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ABSTRACT

In recent years, Deep Learning (DL) and Internet of Things
(IoT) technologies have been used and deployed jointly to
solve a wide range of modern technical challenges in dif-
ferent areas. With the continuous advancement of IoT con-
nectivity solutions, the range of applications that can benefit
from such an increase is limitless. One area that can ben-
efit significantly from the combined strength of DL and IoT
technologies is Machine Health Monitoring (MHM) Systems.
MHM utilizes different analytical approaches and tools to de-
termine the state and health of different components in run-
ning machinery leading to end-to-end prognosis. One cru-
cial fact is that features learned by Deep Neural Networks
(DNN) are part of a large black box, and there are valuable
underlying physical meanings embedded within the features.
Hence, there is an exciting research area which explores un-
derlying mechanisms and interpret physical meanings within
DNN. In this paper, learning mechanisms are evaluated us-
ing different models: stacked autoencoders (SAE), and con-
volutional neural networks (CNN). Results indicate that the
autoencoder networks failed to regenerate discriminative rep-
resentation of input signals without pre-processing. On the
other side, the outputs of both the convolutional and activa-
tion layers in CNN showed clear distinction between different
classes which led to substantial improvement in classification
accuracy.

1. INTRODUCTION

The introduction of Industry 4.0 has revolutionized traditional
manufacturing paradigm leading to smart manufacturing and
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digital transformation. In smart manufacturing, physical de-
vices can communicate wirelessly creating Internet of Things
(IoT) network. As a result, unprecedented volumes of data
are continuously generated leading to a pressing need for an
efficient analytical tools to transform the data into insight-
ful information. Prior to the introduction of Industry 4.0, a
form of IoT already existed in both discrete manufacturing
and process industry plants. ANSI/ISA-95 standard refer-
ence model (Fig. 1) shows that the process industry achieves
a nearly fully automated production process. However, ex-
isting ANSI/ISA-95 based infrastructure lacks the intercon-
nection between lower and high level functionality. Hence,
advanced data analytics techniques have been utilized exten-
sively to empower autonomous interconnection between dif-
ferent layers and introduce data where it is needed, when it is
needed and in the form it is needed.

Figure 1. ANSI/ ISA 95 reference model

Considering Machine Health Monitoring (MHM) as the main
case study in this paper, digital transformation has influenced
MHM techniques drastically. Machine Health monitoring
(MHM) is critical for all manufacturing industries because of
its potential in cost reduction, and improving reliability and
safety. Traditional MHM systems relied on setting control
limits on different sensory data i.e. vibration and temperature
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readings, and once the measured variables cross those limits
the machine is sent for maintenance causing unplanned shut-
downs and production delays. It is true that outlier sensory
data prevents machine complete damage; however, there is
nothing much can be done post failure and usually production
interruption can not be avoided. Data driven approaches were
utilized to develop prognosis capabilities and predict machine
failures well before occurrence (Zhao et al., 2019). Data
driven techniques combines handcrafted features engineering
with shallow machine learning algorithms to predict the re-
maining useful life for machines. Logistic regression and
support vector machines were amongst wide range of tech-
niques utilized for data mining (Muralidharan & Sugumaran,
2012; Widodo & Yang, 2007); however, manual features ex-
traction requires significant time and expertise and usually
performed by data scientists. In manufacturing environment,
hiring data scientists for MHM sounds not practical and re-
quires lot of resources. Deep learning techniques has the po-
tential to automate MHM pipeline by building deep networks
that extract abstract representation from input data. Current
deep learning research emphasis targets the development of
end-to-end scheme which automatically learns feature from
raw data and predict machines future failures and remain-
ing useful life. One important fact is that features learned by
Deep Neural Networks (DNN) are part of a large black box
and there are valuable underlying physical meanings embed-
ded within the features (L. Zhang et al., 2019). Hence, there
is an interesting research area to explore underlying mecha-
nisms and interpret physical meanings within DNN.

DNNs have proven feature extraction capabilities in fault di-
agnosis and classification applications (Mohammad & Al-
Ani, 2018). Also, it is so important to optimize the
DNN structure to obtain a compact and powerful DNN
scheme (Mohammad, Rattani, & Derakhshani, 2018). It is
usually challenging to explain underlying mechanisms that
lead to such outstanding performance because of the diffi-
culty to track sensory data flow through large number of
deep layers in presence of nonlinear operators. Heydarzadeh
et. al. stated that nonlinear sigmoid mapping complicates
the understanding of deep layers of an autoencoder DNN
(Heydarzadeh et al., 2019). On the other hand, it was stated
that the first hidden layer behaves similar to FIR filter; hence
visualization task of the first hidden layer was quite sim-
ple. Zhang et. al. attempted to visualize features learned by
CNN first layer by plotting filter kernels along with their fre-
quency transformation and the results showed few sinusoidal
decompositions (W. Zhang, Peng, Li, Chen, & Zhang, 2017).
Another research article also investigated the understating of
CNN deep layers in addition the first layer (Jia, Lei, Lu, &
Xing, 2018). The results also indicated that the kernels in
the first convolutional layer behave like a set of band-pass fil-
ters while the kernels in the second convolutional layer rep-
resents a set of more complex filters. It was noted that previ-

ous literature emphasized on understanding well tuned DNNs
which achieves more than 90% classification accuracy. In this
paper, learning mechanisms from the Case Western Reserve
University (CWRU) bearing dataset are evaluated consider-
ing stacked autoencoders (SAE), and convolutional neural
networks (CNN). For those networks, classification accuracy
varies drastically and the learning mechanisms are compared
in view of classification performance.

2. DATASET DESCRIPTION

CWRU bearing dataset was used in this paper (Smith & Ran-
dall, 2015). Total number of 12 failure classes were consid-
ered as shown in Table 1 and the collected data was sampled
at 12 kHz rate. The dataset included different component fail-
ures and failures of the same class but with different severity
level. For training and feature extraction purpose, a matrix
is created combining samples from all datasets. Consider-
ing 800 datapoints (rows), the shortest dataset yields 150 ob-
servations (columns) and this number is considered for each
class regardless of the length of the original dataset. The
dataset for each is partitioned between training and testing
sets: 100 samples for training and 50 for testing (for each
class) which yields 1200 observations for training and 600
observations for testing (for all classes).

Class label Operating condition Fault diameter [in] Orientation Dataset length Defect frequency [Hz]

1 Normal 0 - 243200 -

2 Ball fault 0.007 - 122400 132

3 0.014 - 121600

4 0.021 - 121600

5 Inner race fault 0.007 - 120800 161.8

6 0.021 - 121600

7 0.028 - 120800

8 Outer race fault 0.007 Vertical @ 3 121600 107.7

9 0.007 Center @ 6 121600

10 0.014 Center @ 6 121600

11 0.021 Vertical @ 3 121600

12 0.021 Center @ 6 122400

Table 1. Bearing dataset description

As shown in table 1, each class represents a separate operat-
ing condition. Hence, each time series contains data points
corresponding to a unique operating condition and there is no
overlap between operating conditions during different peri-
ods of the same time series. For this reason, data was propor-
tioned between training and testing for each class such that
initial 100 observations are for training and the latter 50 for
testing.

3. PROPOSED METHOD

Figure 2 shows the overall of the suggested workflow which
consists of three main stages namely, data preparation, 2D
convolutional neural network and deep auto-encoder neural
network.
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Figure 2. Visualization workflow

3.1. Data Preparation

Initially, each observation data was normalized using min-
max normalization as shown in Equation (1). Then, the data
was shuffled, expanded (for 2D CNN only) and divided into
two subsets training and testing with 66.6% and 33.3%, re-
spectively.

Pnormi =
Pi −min(P )

max(P )−min(P )
(1)

3.2. Stacked Autoencoders Neural Network

Autoencoder (AE) is an unsupervised neural network which
learns feature using three layers architecture: input, hidden
layer (composed from encoder and decoder) and the output
layers. The encoder transforms the input x into hidden repre-
sentation h using nonlinear mapping:

h = f(Wx+b) (2)

where f is a nonlinear activation function. By doing so, au-
toencoder learns abstract representation from the input. The
next step is to decode the hidden representation using de-
coders. A decoder maps the hidden representation back to
the original data:

z = f(Ŵx + b̂) (3)

AEs are trained in an unsupervised manner to minimize the
reconstruction error between z and x by adjusting the model
parameters: θ = [W, Ŵ, b, b̂] Autoencoders can be stacked
to learn higher-level representation forming a deep network.
Stacking of layers is accomplished by feeding the output of
layer n to the input of layer n+1 and the training is done for
each layer separately. This step is usually referred as pre-
training of a DNN. Pretraining of DNN initializes the model
weights and then the supervised training is performed to fine
tune the model. Regression layer / softmax layer is usually
added at the end of AE model to map the last AE output to
the targets. The network (AEs+softmax layer) is then trained
in a supervised manner utilizing labeled training data to min-
imize the model prediction error.

Figure 3 shows the suggested structure of deep auto-encoder
which consists of seven layers. The first and last layers are the

input and output layers of size 800 × 1 (matches the input
size). The other five layers (layer 2 through 6) are the fully
connected layers (Multi-layer perceptron (MLP)). The MLP
layers have sizes of 128, 64, 32, 64 and 128 which were
designed after a large scale evaluation. Besides, adadelta op-
timizer was used to train this network. This optimizer used
a dynamical adaptive algorithm to achieve a stochastic gradi-
ent descent. Also, this learning method shows a robustness
against the noisy gradient information(Zeiler, 2012).

Figure 3. Stack auto-encoder structure

3.3. Convolutional Neural Networks

CNN has more complicated structure than a Multi-Layer Per-
ceptron (MLP). It has convolutioal layers, pooling layers, and
full connected layers. The process of CNN forward propaga-
tion follows below steps (Li, Hu, Li, & Zheng, 2020)

z1 = ReLU(x ∗ ω1 + b1)

conv1 = pool(z1)

...
zi = ReLU(convi−1 ∗ ωi + bi)

convi = pool(zi)

h1 = ReLU(convi ∗ ωconv1 + bconv1)

y = softmax(ωconv2 ∗ h1 + bconv2)

(4)

Where x, y are the input and output vectors, respectively.
ReLU is the rectified linear unit activation function.zi is the
ith convolutional layer matrix. * is the convolutional opera-
tion. pool refers to the pooling operation. ω and bi are the
weight matrix and bias vectors. convi is the convolutional
layer after applying the pooling operation. hi is a hidden
layer. In each training iteration, the back propagation algo-
rithm minimizes the loss function and updates both ω and bi.

Figure 4 shows the proposed structure for the CNN. The first
layer is the input layer which receives the input signal that
contains 800 data points. The first convolutional layer is com-
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posed of 2D convolutional layer (layer 2) and ReLU activa-
tion layer (layer 3) and it applies 64 filters on each input sig-
nal. The max pooling layer (layer 4) basically squeezes the
data from previous layers by calculating the largest value with
a window size of 50. The second and third convolutional lay-
ers run 16 filters and are composed of layers 5,6,7 and 8.

Figure 4. CNN structure

4. RESULTS AND DISCUSSION

4.1. Auto-encoder evaluation results

Figure 5 shows an AUC of 0.7574 and EER of 0.3003 (30.03)
were obtained. AE performance was evaluated in the litera-
ture considering different model structures and it was shown
that data preprocessing is required to boost the AE classifi-
cation accuracy (Alabsi, Liao, & Nabulsi, 2020; Hou, Wen,
& Dong, 2017; Haidong, Hongkai, Xingqiu, & Shuaipeng,
2018). However, the scope of this paper is not focused on im-
proving classification accuracy but rather understanding and
evaluation of learning mechanisms. Hence, the classifier is
evaluated without further data preprocessing and it will be
considered for future investigation.

Figure 5. Receiver Operating Curve of autoencoder classifier

Figure 6. CNN classifier confusion matrix

4.2. CNN evaluation results

Figures 6 and 7 present the CNN-based classifier perfor-
mance using confusion matrix and ROC curves for each class.
The overall accuracy is 97.5% and almost all classes obtained
100% except for classes 2,3 and 4. Those three classes cor-
respond to same fault (ball fault) with different severity, it
is clear from Table 1 that the severity level is very close
which led to similarities in the fault signatures between those
classes.

Figure 7. ROC curves for each class

4.3. Autoencoder visualization results

Neural Network (NN) models are usually treated as black
box. One way to understand the feature extraction process
is through quantitative analysis of weight matrices (kernels in
case of CNNs) (Jia et al., 2018; Wang et al., 2018). However,
the novelty of this paper is to study activations and emphasize
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the importance of studying the reconstructed signal and relate
that to classification accuracy. Figure 8 shows the output sig-
nals for the first two layers of the proposed auto-encoder neu-
ral network. The similarity between classes is so high and this
is due to the fact that MLP-01 and MLP-02 outputs is show-
ing the activation. Hence, if the signal is corrupted with noise
or if the SNR is low the network fails to learn key features
from different classes.

4.4. CNN visualization results

Classification accuracy is studied in view of layers 2 and 3
visualization. Figure 9 shows one sample from each class
(left column), the average signal visualization after applying
64 filters in the second layer (middle column), and the third
layer activation (right column). It is clear that signals that be-
long to classes 5,6,8,9 and 12 show clear fault impulses while
it is hard to infer interpretation from other signals. The sec-
ond layer applies 64 filters and the average signal is presented
in the middle, it is clear that an impulsive patterns are noticed
in classes 2,3,4 and 7 which were not noticed prior to apply-
ing filtering in the second layer. After applying the ReLU
activation, it can be seen that only impulses are present in all
signals with minimal noise and those signatures represent key
features extracted from layers 2 and 3. However, activations
from classes 2,3 and 4 do not show clear impulses compared
to other classes and closer look to deeper layer is needed.

Figures 10 and 11 show visualization of the CNN 8 layers
considering classes 2 and 12, respectively. As mentioned
before, layers 2 and 3 apply filters and calculate activations
however, the max pooling layer with a window size of 50 re-
duces the input dimension from 400 data point into 8. It is
clear that the size reduction in class 12 retained the impulses
characteristics after max pooling and all subsequent layers.
However, the pattern looks more complicated for class 2 and
the max pooling did not retain major characteristics. Hence,
the reduced classification accuracy for class 2 may be influ-
enced by the max pooling window size. Decreasing the win-
dow size gradually would preserve the content of the original
signal and lead to better classification accuracy.

5. CONCLUSION

This paper presented learning mechanisms of different NN
models. The results indicated that the autoencoder networks
failed to regenerate discriminative representation of input sig-
nals without pre-processing. Hence, the poor reconstruction
performance by the autoencoder network resulted in degraded
classification accuracy (Li, Zhang, & Ding, 2019). On the
other side, the outputs of both the convolutional and activa-
tion layers in CNN showed clear distinction between differ-
ent classes which led to substantial improvement in classi-
fication accuracy. Care should be taken while choosing the
max pooling layer dimensions since it was shown that sig-

nificant reduction might result in loosing key features in dif-
ferent classes. The approach described herein provides a di-
rect approach to investigate NN classification accuracy using
MLPs, convolutional and activation layers outputs. For fu-
ture work, a cascaded neural network will be implemented
for multiple deep auto-encoder and convolutional neural net-
works to achieve a robust scheme for unlabeled data with
powerful classification and visualization performance.
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Figure 8. Auto-Encoder visualization for first and second layer

Figure 9. Convolutional Neural Network visualization for first and second layer
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Figure 10. CNN layers visualization for class 2

Figure 11. CNN layers visualization for class 12
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