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ABSTRACT 

Attempts to leverage operational time-series data in 
Condition Based Maintenance (CBM) approaches to 
optimize the life cycle management and Reliability, 
Availability, and Maintainability (RAM) of military vehicles 
have encountered several obstacles over decades of data 
collection. These obstacles have beset similar approaches on 
civilian ground vehicles, as well as on aircraft and other 
complex systems. Analysis of operational data is critical 
because it represents a continuous recording of the state of 
the system. Applying rudimentary data analytics to 
operational data can provide insights like fuel usage patterns 
or observed reliability of one vehicle or even a fleet. 
Monitoring trends and analyzing patterns in this data over 
time, however, can provide insight into the health of a 
vehicle, a complex system, or a fleet, predicting mean time to 
failure or compiling logistic or life cycle needs. Such High-
Performance Data Analytics (HPDA) on operational time-
series datasets has been historically difficult due to the large 
amount of data gathered from vehicle sensors, the lack of 
association between clusters observed in the data and failures 
or unscheduled maintenance events, and the deficiency of 
unsupervised learning techniques for time-series data. We 
present a method of discovering patterns in vehicle 
operational data that determines models for predicting the 
likelihood of imminent failure, referred to as Parameter-
Based Indicators (PBIs). Our method is a data-driven 
approach that uses both time-series and relational 

maintenance data. This hybrid approach combines both 
supervised and unsupervised machine learning and data 
analytic techniques to correlate labeled maintenance event 
data with unlabeled operational time-series data utilizing the 
DoD High Performance Computing (HPC) capabilities at the 
U.S. Army Engineer Research and Development Center. In 
leveraging both time-series and relational data, we hope to 
demonstrate a means of fast, purely data-driven model 
creation that is more broadly applicable and requires less a 
priori information than physics informed, data-driven 
models. By blending these approaches, this system will be 
able to relate some lifecycle management goals through the 
workflow to generate specific PBIs that will predict failures 
or highlight appropriate areas of concern in individual or 
collective vehicle histories. 

1. OVERVIEW OF THE HYBRID LEARNING APPROACH 

Data analytics and machine learning are applied to vehicles 
and complex systems in several disciplines to prognosticate 
remaining useful life, assess system health, and to inform 
decision makers of a wide variety of life-cycle relevant facts. 
Event driven and sensor data has been collected for years if 
not decades, from some platforms. This data can be used to 
both provide a repository of knowledge regarding system 
history and state, and to inform life cycle and operational 
needs such as availability, maintenance, sustainment, 
logistics, and acquisition. These ideas have evolved, as the 
data collected has become broader and deeper in terms of 
scope, to reflect a more real-time stance by leveraging 
insights gained.  
 
U.S. Army ground vehicle operational sensor data has been 
collected for several ground vehicle platforms over a period 
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of roughly eight years. In total, it represents approximately 
seven Terabytes of searchable data that is growing with time 
and due to the expansion of the program. A wide array of 
values is collected every second the vehicle is powered on by 
a Controller Area Network (CAN bus) system. Beyond basic 
error code recording that the CAN bus system is typically 
deployed to monitor, this system collects and stores all of the 
temperature, pressure, level, RPM, and other types of data 
gathered by the CAN bus sensors, placing the values, one row 
per second, into a compressed daily file. Time stamped rows 
consist of startup, one Hertz, and fault data, representing 
startup and normal operation modes as well as CAN bus 
recognized faults. Several levels of sensor, component, and 
vehicle metadata are also recorded into each daily file. Data 
collected in the daily files for each vehicle is then 
downloaded from the vehicle and uploaded to a storage 
filesystem, and converted to a database ingestion friendly 
format. The files are ingested into one database that reflects 
the original data, and another in which the values are cleaned 
and imputed, along with aggregative augmentation, as part of 
the ingestion process. In this way, we protect the data 
provenance of our analytic workflows while harnessing the 
speed of database ingestion for data cleaning. 
 
Currently, the database represents over one million days of 
operation across several vehicle types and consumes five 
Terabytes for raw files and seven Terabytes each for the two 
databases. The database is stored on a dedicated system, 
separate from the computation nodes. A virtual machine, 
running on a third system, runs the server that processes 
queries to fill dataframes for the model creation workflows 
running on compute nodes. In this way, we optimize access 
to HPC machine learning model creation processing for all of 
the data. 
 
Physics informed linear models have been used to 
successfully demonstrate prognostication of health-related 
events for vehicles by means of estimating operational 
parameters and comparing the expected to the observed 
values. Such methods are created as a result of an observed 
relationship, such as that between revolutions per minute and 
oil pressure in vehicle sensor data, and have demonstrated a 
high degree of success in predicting the occurrence of certain 
faults that lead to maintenance events (Vogl, Weiss, and 
Helu, 2019). 
 
Given the size and scope of vehicle operational sensor data, 
such relationships are difficult to discern without a priori 
knowledge of an exploitable relationship like the oil pressure 
predicted value model mentioned above. Our research asks 
what will be required to leverage the processing and memory 
of DoD High Performance Computing (HPC) with data 
analytics and Machine Learning (ML) in order to find many 
other, more general Parameter-Based Indicators (PBIs)? 
 

The nature of the time-series operational sensor data and the 
dimension reduction and cluster analysis techniques used to 
identify normal and abnormal operational intervals is detailed 
in section 2.1. We discuss HPDA techniques for process 
monitoring, manifold creation for comparison of data, and 
identification of normal and abnormal operating regimes. 
This portion of the workflow establishes a spectrum of 
operating regime related parameter ranges that will help 
identify healthy operation while identifying the intervals of 
operation where parameters were not all within the healthy 
spectra. Groups of parameters that vary from their 
counterparts within healthy identified clusters will be 
identified for later investigation as candidates for new PBIs, 
indicating possible maintenance or fault occurrence is likely 
based on received, streamed operational data. 
 
Sections 2.2, 2.3, and 2.4 discuss the application of more 
mainstream ML techniques to the time-series data. Because 
fault data occurs within the time series data, alongside 
healthy operation data, some ML models target identification 
of parameters that predict fault occurrence within the data. 
These scenarios can both identify parameter ranges and 
regimes that are outside healthy ranges and identify 
parameter functions that can predict likely fault occurrence, 
as identified within the streamed operational data. These 
models can go further, however, to assist in identifying 
intervals of operation that should be considered healthy or not 
healthy and may also predict some maintenance events. 
 
Where faults and cluster results can be correlated with 
identified parameter patterns, the problem becomes how to 
label them given the text-based nature of maintenance event 
label entry. Section 2.5 discusses a partial solution to this 
uncertainty. Text-based labels, entered by maintenance 
personnel at the time of accomplishment, are inconsistent as 
represented in the maintenance data and so are transformed 
to vector space representation for clustering and 
classification. In this way, a significant subset of maintenance 
event labels is consistently labeled for time-wise correlation 
with the identified but unlabeled outside-normal operation 
parameter subsets. 
 
Despite some of the uncertainties identified in section 2, these 
techniques are combined into a hybrid workflow. Techniques 
for dealing with uncertainties in correlating maintenance 
events with identified faults and vice-versa are discussed. A 
workflow is established that leverages the established 
relationships from these sections, allowing creation of novel 
PBIs based on questions from users of ground vehicle data 
that translate to queries of the relational maintenance data. In 
this way, we broaden the scope of PBI creation over the 
physics-based approach by reducing the need for a priori 
knowledge to create models, generalizing the technique to a 
significantly faster, data-driven approach. 
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2. THE HYBRID MODEL WORKFLOW 

The Hybrid Model is a workflow that begins by combining 
elements of machine learning and process monitoring with 
manifold learning and cluster analysis to detect anomalous 
patterns in streaming parameters. These patterns are 
essentially subsets of the set of sensor inputs plus 
aggregations of them.  Together, these patterns correlate well 
with future occurrences of fault conditions being reported by 
each vehicle’s Controller Area Network bus (CAN bus) 
system or with logged maintenance events as reported in the 
log data. These candidate Parameter-Based Indicators 
(CPBIs) need labels to be useful as indicators of current and 
future possible, specific conditions. Labels are derived from 
time-wise correlation between CPBIs and maintenance logs. 
 
Maintenance descriptions are manually entered text, so the 
description of the same event, repeated at different times over 
different vehicles can vary significantly. To standardize their 
label set, events in the maintenance log database have been 
vectorized and the vectorized events classified. In this way, a 
significant portion of the comprehensive set of maintenance 
events can be labelled consistently. Each event can then be 
analyzed for time intervals and vehicle identification 
numbers of occurrence. In this way, we establish a somewhat 
reliable subset of maintenance events. 
 
Uncertainty in vehicle log data may be erroneous for a few 
reasons in addition to text entry problems. Maintenance 
events are sometimes initiated when no fault exists or the 
fault that does exist does not match the event, resulting in a 
miss in the correlation calculation below. Simply put, the 
following may be true and will confound the correlative 
process:  

1) Maintenance events might be ineffective at 
repairing the fault, such as replacing a battery 
when the problem is another component.  

2) Faults may not match with a maintenance event 
because no maintenance event was initiated. 
This can happen because of redundancies or 
intermittency issues preventing the fault from 
exhibiting sufficient symptoms to be 
discovered.  

Either situation, in addition to misclassification of log entries 
by the vectorization process, results in a miss in terms of the 
correlation calculation and a lowering of the confidence in 
the candidate PBI.  
 
The set of unlabeled, candidate PBIs are established 
separately through several means detailed below. Any one 
from the set may be analyzed based on time intervals and the 
Vehicle Identification Number (VIN) of each occurrence. 
Correlating a PBI with a label, then, involves achieving a 
correlation threshold computed by taking the number of 
matches over the number of matches plus misses as defined 
below. Matches are defined on a per element basis. Elements 

of the set of candidate PBI occurrences fall within a threshold 
value IMatch, defined below. IMatch is the difference between 
the time stamp of the fault (TEvent) and the time at which the 
maintenance event was recorded (TCBPI) for a particular 
vehicle.  
 

           𝐼!"#$% 	= 	𝑇&'()# 	−	𝑇*+,-                       (1) 
 
In equation (1), the fault’s time stamp must precede the 
maintenance event, so only positive values of IMatch will be 
considered. The VIN must match as well. Then for each 
element of the set of CPBIs, this threshold is used to evaluate 
the pair as a match (M) or miss (m). Matched candidate 
PBI/Event pairs, then, are those in which a fault occurred 
within a specified time interval of a following maintenance 
event performed on the same vehicle. The correlation of the 
set of CPBIs and the set of maintenance events, across VINs, 
can then be evaluated as a ratio of the matches and misses 
within the sets. 
 
                      𝐶 = 	𝑀#.#"/

(𝑀#.#"/ +	𝑚#.#"/),                      (2) 
 
Correlation (C) is defined by Eq. (2) as the total number of 
elements within the two sets which fall within the defined 
interval, IMatch, with matching VIN, divided by the total 
matches (𝑀#.#"/) plus the sum of the unmatched items from 
both the maintenance event set and the candidate PBI set 
(𝑚#.#"/ ). Defining thresholds for the correlation and 
matching interval can then be set by using the existing time-
series data to test the candidate PBI. These values can then be 
manipulated to yield appropriate certainty levels as defined 
by existing PBI models, such as the oil pressure model. In 
this way, the loop is closed and we establish dataset level 
values for these thresholds. 
 
2.1.  Anomaly Detection 
For Army ground vehicles, faults are considered to be an 
unallowed deviation of one or more parameters of the vehicle 
system (or subsystems). These deviations from the vehicle’s 
regular operation can lead to substandard vehicle 
performance or even vehicle failure. Process monitoring 
techniques can be used to detect a malfunction in the system, 
isolate the malfunction's location, and identify the severity of 
the malfunction. This information can then be used to 
mitigate the fault before a failure occurs, reducing failures 
and maintenance down time. 
The goal of this section is to develop parameter-based 
indicators in support of fault detection, isolation, and 
identification. The development of these indicators relies 
heavily on the detection of anomalous operational data. Due 
to the high-dimensional, interconnected parametric (sensor) 
data collected from Army ground vehicles, manually defining 
baseline operational data is inefficient and can fail to capture 
subsystem dependencies.  Many traditional process 
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monitoring techniques are additionally ill-suited to the high 
number of parameters in vehicle systems and subsystems 
(Schimert, 2008). The solution to this dilemma is to use 
unsupervised learning techniques designed to 
programmatically detect a correlation between systems and 
sensors and find a lower-dimensional structure in the data 
(manifold learning). By using dimension reduction, 
clustering, and process monitoring techniques, normal and 
abnormal operating conditions can be established and 
evaluated for faults. With this data, the visualization of trends 
can be made apparent through the use of charts. This work 
took chart visualization one step further and developed a 
monitoring graph where the abnormal operations are 
superimposed upon the normal operation graph. 
Identification of parameter-based anomalies is possible, and 
these anomalies can lead to faults and failures. Due to the 
nature of the sensor dataset, it is inherently multivariate, and 
work must be done to obtain a reduced set of variables to 
determine abnormal behavior (Jelali, 2013). 
 
2.1.1. Unsupervised Learning Methods for Determining 
Normal and Abnormal Operating Conditions 
Unsupervised learning is a type of machine learning 
algorithm that is used to make inferences from datasets 
without using labeled response variables. These methods are 
particularly useful when the goal of the algorithm is to detect 
patterns in a dataset that may have been previously 
undetected without substantial human supervision. 
Unsupervised learning methods are necessary for condition-
based maintenance on ground vehicles due to the vast amount 
of unlabeled data as well as disparities in the knowledge of 
normal and abnormal operating conditions. 
Traditionally, normal operation can be considered to be data 
that is collected on dates where no faults occur. This method 
is problematic in a variety of ways, most of which is that 
changes in the data that might predict faults that often occur 
well before the fault alert is triggered. In addition to this, the 
predefined fault alerts may not encompass all of the vehicle’s 
possible malfunctions. Therefore, to determine the normal 
and abnormal operation of the vehicle, first, an unsupervised 
dimension reduction technique is used to identify a lower-
dimensional subspace of the dataset. Then a clustering 
algorithm can be used to identify clusters in the lower-
dimensional subspace (Jelali, 2013). A clustering algorithm 
can also be used to group similar structures that can be 
correlated time-wise to the predefined faults recorded over 
time. Data that is not correlated time-wise with the predefined 
faults can then be analyzed further and compared to 
maintenance logs to determine whether each cluster of data 
can be labeled as a normal operating condition or as data that 
leads to a fault not previously logged. 
In this effort, Independent Component Analysis (ICA) is used 
to create the lower-dimensional subspace of the sensor data. 
ICA is a linear dimension reduction method, traditionally 
used in signal processing, that transforms the dataset into 

columns of independent components. The goal of ICA is to 
reduce the dimensions of the dataset by identifying and 
projecting the data into a new space that maximizes the 
statistical independence of the dataset while preserving the 
essential structure of the data. Similar to Principal 
Component Analysis (PCA), this technique removes 
correlations in the dataset, but unlike PCA, this method also 
removes higher-order dependencies. Many ICA algorithms 
use PCA to whiten (preprocess) the data. For preliminary 
results, the scikit-learn package FastICA (Pedregosa, 
Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, 
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, 
Cournapeau, Brucher, Perrot & Duchesnay, 2011) was used. 
Once ICA is implemented, clusters can be found using 
clustering algorithms. The most widely used algorithm for 
clustering is K-means clustering. This method aims to 
partition data into a user-defined number of clusters. The 
allocation of data into clusters is based on the similarity of 
the data to the center (or mean) of any given cluster. 
Preliminary results have shown that, while k-means is an 
effective method for small amounts of data, the method does 
not scale well to the large amount of data collected for 
vehicles. Therefore, the Facebook AI similarity search 
algorithm (FAISS) is used (Johnson, J., Douze, M., and Jegou, 
H., 2017). The advantages of FAISS are that it 

• provides several similarity search methods 
• is optimized for memory usage and speed 
• offers a GPU implementation (Johnson et al.) 

The goal of the FAISS algorithm is that, given the number of 
clusters from a user, the algorithm uses a quantizer to allocate 
each vector (row of the dataset obtained from ICA) to a 
cluster based on the similarity of the vector to that cluster in 
a computationally efficient manner. Once each row of the 
dataset is assigned to a cluster, the fault data can be correlated 
to clusters time-wise. The groups of clusters that contain 
faults can be labeled as abnormal operating conditions.  
Clusters that are not correlated time-wise with the predefined 
faults are then assumed to be a normal operating condition. 
 
2.1.3. Dynamic Process Monitoring 
As previously stated, the US Army ground vehicle sensor 
data represents a myriad of interconnected and interrelated 
sensors that help maintainers diagnose and troubleshoot 
faults. US Army engineers and analysts also use this data to 
help understand trends for the entire ground vehicle 
fleet. Most of this sensor data is in a form that can be digested 
easily; however, a significant portion of the data is noisy, 
imperfect, and highly variable. After preprocessing the data, 
it is in a form that allows for further exploration of newly 
detected trends. These trends are readily observable in 
historical data, and they can be correlated to maintenance 
events occurring. Often, these trends also can be detected 
multiple days before the actual corresponding fault, which 
aids in automated efforts of the detection of Parameter Based 
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Indicators (PBIs). This section explores abnormal historical 
operating conditions further using a supervised learning 
classification model and then further explored the creation of 
dynamic alerts. 

 
A critical part of process monitoring is obtaining an empirical 
model of the system’s normal operating condition, subsystem, 
or sensor to be monitored. One sensor of interest on ground 
vehicles is the engine oil pressure. For example, to create a 
model for the normal operating condition of this sensor based 
on the other sensors in the dataset, statistically significant 
outliers from the normal dataset should first be removed, 
Then an XGBoost Regressor (Chen & Guestrin, 2016) model 
can be trained to predict the normal operation of the engine 
oil pressure using the gradient boosted trees algorithm, a 
supervised learning method based on function approximation. 
The algorithm is trained by optimizing the objective 
functions over several iterations, t,  
 
              𝐿(#) = ∑ 𝑙(𝑦2 , 𝑦22

(#34) + 𝑓#(𝑥2) + ℘(𝑓#)))
254           (3) 

 
where y is the real values, 𝑦2 is the predicted value, ℘	is a 
complexity penalizing term, f corresponds to a tree structure, 
and l is the differentiable loss function (Chen & Guestrin, 
2016). XGBoost is used due to its efficiency and the highly 
scalable nature of the algorithm. 
 

  
Figure 1. Predicted engine oil pressure from model (blue) 

and the actual, recorded values of the oil pressure (red). The 
data is scaled using the scikit learn standard scalar. 

 
From here, data can be projected onto the normal engine oil 
pressure model to identify anomalies. Points that lie well 
outside the normal model’s prediction can be flagged as alerts 
to when the oil pressure is outside of the bounds of normal 
operation based on the readings from the other sensors. This 
model is a way to programmatically create dynamic Upper 
Control Limits (UCL) and Lower Control Limits (LCL) for 
the sensor. Dynamic UCL and LCL for sensors of interest will 
provide an avenue for future efforts on automating the 
detection of potential faults. The efforts listed in this section 

play a part in a combined effort to determine additional CIs, 
which will be used as a metric for vehicle health and fault 
prediction. 

2.2. Fault Detection and Isolation 

Early fault detection is critical to mitigate unnecessary 
maintenance, facilitate precise logistical maneuvers, reduce 
vehicle downtime, and increase system health and 
availability. These predictive models are often physics-based 
and heavily rely on the expertise of a subject matter expert to 
understand each component’s underlying physics. Physics-
based models can be proven beneficial when observing a few 
components. However, in a multivariate scenario with greater 
than 50 channels, feature reduction and developing physics-
based models for each channel can be time-consuming and 
susceptible to error. Further, physics informed models 
require some a priori system information that extends 
development time and reduces generalization in model 
creation. In this section, a supervised learning model provides 
a novel approach to fault detection (Dai & Zhao, 2013).  The 
preliminary results indicate that artificial neural network 
models, namely Long Short-Term Memory (LSTM) models, 
provide promising fault detection capabilities for highly 
dimensional data observed over millions of samples. 
 
The vehicle’s operational behaviors, as presented in the 1Hz 
dataset, coupled with the observed fault data for that 
particular vehicle over the same timeframe, provided the 
framework to design a supervised learning model for 
enhanced fault prediction. We hope to identify a significant 
number of fault conditions and component failures before 
they occur, increasing the mission capability and cost 
savings. Logistical and maintenance decisions will also 
benefit from insights provided by these models. 

2.2.1. Long Short-Term Memory Model 

Artificial neural networks (ANNs) are a subset of the 
supervised machine learning discipline and can process 
operational data, outputting fault detection and prediction 
(Helbing & Ritter, 2018). Univariate regression models find 
functional correlations in the form of coefficients from the 
input data as an assumed linear relationship (Park, El-
Sharkawi, Marks, Atlas, & Damborg, 1991). However, 
ANNs utilize regression techniques as well as non-linear 
functionality to model future behaviors of components.  
 
This research effort explores the application of a multivariate 
Long Short-Term Memory (LSTM) model as a data-driven 
approach for multivariate topology under an immense sample 
size of more than a million samples per vehicle. LSTMs 
employ deep-learning, artificial recurrent neural network 
techniques (Fu, Huang, Qin, Liang, & Yang, 2018). 
Deployed on preliminary data, the LSTM model observed 
multiple channels of sensor data and provided fault detection 
and diagnosis. The detection levels identify whether the 
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operating conditions could classify as normal operating 
conditions, represented with a value of 0. Values significantly 
higher than 0 indicate some level of fault status. The LSTM 
model further identified the type of numerical fault code that 
the system would encounter. A fault code is a list of 
numerical identifiers that range from 0 to 30, which correlate 
to a particular failure or error for a component within the 
vehicle system. 
The LSTM model, through a series of network layers shown 
in Figure 1, provided the capability to distinguish normal 
operational behavior from a fault. It further identified the type 
of numerical fault code that the system would encounter. A 
fault code is a list of integer identifiers that range from 0 to 
30, which correlate to a particular failure or error for a 
component within the vehicle system. 
 

 
 

Figure 2. LSTM network layer based on operational data. 
 
The two available datasets were multivariate 1Hz operational 
data that spanned over one year and the vehicle’s 
corresponding fault data for the same timeframe. The 
independent datasets, coupled as a supervised learning 
problem, improved insight for fault detection. Input data for 
LSTM is filtered 1Hz operational data with reduced channels. 
Channel reduction decreases dimensionality and mitigates 
model overfitting. The trained model must observe the 
behaviors of the channels to recognize faults. However, the 
raw data, in its entirety, presented heavily saturated normal 
operational data. The unsupervised anomaly detection 
described in Section 2.3 allowed for a pre-processing 
technique in reducing the sample size provided to the LSTM 
model. Analysis from the unsupervised anomaly detection 
model identified areas within the data where a fault was likely 
to occur. The training batch size and epochs were reset, 
reflecting a more constricted time frame. The LSTM model 
could then train precisely around the days deemed to present 
a fault. The separate multivariate fault dataset correlated 
time-wise to the operational dataset and only contained 13 
channels. A single extracted feature reduced the multivariate 
fault dataset to univariate and consisted of a numerical fault 
code and its identified timestamp. The fault data’s sample 

size pre-processing techniques included filtering of one fault 
code presented on any given day. 

 
 

Figure 3. Fault detection model. 
 
The graph shown in Figure 3 depicts the resulting LSTM 
model output as a preliminary finding. For a single vehicle, 
the trained LSTM model received only its operational data. 
The model accurately predicted the days when faults 
occurred within the actual fault dataset. The model proved 
successful in learning the correlation between operational 
data and fault data. Experimentally, LSTM provided an 89% 
accuracy in fault detection and isolation, detecting and 
identifying fault code values, including healthy operational 
behaviors. Future analysis across the more than 4500 vehicle 
fleet will allow for increased accuracy with the model and 
ability to identify additional fault codes. In addition to 
increasing the model sample size across the fleet, future work 
will further develop thresholds to further classify floating-
point fault values toward established fault codes.  

2.3. Operational Data Forecasting 

The Vector Autoregressive (VAR) model is one of the most 
successful, flexible, and easy to use models for the analysis 
of multivariate time series data (Zivot, E. & Wang, J. 2006), 
so for this work, we use the VAR model for forecasting 1 Hz 
operational data. To test our method, we are using just one 
year of data from one vehicle, which contains 17+ million 
rows and 50+ columns. The entire 1Hz operational data 
was collected from roughly 4500 vehicles over seven years 
and will be evaluated later, once the workflow is 
established. Due to the presence of some sensors sharing 
stochastic trends, we implemented a multivariate time series 
VAR to model on our 1 Hz data.  This model is then used to 
generate expected future values of operational 
data. The patterns and trends of forecasted data our analysis 
reveals will be used for the condition monitoring and to detect 
possible anomalies from fault detection model.  
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2.3.1. Forecasting Operational Data Methodology:  

Before implementing the VAR model, we began with 
structural analysis typically performed using VAR models. 
These analyses include Pearsons correlation 
test, Cointegration test, Grangers Causality test and 
Augmented Dickey-Fuller Test.  We employ a Johansen test 
to validate cointegrating relationships between non-
stationary time series data and indicate that our time series 
data share statistically significant relationships. Granger’s 
Causality Test confirms the relationships of multiple variables 
in the time series, justifying the VAR modeling approach to 
forecast 1Hz operational data. Finally, we use KPSS and 
Augmented Dickey-Fuller Test (ADF Test) to validate the 
stationary nature of our time series.  
   
Forecast:   
We use a Durbin Watson Test to measure the autocorrelation 
in residuals from regression analysis. Exploratory test results 
indicate that there is a slight negative correlation 
autocorrelation problem in the data set. We anticipate that 
increasing sample size and data cleaning will reduce Durbin-
Watson statistics.   
 
Fig. (4) shows the forecast result for 1Hz operational data. 
For the current sample size, we identified that some sensors 
favor certain lag orders over the others.   
 

Actual vs Predicted Sensor Values 

 
Fig 4. Forecasting Vehicle Operational Data 

2.4. Automation 

As mentioned previously, the motivation behind a portion of 
this work is to be able to reduce the time taken to handle 
unscheduled maintenance events. If a fault can be predicted 
for a vehicle using noisy datasets for that specific vehicle, the 
same can be done for other ground vehicles. Fault prediction 
models and forecasting have the ability to assist in this effort. 
The time taken to build a fault prediction model or forecast is 
dependent on the size of the dataset and the ML algorithm 
used, so this process can be very time consuming. 

A component to the solution of the overarching goal is to 
speed up the fault prediction modeling and forecasting 
process by the automation of the segments from sections 2.2 
and 2.3 above. The automation process includes 
preprocessing the data for manipulation, analyzing the data 
according to indispensable features, and using the data in 
machine learning algorithms to produce these fault prediction 
models and forecasting based on a given dataset. Another 
aspect to support the automation is the use of HPC. Attainable 
software exists for high performance computing workflows 
to interpolate results from one coding script to another. In 
Fig. (5) below, there is a more detailed version of the 
automated workflow. 

 
Figure 5. The automated fault detection, isolation, and data 

forecasting workflow. 

The historical operational data fuels both forecasting and fault 
detection models. The fault detection model, discussed further in 
Section 2.3, makes use of both operational and fault datasets. 
Structural analysis and linear regression techniques produce 
operational forecasts of the vehicle.  

An automated HPC workflow can more readily generate 
models capable of fault detection and maintenance needs 
across the entire fleet. As shown in Fig. (5), the proposed 
HPC workflow will align operational forecasting with fault 
detection models to provide an enhanced model for future 
fault and maintenance detection. Additional benefits of 
automation include reduction of human labor, consistency, 
reproducibility, and increased production of models. 

2.5. Vectorization of Maintenance Event Labels 

The maintenance text entries used to label fault patterns is 
free text, entered at the time of the maintenance event and 
includes details about the fault. The number of issues that can 
occur within a ground vehicle are many and often very 
specific. More generally, different fault events fall under 
larger categories that describe basic features of a fault, such 
as the component or vehicle subsystem that requires repair. 
Here we present a method for generating a consistent set of 
labels for maintenance events in order to pair them with their 
causal fault patterns. Providing meaningful labels for the text 
in maintenance logs has the benefit of reducing the number 
of possible labels for a maintenance event and helps to 
generalize that label to make it more comprehensible.  
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We explore different methods of unsupervised text-based 
pattern recognition. This includes approaches in surveying 
the text directly to finding frequency patterns within it. After 
text labels are converted to a numerical format, the set 
undergoes cluster analysis within the vector space. 
The final method of choice for investigation was the use of 
textual vectorization paired with other unsupervised learning 
approaches. The motivation for using this method stemmed 
from the fact that it required no a priori knowledge to create 
the labels though it does require a priori knowledge to 
determine the meaning of labels after generation. For each 
text entry in the set, a process of cleaning and tokenization 
was undergone in order to prepare it for vectorization. 
Cleaning the text consisted of removing all irrelevant 
characters that would not serve in the analysis, including stop 
words, numerical characters, punctuation, and extra spacing. 
A process of lemmatization is undergone in order to change 
given words in the text entries to their basic dictionary form; 
this minimizes unique yet redundant tokens. After cleaning 
and lemmatization, the words are split by spacing in order to 
create a token list for use in the vectorization algorithm. The 
ordering of the tokens is maintained for use with this 
algorithm. 
The vectorization algorithm used in this labeling method is 
the Doc2Vec algorithm (Le & Mikolov, 2014), which was 
developed from the Word2Vec algorithm (Mikolov, Chen, 
Corrado, & Dean, 2013) for use with vectorizing groups of 
tokens as one vector in a vector space. We used the entire 
collection of maintenance fault descriptions under the 
assumption that each one would be representative of a 
universal fault within ground vehicles independent of vehicle 
types in order to create a general vector space where each 
individual entry in the maintenance dataset maps to a point in 
the space. Multiple iterations of this process with Doc2Vec 
were undergone using different vector sizes in assigning 
vectors to text entries. This ranged between vector sizes of 
two to three hundred. 
After vectorization, the cumulative vector space is analyzed 
using clustering methods. The method of clustering used in 
particular was DBSCAN (Ester, Kriegel, Sander, & Xu, 
1996), which takes into account the existence of outliers in 
the dataset. Outliers would be representative of faults that are 
infrequent and do not have to do with major components of a 
ground vehicle. The DBSCAN clustering algorithm also 
determines the number of clusters within the vector space 
analyzed, which further reduces the amount of a priori 
knowledge needed to find labels in the maintenance text 
entries. 
Clustering finds groups of spatially related points. For a point 
in the set, the cluster it belongs to determines its label. If the 
point is an outlier, its label is classified as an outlier. This 
structure can also help to determine new points by seeing how 
they fall within existing clusters. This process undergoes 
multiple iterations, with different parameters denoting the 
minimum distance a point needs to be from a core cluster 
point and how many points are required to form a cluster. 

The resulting set of possible clusters can be analyzed for 
quality based on evaluation heuristics such as the Silhouette 
Score (Rousseeuw, 1987), along with specific evaluation 
based on number of clusters and the comprehension of points 
within each cluster. Determining what each cluster represents 
is done by looking at the points in each cluster and their 
associated text entries. This helps to determine labels for each 
original point in the maintenance text entries using the label 
for each cluster. 

3. CONCLUSIONS AND FUTURE WORK 

We began the hybrid learning workflow for PHM on US 
army ground vehicles in order to generalize and deepen 
progress made in the area of physics informed linear 
modelling. These models work extremely well, but they 
require some a priori knowledge of the system. To expand the 
scope and speed of creating these models, we are exploring 
the possibilities of a more data-driven approach that 
leverages both the accrued sensor data from the vehicle CAN 
bus systems and the corresponding maintenance data. The 
approaches outlined in section 2 have combined to produce 
promising results when applied to relatively small data. When 
leveraged against the large datasets that will be considered in 
the next phase of the project, these cursory results should 
show significant improvement. 
 
We have succeeded in manifold and cluster creation, 
corresponding to healthy versus unhealthy operation of the 
vehicle considered, as explained in section 2.1. These clusters 
represent potential Parameter-Based Indicators. Similarly, 
the supervised approaches outlined in sections 2.2 and 2.3, 
and joined into a workflow in section 2.4, find similar 
candidates for PBI status. What each approach is missing, 
with the exception of the small subset of Fault data 
correlation, is consistent labelling. This is addressed in 
section 2.5, where we vectorize the maintenance data 
accompanying the operational data, yielding a consistent 
label set.  
 
Beyond knitting these solutions together, we will expand the 
data into High Performance Computing workflows on DoD 
supercomputing resources. A time-sharded database of all 
operational data for every vehicle, composed of over one 
million days of operation across approximately 4,500 
vehicles, is online and ready for fleet wide querying of 
operational data. This database will fill dataframes for ML 
workflows on HPC in negligible time, making the memory-
loaded data ready for parallel and multi-processing 
workflows. 
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Figure 6: Massive ground vehicle data is ingested into a 
constantly available, time-series data optimized database 
where it can be queried to load dataframes for a large variety 
of available HPDA tools for exploratory data analysis, ML 
work, and workflow management, resulting in a large 
number of HPDA models to facilitate decision making at all 
levels of life cycle management. 
 
This system will support the collaboration of the tools from 
section 2, combined through workflow software, for iterative 
processes on HPC such as hyperparameter evaluation, where 
one workflow considers several parameter sets, yielding all 
results for visualization and refinement. While we received 
promising results from each of the above efforts, every one 
of them will benefit from both the ability to greatly expand 
the data considered for training and testing models, and from 
collaboration between themselves, producing more robust, 
more certain models. In particular, entire vehicle types can be 
explored for fault and candidate PBI intervals using several 
clustering and machine learning strategies in concert. The 
CPBIs can then be correlated with labels whose certainty is 
improved through integration with these methods and 
continued refinement. CPBIs can then be tested with a large 
amount of testing data that already exists on the HPC 
platform, using the successes of their predecessors, the 
physics-based linear models, as benchmark. 
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