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ABSTRACT 

A scalable Digital Fleet Management System can be 

leveraged by organizations with high-volume high-value 

assets. In such scenarios, predictive analytics for tool health 

becomes central, as it enables decision-making in terms of 

planning, maintenance, end-of-life replacement, tool 

selection, etc. An end-to-end solution spans all the way from 

gathering live tool data to visual representations of tool 

health. 

Long-term fleet management can be accomplished through a 

consistent evaluation of the fleet performance profile. 

Predictive analysis can anticipate maintenance needs and 

resultant downtimes, and in turn it helps improve scheduling 

of procurement and distribution of the fleet.  

Overall, such a framework can be divided into two focus 

areas: framework deployment; sustenance and algorithm 

development. The former area focuses on all the topics 

related to developing an end-to-end solution architecture, 

scaling and deploying it on demand, and maintaining it going 

forward. The later area focuses on defining risk index, 

developing Machine Learning (ML) algorithms for different 

tools, defining a single comparison metric and deciding on 

when to trigger the automated re-training for each tool. This 

paper focuses on raising and solving all key questions for 

building such a framework. 

1. INTRODUCTION 

Fleet management systems are about managing a fleet of 

thousands of downhole tools based on tool health condition 

and other variables – a common use case in Oil & Gas 

Services. Fleet Management continues to have its relevance 

in an organization’s competitive business growth as it 

facilitates cost and time savings (Alsyouf, 2012). The impact 

of unplanned downtime in case of industries like Oil & Gas 

(Moir, Niculita & Milligan, 2018) is significant, as it leads to 

production outage and in turn revenue loss. The increased 

availability of monitoring data can be exploited to build data-

driven applications that can increase the productivity by 

efficient fleet maintenance. The maintenance and failure 

histories of the tools combine to form a weighty source for 

predicting the failure probabilities. Facilitating the flow of 

large data through a structured and automated channel 

enables fast and reliable identification of impending failures, 

eliminating the human-errors, bias and assumptions. The 

state-of-the-art technologies of Machine Learning, Cloud 

Computing and Big Data are ramping up the possibilities of 

efficient fleet maintenance. 

In this paper, an end-to-end automated scalable cloud 

framework is described in detail, which integrates failure 

prediction models for each asset in the large fleet of tools. 

Based on historical tool data, the models generate tool risk 

indices (one index per asset) which correlate to the 

probability of tool failure during near-future field jobs. These 

risk indices can be used for optimal asset-to-job mapping. 

They also help in de-risking field operations by identifying 

tools for overhaul or retirement. The proposed method 

integrates the tasks of fetching data from 200,000+ tools, 

performing feature engineering, modeling via ML, and 

visualizing into a cloud pipeline. Framework scalability 

becomes a key requirement as fleet size increases or 

decreases over time to match market demands. The 

framework also allows for the easy addition of new ML 

models to the platform by citizen data scientists, who are not 

cloud experts. Finally, it is shown how this framework 

Sherin Thomas et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

2 

 

provides systematic steps for sustenance of such large cloud 

platform. 

Before we start getting into details of the framework, let us 

try to raise all the questions which we must solve through this 

framework.  

1. What should be a generic architecture of such a 

deployment and sustenance framework, that can 

• Automatically scale up and down on demand 

• Show all the activities and issues in real time 

• Be configurable without code 

2. How to enable easy and stable onboarding of any 

new tool model by data scientists to the framework 

3. How to store final output keeping in mind that 

• The final output data can be huge 

• Easy integration with visualization tool is a key 

factor 

• Requirement for inbuilt role level access 

management 

Questions related to the algorithm development side of the 

framework are: 

1. How to define and interpret the Tool Risk Index 

2. For a given tool, how to compare various 

algorithm’s prediction accuracies (with different 

output scale) to select one 

3. How to compare predictions and model training 

across different tool families 

4. How and when to trigger the auto model re-training 

for any tool 

  

Any large-scale fleet management system should provide a 

clear answer to both the above group of questions at various 

stage of project life cycle from development, to production/ 

commercialization and finally to sustenance. The framework 

proposed in this paper tries to answer all these questions and 

covers all the critical components an organization would need 

to build such a large-scale framework. 

2. RELATED WORK 

Fleet Management has its past rich with several researches to 

develop dynamically scalable, distributed and fully 

automated systems that can enable timely information 

gathering, knowledge sharing and maintenance scheduling. 

Variants of maintenance strategies are subjected to different 

studies in the past, including corrective, time-based, 

condition based (Kothamasu, Huang & VerDuin, 2006) and 

predictive maintenance.  The predictive process is defined to 

have steps including preprocessing, fault prognosis and post-

action prognosis (Lee, Lapira., Bagheri, & Kao, 2013).   To 

deliver these functionalities of predictive systems, cloud-

based frameworks were developed for different industries, 

delivering PHM as a service (Lee, Yang, Lapira, Kao & Yen, 

2013, Mounir, Guo, Panchal, Mohamed, AbouSayed & 

Abou-Sayed, 2018). Apiletti, Barberis, Cerquitelli, Macii, 

Macii, Poncino and Ventura (2018) proposed a similar 

architecture in Industry 4.0, utilizing the distributed cloud 

services. A framework based on Amazon Web Services 

(AWS) was developed by (Mahmud, Iqbal & Doctor, 2016) 

to facilitate big data analysis and data visualization in health-

shock prediction.  

In the approach proposed in this paper, the big data analytics 

capabilities (Mohammadpoor & Torabi, 2018) are leveraged 

by integrating them with Google cloud services, which 

provides a flexible, low-cost and secure framework for 

predictive analysis and visualization.  Data-driven 

approaches employing pattern recognition and machine 

learning (Schwabacher & Goebel, 2007) are integrated to the 

cloud framework for predicting a risk factor for each of the 

tools. The complex computational tasks on big data are 

delivered using the cloud computing platform (Ji, Li, Qiu, 

Awada, & Li, 2012), by choosing the optimal infrastructure 

and services. This framework provides the advantage of 

spinning up and down resources dynamically on demand, 

depending on various factors like data volume, cost of 

operation, complexity, time, etc. It also ensures the reliability 

and security of the system, by using the minimal standard 

cloud services. The proposed pipeline enables the use of 

predefined variants of machine learning technologies in 

cloud (Pop, 2016) along with custom made models. Almost 

all the large scale PHM papers focus only on the cloud and 

distributed computing, while the problem specific PHM/ ML 

papers focuses on the problem formulation and solution. This 

paper provides a novel framework which covers both the 

aspects of building such a large complex system, irrespective 

of the underlining technology, cloud/ computing vendor, 

Machine Leaning algorithms. We also provide an equivalent 

solution with respect to the suggested framework using 

Google Cloud Platform, but a similar solution can be 

developed with any of the major cloud providers today. We 

not only provide a framework, but also define the individuals 

and components that are needed in the overall framework 

covering everyone from Subject Matter Expert (SME), Data 

Scientists, Cloud Engineers to the IT support. 

3. PROPOSED METHOD 

To address and solve all the questions raised from framework 

deployment and sustenance side, we present a high-level 

architecture diagram for an end-to-end Digital Fleet 

Management System. Let us first analyze how the platform 

interacts with each of the main outside entities. 

The Project Data Pond gets continuous data from the 

organization’s Data Lake through a standard ingestion/ 

subscription method. The data ingestion/ subscription is 

usually handled at the organization level and not at the 

project/team level through a separate dedicated Data 

Platform team. 
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The Data Scientist having read-only access to the project 

data pond pulls the data for the tool which he/she needs to 

develop the machine learning model for. Once they have 

explored and developed the Machine Learning model for one 

tool, they package their code as separate training, validation 

and testing module. This code is then pushed to the project 

code repository. 

The Platform Sustenance Engineer, schedule and monitors 

the platform jobs, using the framework orchestration/ 

monitoring platform. Unless there are major component or 

flow changes required, platform should be configurable just 

by simple parameter updates.  

 

The End User/ Product, depending on the permission level 

should be able to consume the data through RESTful API. 

This ensures the smooth integration across all time of data 

consumers, like any visualization tools, web application, 

mobile application, etc. 

 

3.1. Platform Architecture 

The proposed architecture in Figure 1 shows the components 

required to build the platform. The organization can choose 

to deploy it on their on-premises infrastructure, on cloud 

platform, or can choose to go with a hybrid setting. For our 

fleet management platform, we decided to deploy the above 

architecture on Google Cloud Platform, one of the leading 

cloud platform vendors. Figure 2 shows the equivalent 

architecture diagram for our platform.  

 

3.1.1. Tool Family Level Model Images with CI/ CD 

This component is required for two main reasons. First, it lets 

the Data Scientists to add their ML models to the framework 

without much knowledge of cloud and actual architecture. 

Second, this is required for submitting the individual model 

training, validation and testing for all tools to run on demand 

in parallel. Once the data scientists have developed the  

 

model, all they need to do is package the different code 

modules for training, testing and validation into a predefined 

structure and commit to the central project code repository. 

After the code is pushed and the approver approves the merge 

to the main branch of the project Repo, the Cloud Build runs 

the standard basic test cases. Once the test cases are passed 

the Cloud Build builds the model Docker container image and 

saves it to the Google Container Registry. The advantage of 

running a model in a container is increased portability of the 

model, instead of restricting our Data Science team from 

selecting specific tools or technology limited by our platform. 

The models in containers are easily deployable to multiple 

different platforms including different hardware, operating 

systems, with flexible sets of software packages defined in 

the containers. 

3.1.2. On Demand Big Data ETL 

Once the data is ingested into the Project Data Pond which 

can have global schema at the organization level, what is 

required is to separate the data for each tool for the Machine 

Learning tasks. This is the place where most of the common 

big data extract, transform and load (ETL) operations takes 

place. This component is brought up on daily scheduled hour 

for big data segregation and preprocessing and is brought 

down after that. This can be Google DataFlow in case of 

almost real time data ETL or can be Google Dataproc for 

more Batch ETL. As we are running our tool risk index 

prediction pipeline only once a day, we choose to go with 

Dataproc here. 

3.1.3. On Demand ML Training 

Depending on the orchestration platform setting if required 

the training and validation model images for different tools 

are pulled out and scheduled in parallel for all these tools on 

AI platform. At the same time for all the remaining tools, the 

prediction images are also scheduled in parallel on cloud AI 

platform. All of these training, validation and prediction jobs 

are run as a separate job on Cloud AI Platform and we are 

just charged for the amount of hours we run these jobs. 

So we do not own or manage the compute machine, we just 

Figure 1. High Level Architecture 

 

Figure 2. Platform Architecture on GCP 
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submit the jobs, gets the results and pay only for the compute 

duration. Apart from on demand pay as we use jobs, these AI 

platforms are highly scalable to run many parallel jobs at 

once. 

3.1.4. Output Storage and Visualization 

Finally, the output of the validation and prediction jobs on AI 

Platform are pushed onto the Google Big Query. We store the 

tool level risk index, features used for modelling, other 

important tools level details and the validation score of each 

training job in Big Query. Whereas all this information can 

be used by any end product or user by simple REST call, 

provided they are authenticated for the data, the validation 

job score is further used by orchestration platform to decide 

on whether any tool family needs re-training on not. 

 

Figure 3. Tool hierarchy 

3.1.5. Workflow Orchestration 

In order to manage the entire workflow, we use an 

orchestration tool that can, with minimal code or 

configuration, schedule the tasks and provides a rich 

interface, allowing the administrator to visualize, monitor 

and troubleshoot tasks. We use Google Cloud Composer 

(build on top of Apache Airflow) for this purpose. With its 

cross-platform support, it manages the entire process 

orchestration, coordination and provide an inbuilt monitoring 

web application, which not only provides the real time job/ 

platform status, but also keeps history of all past jobs. 

3.2. Fleet Modeling 

Once we have built an end-to-end scalable framework like 

described above with the help of cloud or infrastructure team, 

we are just halfway done for the job. The most important task 

now is to systematically on board the massive asset fleet of 

the organization on to the platform. And if we provided one 

tool family per data scientist, given the size of our fleet, it 

would take us years to onboard all the tools. This is where it 

becomes important for any organization to break down and 

define the tool modelling steps as given next. 

3.2.1. Tool Hierarchy 

As shown in left side of Figure 3, usually individual assets 

belong to an asset code family. Based on type of job/ 

measurement (nuclear, resistivity, induction, etc.) performed 

by each asset family, they are combined into different Tool 

families. 

A lot of times there is only a minor difference between 

various asset code families, like a tool revision. Hence, we 

can combine various asset code families into a broader group 

called Model families, so that we can model them together 

using Machine Learning, as shown in right side of Figure 3.  

Though most of the times it is at model family level where 

we would deploy each of the Machine Learning model, but 

based on the fleet properties, it can differ and can be at other 

levels as well. 

 

Figure 4. Arrhenius hours calculation 

For our fleet of 2,000,000 individual tools, on an average 

400-500 tool were present at an asset code level and 5-10 

asset codes were combined at a model family level. 

3.2.2. Job Aggregation vs No Aggregation 

Now at a model family level we must again decide whether 

the tools show the failure trends on an individual tool level or 

not. For all the model families which do not show the trends 

at individual tool level, we should go back to our SME and 

understand how we can aggregate the individual tools data 

for failure trends.  

For modelling the former type model families, each tool job 

acts as one data point for the training algorithm, whereas for 

modelling the later type of model families, each bucket of the 

aggregator index act as one data point. For example, 

Arrhenius equivalent hours (Laidler, 1984) is one of the most 

common aggregator indices. So, in this case, first we compute 

the Arrhenius equivalent hours spent by a tool in each job. 

Then we must fix the bucket bin size, as a hyper parameter, 

to aggregate all the tool jobs in the bin as one data point for 

the modelling algorithm. This kind of model family level 

aggregation becomes even more important for the tools 

which have a smaller number of failures, and these failures 

are mostly related to long term aggregated tool history. 
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We calculate the Arrhenius equivalent hours by splitting 

tool’s operating time into 3 sections, as shown in Figure 4. 

The first section shows a rise in temperature, the second 

section has a constant temperature equal to the Bore Hole 

Temperature (BHT) and the final section shows a drop in the 

temperature back to the initial one.  

 
𝑡𝑠𝑝𝑒𝑛𝑡 =  𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 . 𝐴𝐹 (1) 

where AF is the Acceleration Factor determined as, 

 
𝐴𝐹 =  𝑒

𝐸𝑎
ℎ

(
1

𝑇𝑟𝑒𝑓
−

1
𝑇𝑜

)
 

(2) 

where 𝐸𝑎 is the activation energy (𝑒𝑉), h is the Boltzmann’s 

constant (8.617343×10-5 𝑒𝑉/°𝐾 ), 𝑇𝑟𝑒𝑓  is the reference 

temperature (e.g., 150℃ for some tool families) in Kelvin and 

𝑇𝑜is the operating temperature in Kelvin. 

 

Figure 5. Smoothing failure probabilities using cubic spline 

interpolation to eliminate outliers 

We sample the temperature at equal intervals, with the 

distribution as in Figure 4, and calculate the total Arrhenius 

equivalent hours spent by the tool, in each of the three 

sections. 

 

The overall idea is to model the trend of the tool failures. 

Though every sub sample of tools might give the same failure 

probability trend, but the failure actual values might differ at 

the subset level. For this kind of issues, we restore to learning 

the average (or peak) failure trend, rather than the actual 

failure trend. The values are interpolated using Linear/Cubic 

Spline interpolation methods as shown in Figure 5. 

3.2.3. Tool Risk Index 

One of the most important decisions is the definition of Risk 

Index based on how we want to use/interpret this risk index. 

While exactly interpreting the risk index as the probability of 

the tool failure would greatly reduce the tool modelling 

approaches, a more general approach is to use the risk index 

to rank the tools in the order of its failure probability. The 

former one should be called the Tool Risk Probability, while 

the later one must be called the Tool Risk Index.  

We decided to go with Tool Risk Index, as almost every time 

modelling the exact tool risk probability was not possible 

with the data in hand, but in general tool ranking was still 

possible to good levels. Eventually we all must move from 

Tool Risk Index to Tool Risk Probability, but this would 

mostly be driven by how well we capture the data for every 

tool in the fleet. 

3.2.4. Model Validation Metric 

The actual data with such a system log is tool failure 

information and by default each job can either be in healthy 

or failed state, which makes this a binary class data. We can 

choose to aggregate each job, say at weekly level, and find 

the ratio of number of failure jobs to total number of jobs, 

making it more like a regression data problem. Also, based 

on the problem formulation, different error metrics would be 

more appropriate. For such a wide and complex range of tool 

families the Data Scientist should be free to formulate this 

problem anyway possible and we must select a metric which 

not just gives us a way to compare different models for same 

tool family but also a way to compare models for different 

tool families. We must look for a metric which overall gives 

a higher risk index to risky tools and lower risk index to the 

healthy tools. This metric should be more focused on the 

mistake we do by giving higher risk index to a healthy tool or 

other way around; i.e., absolute values are not as important 

as their relative values. This is where the idea of using the 

Swap Ratio as a model quality metric comes into 

consideration.  

For testing of models, we define a testing window, and take 

all the data before this window as the training data. The data 

scientists are free to choose any modelling approach and the 

models for the training data, and then we compare the models 

using the status of the first job in the testing window. A higher 

risk index should imply a failure job and a lower risk index 

imply the normal healthy job. 

In Figure 6, let’s say we have N tools, for each tool gray dot 

is healthy job, colored (blue, read & green) dot is a failed job. 

Blue is failed job in training window, red is first failed job in 

testing window and green is any failed job afterwards in or 

outside the testing window. For validation or testing, the job 

of interest is first job in testing window, if it is red, the tool 

failed in the first testing job and if it is gray, the tool was 

healthy in first testing job. In Figure 6, T3, T4, T6 are the 

failure tools and T1, T2, T5 are the healthy tools. A good 

model would provide higher risk index to T3, T4, T6 and 

lower risk index to T1, T2, T5. So, for 3 failed and 3 healthy  
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Figure 6. Train and test data split 

tool jobs above we have 9 pairs, {(T3, T1), (T3, T2), (T3, 

T5), (T2, T1) … (T6, T5)}. We count the pairs which have 

higher risk index for the healthy jobs as we want to have least 

of these pairs.  The ratio of these pairs to total pairs is called 

the Swap ratio, as these are the number of swaps the Tool 

Risk index must do to achieve the perfect model. We can use 

this as the testing and validation metric. 

We use an advanced version of Swap Ratio defined above, 

called C-Statistics (Austin et al., 2012). With the expectation 

that the probability prediction for failed jobs should be 

greater than normal jobs, we get the count of jobs which are 

concordant, discordant or tie, with this assumption. We 

calculate an index value known as the c-index, which can 

evaluate the discriminatory performance of the model as, 

 
𝑐 − 𝑖𝑛𝑑𝑒𝑥 =   

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠+0.5×𝑡𝑖𝑒

𝐴𝑙𝑙 𝑝𝑎𝑖𝑟𝑠
  (3) 

 

This concordance static is equal to the area under the 

Receiver Operating Characteristic (ROC) curve, with the 

values ranging from 0.5 to 1, where 1 indicates perfect 

discrimination and 0.5 corresponds to a model with no 

discrimination ability.  This approach saves the need to fix 

arbitrary threshold values for classifying a prediction as 

failure or not, as it varies with use cases. Also, the c-statistics 

method considers all thresholds, as it is same as the area 

under the ROC curve. This approach is useful when there is 

no trade-off between the false positives and false negatives. 

3.2.5. Model Re-training 

For each model deployed to the framework, we keep track of 

Swap Ratios and C-statistics for each month. When the Data 

Scientists deploy the model for any model family, they are 

also providing the lower bound on the mean and the upper 

bound on the variance of these metric which should trigger 

the model re-training job for this model family on the 

platform. Usually the Data Scientist comes up with these 

values based on cross-validation on training data and 

confirms them with the SME for this model family. These 

metrics are available to the Sustenance Engineer and the 

Subject Matter Experts to keep updating in a timely manner 

based on the model performance and feedback from the 

actual field users. Based on the user feedbacks they can 

decide to go for the parameter re-adjustment or for a complete 

re-modelling for any model family. 

4. EXPERIMENTAL RESULTS 

The proposed architecture was implemented and tested for 

various tool families including electric power cartridges, 

Gamma Ray Neutron Sondes, Telemetry cartridges, Pump 

out modules, etc. The data was segregated and preprocessed 

to obtain desirable features as input vectors for each model 

families. Features including job information like BHT per 

job, pressure, density, failure details and maintenance records 

were utilized for modeling based on the tool characteristics. 

Various feature engineering techniques were experimented 

for each family, including dimensionality reduction, 

sampling and other custom-made features. Machine Learning 

models like Random Forest, SVM, Gradient Boost, Linear 

Regression, etc., were deployed for different tool families.  

Each of these models were validated with the data over a 

specified time period and resulted in C-index values in the 

range of 0.8-0.9 on an average. The framework keeps track 

of the validation results for each month and this can be 

evaluated to decide on the need for model re-training based 

on expert opinions. 

5. FRAMEWORK ESTIMATES 

The Project team can further optimize the above framework 

in terms of development time and running time/ cost. Based 

on cost/ time requirements: 

1. The platform can be scheduled to run on daily to 

monthly basis. For most of our model families, we 

run predictions once per day. 

2. The ETL Engine (DataProc in our case) can run 

multiple small instances or a single large instance. 

3. The tool ML training jobs are all submitted in 

parallel or can be combined by the code requirement 

level (like Python, R, Octave, etc., at higher level to 

the individual package requirements at lower level). 

The entire framework can be developed in three parallel 

phases, which all play equal part in the success of the 

platform 

1. Software Engineering team working on developing 

and setting up the cloud/on premises platform. 

2. Product Owners working with end users (reliability 

engineer, job planners, etc.) for usability features to 

be included in the visualization tool. 

3. Asset Experts working with Data Scientist to 

classify the tools and develop the ML models for 

each one of them.  
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The next step for such a system would be to move from daily 

to near real time predictions, where along with tool daily job 

history, we also analyze the real time tool sensor data. 

Though the training architecture for such a framework would 

exactly be the same, there would be changes in the prediction 

architecture. Along with Big Data ETL Engine we would also 

need a Streaming Analytics Engine (Example for GCP would 

be Cloud IoT Core with Dataflow).  

6. CONCLUSION  

For organizations with a very large fleet of assets, building a 

Digital Fleet Management Platform is a first major step 

towards data driven PHM. This demands deep technical 

expertise in multiple areas, like ML, Asset Level Domain 

Knowledge, Digital Infrastructure and Cloud offerings.  

This paper provides guidelines on how to build a cost-

effective framework with fast response times, plus secure and 

reliable operations to avoid unscheduled downtime with 

systematic fleet maintenance policies. We developed a 

generic framework that scales automatically with demand, 

monitors the activities continuously with easy configurations 

for tool onboarding, output storage and visualization. We also 

defined a risk assessment factor for the tool families that can 

be used to compare different tools based on a common metric. 

These tool-to-tool comparisons are scheduled on regular 

intervals within this framework to ensure minimal tool 

failures during jobs.   

NOMENCLATURE 

ML           Machine Learning 

AI             Artificial Intelligence  

AWS         Amazon Web Services 

REST        Representational State Transfer 

API    Application Programming Interface 

SQL          Structured Query Language  

BHT          Bore Hole Temperature 

eV    Electron-volt 

ROC    Receiver Operating Characteristic 

ETL    Extract, Transform, Load 

SME    Subject Matter Expert 

SVM    Support Vector Machine 

IoT    Internet of Things 

GCP    Google Cloud Platform 

CI    Continuous Integration 

CD            Continuous Deployment 

PHM    Prognostics and Health Management 

IoT    Internet of Things 
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