DeepLab Mask-RCNN Segnet 

Good 0.92 0.82 0.88 

AChipA 0.85 0.86 0.85 

AChipB 0.83 0.83 0.85 

Contam 0.77 0.76 0.79 

Wirebond 0.59 0.71 0.72 

CopperExp 0.46 0.53 0.56 

Table 1. Comparison of F1 score on the test dataset. 

 

2.3.2. Attribute Gage Investigation 

This section introduces the modifications made on the chosen 

SegNet model, which is deployed to the edgeline 

computation environment and used for the AG study reported 

in this paper. For reader’s reference, the detailed training/test 

procedures are also discussed in detail. In the end of this 

section, the AG study of comparing the performance of 

developed model with the factory operators is presented. 

Based on the rejection/acceptance criteria, the AChipA and 

AChipB are two different defects. Their specifications, 

however, are very similar to each other; the only 

distinguishable configuration is that they locate at different 

regions of the recording heads. Therefore, we combine these 

two defects into one, named Chip, to further boost the 

performance of the SegNet model. In this scenario, the 

factory still maintains the two defects separately without any 

interruption, since the rule-based classifier can distinguish 

them easily based on their locations predicted by the semantic 
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segmentation model. The SegNet used for AG study is 

trained and validated with 2117 and 481 images, respectively, 

using a Linux machine with an Nvidia’s GeForce RTX 2080 

Ti GPU. Based on the GPU’s capacity, the batch size is set to 

be four. Before training, a pixel level standardization is 

applied to all the images using the training dataset. Because 

of the multi-class segmentation nature, the loss function is set 

to be the categorical cross-entropy, while the Adam 

methodology is implemented as the optimization scheme. 

 

The initial learning rate is set to be 0.0001. It would be 

reduced by one magnitude if the validation loss were not 

reduced in 5 epochs (the minimal learning rate is set to be 10-

10). In order to avoid overfitting, the early stopping criteria is 

also applied, i.e., the training process would be terminated if 

the validation loss were not reduced in 15 epochs. The 

training and validation losses with respect to the progress of 

epochs are shown in Figure 3. The training process stops after 

96 epochs and the chosen model is achieved at epoch 81. The 

approximate computation time for each epoch is 264 seconds, 

indicating the total time of seven hours. In addition, while the 

F1 score is shown in Table 2, Figure 4 shows representative 

images in validation set including four types of defects with 

their corresponding predicted and ground truth masks. It 

indicates that the predictions possess good agreement with 

the ground truth masks. Checking the image with CopperExp, 

the model possesses an even more reliable prediction than the 

ground truth (marked by engineer): the trained model marks 

the area missed by the engineer on the third top pad. 

 

 

Figure 3. Learning curve of SegNet for AG study. 

 

Figure 4.  Images with four defined defect classes: Chip (blue; refer to chip on the TE), Contam (red; refer to contamination 

on the TE), Wirebond (cyan; refer to connection of two pads on the TE), CopperExp (yellow; refer to expose of copper on 

the TE) and background “good” class (black). 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

6 

To evaluate the AG, a test dataset, also named golden 

standard dataset, is built with 40 images, which contains eight 

images for each class (five classes in total). The trained 

human and SME review these images firstly. Based on the 

introduced method, the averaged AG of the trained human is 

79%. Then, the rule-based classifier analyzes the predicted 

masks obtained from the trained SegNet model to get the 

aspect of rejection and acceptance for each image. 

Comparing with the ground truth from SME, the AG of 

SegNet model is found to be 92.5%. A significant 

improvement is found in the AG of SegNet, which proves the 

robustness of the developed model. The human independency 

of the developed system is one of the factors that lead to the 

premium performance; the accuracy of the system would not 

be impacted by the human fatigue, random mistake and 

personal bias. In addition, the rejection/acceptance criteria 

are easier to be applied by the rule-based classifier than visual 

checking. In more detail, the rule-based classifier is able to 

strictly apply the defined criteria while human can only use 

the “feeling” of the define criterion if there are no optical 

measurement tool available. In addition, it should be noted 

that this research does not necessarily indicate that the trained 

SegNet model is the only/best solution for the current and 

similar applications. The decision of choosing the SegNet 

model is because it meets the set evaluation metrics. 

Moreover, with the high fidelity computation architecture 

introduced in the next section, it is not difficult to update or 

change the current applications if better CNNs are found. 

  

 F1 score 

Good 1.00 

Chip 0.88 

Contam 0.71 

Wirebond 0.74 

CopperExp 0.79 

Table 2. F1 score of the SegNet deployed in the 

computation edgeline. 

Figure 5. A schematic of OPICA system 
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3. COMPUTATION ARCHITECTURE DEVELOPMENT 

Based on the throughput target, laboratorial laptops or 

workstations could not afford the required computation load. 

Therefore, a high performance computation engine is built as 

an edgeline located at the factory. This edgeline contains four 

Nvidia’s Tesla T4 GPU with memory of 16 GB, and 32 Intel 

Xeon D-1587 CPUs are attached to each GPU. In addition, 

three CPU worker nodes are added to the edgeline with 16 

Intel Xeon Gold 6148 CPUs on each node. A Kubernetes 

cluster is built with three master nodes and seven worker 

nodes on the edgeline that are used for cluster level 

management and computation, respectively. As introduced in 

the previous sections, all the applications are containerized as 

microservices using Docker containers and a Docker Trust 

Registry (DTR, which is made of three additional worker 

nodes) on the cluster manages the built Docker images for 

version control. A network file system (NFS) is also attached 

to the cluster as a persistent volume, which is the physical 

storage of necessary files for all applications including the 

Docker images. Figure 5 shows a schematic of the developed 

system, and the next two subsections will discuss the detailed 

configurations. 

3.1. Inference Services 

This section focuses on the details of inference services that 

are key components for optical image analysis, referring to 

the pre/post processors, inference servers (i.e., Tensorflow 

services) and rule-based classifiers. These applications are 

programmed using Python, and the messages used for 

microservices’ communication are in JSON format. The 

information flow is as follows.  

The pre/post processors obtained the saved directory of each 

image by consuming the corresponding message in the 

RabbitMQ server. Then, they read the images from the 

persistent volume (or any servers where the images are 

hosted) into the designated memory, and conduct necessary 

preprocessing including resizing and standardization. The 

preprocessed information will be sent to the inference 

servers, which are built by the trained SegNet model with the 

Tensorflow serving scheme (known as a gRPC service). After 

the pre/post processors receive the predicted results from the 

inference server as softmax channels, they will conduct 

argmax operations and write the predicted masks into the 

persistent volume. Then, a message including the path to the 

saved masks will be sent back to another queue in the 

RabbitMQ server. On the other side, the rule-based classifiers 

listen to this message queue, and consume the incoming 

messages instantaneously. With the directories of masks, the 

classifiers will read the masks into the memory, and apply the 

defined aspects of rejection/acceptance to each mask based 

on the location, type and size of the defects if any. The 

decisions of rejection or acceptance for the images will be 

sent back to a queue in the RabbitMQ server so that the 

factory can analyze the information easily. 

In the current architecture, the inference servers are the only 

applications running on the GPUs under the supports of 

Tensorflow and Nvidia’s CuDNN toolkits; other applications 

are running on the CPU worker nodes. Due to one trained 

CNN model occupies almost the entire memory of a GPU, 

the current edgeline system could afford at most four services 

running in parallel. However, the computation of pre/post 

processors are always intensive requiring more than four 

replicas in the CPU nodes. To optimize the utilization of the 

computation resource, a load balancer (Bowman-Amuah, 

2003) is implemented as the connection mechanism between 

the pre/post processors and inference servers. Specifically, 

the load balancer evenly distributes the computation load 

from the pre/post processors to the running Tensorflow 

severs to avoid overwhelming a single GPU. 

3.2. Other Supportive services 

To enable a seamless connection between the developed 

system and factory’s hardware, other supportive services are 

also essential. In this section, two main supportive systems 

are briefly discussed including the information distributor 

(named as OPICA Bridge) and the factory system (named as 

OPICA Dashboard) (see Figure 5). 

The OPICA Dashboard is a web-based tool that informs the 

OPICA edgeline system for any new inspection requests. 

Once a series of recording heads scanned by the optical 

cameras, a unique name will be assigned to each optical 

image. The optical images will be then saved to either the 

NFS storage or a HTTPS server. Other important functions 

of the OPICA Dashboard include dataset management and 

model version control. With a scheduled human review 

strategy (i.e., human will review a certain proportion of the 

inspected images), the dashboard is able to visualize the 

accuracy of the current deployed inspection system. 

Moreover, operators and engineers can visualize specific 

images with predictions made by the SegNet model and rule-

based classifier. For the images with relatively poor 

prediction accuracies, reviewers are able to provide 

annotations using the dashboard, and these images and their 

corresponding annotated masks (i.e., ground truth) will be 

reserved for the next round of model training or tuning. 

The OPICA Bridge is a group of applications developed for 

processing the information from the factory then distributing 

corresponding messages to the RabbitMQ server. It acts as a 

“bridge” between the factory system and computation 

edgeline. More specifically, the OPICA Bridge builds 

messages with image locations, parameters for rule-based 

classifications, SegNet model names and versions, system 

status and recording head identification numbers based on the 

information sent by the factory system. Such messages are in 

a format that could be consumed by the pre/post processors 

directly. Another function of the bridge is to gather the 

predicted decision by the rule-based classifier for each image. 

It then sends this information to the factory so that the images 
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and their corresponding predictions are able to be visualized 

in the factory system. It also acts as a “security guardian”: it 

checks the information from both sides (factory system and 

computation edgeline), and informs engineers if anything in 

the message is found to be inappropriate such as missing 

attributes and wrong formats. In such a way, unnecessary 

system level interruption can be effectively avoided. 

3.3. System Throughput 

The current microservice architecture is built based on the 

system level deployment trials and experimentations. In order 

to maximize the system level throughput, four inference 

serving pods are deployed (one pod per GPU). For readers’ 

reference, a pod is generally known as a Kubernetes smallest 

deployable unit. The pre/post processing is found to be the 

most resource consuming applications on the CPUs, and 32 

replicas are deployed to the cluster’s CPU worker nodes. In 

addition, the number of replicas of rule-based classifier is set 

to be eight. It should be noted that the OPICA Bridge is 

running on the Kubernetes cluster as well. Each of its 

application possesses up to eight replicas, since these 

applications are not computational intense. A dataset with 

615,000 images is used to evaluate the throughput of the 

entire developed OPICA system with an end-to-end system 

level throughput test. The current highest throughput that the 

system can achieve is approximate 36.7 images per second. 

It indicates the current system can afford a daily throughput 

of approximately 3.2 million high-resolution optical images 

per day, which is well aligned with the set throughput target. 

4. CONCLUSION 

This paper presents the development of OPICA system for 

TE defect inspection in recording head factories at Seagate. 

Two main topics are discussed including the investigation of 

CNN models and the deployment of the trained model to a 

Kubernetes cluster. First, in order to achieve a deep learning 

model with an acceptable accuracy, three state-of-the-art 

CNN based semantic segmentation models have been 

evaluated with specifically designed F1 score formulation. 

The selected model, SegNet, is then qualified by an AG study 

and shows an improved performance to the trained human, 

which fully meets the objectives of deep learning model 

development. Second, a Kubernetes cluster is built as a high-

performance computation engine to enable high speed and 

high fidelity inspection including a message queuing system 

(AMQP supported). The current throughput is found to be 

36.7 images per second, which meets the expected system 

peak throughput (three million images per day, i.e., 35 images 

per second).  

The presented research is expected to be a useful reference 

for developing and deploying deep learning models for high- 

volume smart manufacturing. The designed evaluation 

metrics are examples of aligning deep learning model 

assessment with factory’s manufacturing standard. In 

addition, the computation edgeline shows promising ability 

to handle the massive information generated by the high 

volume manufacturing environment. The developed system 

has been launched to the recording head factory and it is 

currently under production level validation. Meanwhile, 

RabbitMQ configuration and CPU allocations are under 

further optimization, which show promising in further 

boosting the system level throughput. 
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