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ABSTRACT

In a highly automated vehicle (HAV), the perception system
performs critical sensing tasks such as object detection, scene
understanding, etc. The perception software is based on
complex intelligent algorithms and subjected to different
failures such as missing object detection and false
classification. It is a challenge to detect and identify these
faults in the run time due to lack of ground truth and
performance metrics. In this study, we introduce a method of
perception software diagnostics, which is a generic method
applicable to any state-of-the-art object detection models. In
this method, perception results are compared with references
generated with different sources, including pre-determined
ground truth. The inconsistency between the perception
results and the references, together with other performance
metrics such as spatial variance, is used by a diagnostic logic
to determine the fault type. Moreover, a method to generate
references from a world model is presented. With validation,
it is shown that the diagnostic algorithm provides a good
performance in fault detection and isolation. This study
enables fault mitigation in the run time and supports patch
development in the development time.

1. INTRODUCTION

A highly automated vehicle refers to a vehicle with certain
types of automation features including active safety, self-
driving, etc. In the Society of Automotive Engineers (SAE)
international standard J3016, automation is defined in six
levels (from level 0 to level 5), and the term “highly
automated” is listed as a definition from German Federal
Highway Research Institute (BASt). It is equivalent to SAE
level 3. In other documents, “highly automated vehicles” may
be defined differently. American Association of Motor
Vehicle Administrators (AAMVA, 2018) defines “highly
automated vehicles” as vehicles of SAE level 3, 4 and 5. In

this work, we use AAMVA’s definition for highly automated
vehicles.

The perception system is critical in a highly automated
vehicle. It performs the task of collecting information and
extracting relevant knowledge of the environment, which
mainly mimics the function of human vision. Even in a level
0 or 1 vehicle, it may be implemented for active safety
features such as lane departure warning and forward collision
warning. The perception system’s inputs are the environment
information captured by different sensors, including cameras,
radars, light detection and ranging (LIDARs), ultra-sonic
sensors, global positioning system (GPS), inertial
measurement unit (IMU), etc. The outputs of the perception
system are the visual cognition results such as detection
results of objects, which are fed to the downstream systems
for localization, path planning, decision making and vehicle
control (Brummelen, O’Brien,  Gruyer, & Najjaran, 2018).

The perception software is implemented as the core of the
perception system to convert the raw sensor data to visual
cognition results. In a highly automated vehicle, the visual
cognition tasks of the perception software include road
detection (for lane marks, road surface, free space, etc.)
(Pendleton, Andersen, Du, Shen, Meghjani, Eng, Rus, & Ang
Jr., 2017), object detection and localization (for obstacles,
surrounding vehicles, pedestrians, traffic signs, traffic lights,
land marks, etc.), object behavior estimation
(vehicle/pedestrian tracking, prediction of merging vehicles,
etc.), scene understanding (traffic, event, etc.) (Janaia,
Güneya, Behla, & Geigera, 2017), and localization
(simultaneous localization and mapping (SLAM), pose
estimation, ego-motion estimation) (Pendleton et al., 2017;
Janaia et al., 2017), etc.

The perception software uses various computer vision and
machine learning algorithms, including Canny edge detection
(Canny, 1986), Hough Transform, supporting vector machine
(SVM) (Dalal & Triggs, 2005), Histogram of Orientation
(HOG) extraction (Dalal & Triggs, 2005), convolutional
neural networks (CNN) (Janaia et al., 2017), optical flow
approaches (Janaia et al., 2017), Kalman filter (Pendleton et
al., 2017), particle filter (Pendleton et al., 2017), Markov
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chain Monte Carlo (Zhu, Yuen, Mihaylova, & Leung, 2017),
Scale-invariant feature transform (SIFT) (Zhu et al., 2017),
etc. In recent years, deep learning approaches such as CNN
have achieved great performance boosts (Pendleton et al.,
2017). It’s now widely used for object detection, semantic
segmentation and scene understanding tasks (Ren, He,
Girshick, & Sun, 2017; Redmon & Farhadi, 2018; Liu,
Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016; Dai, Li,
He, & Sun, 2016; He, Gkioxari, Dollár, & Girshick, 2017).

Failures in the perception system attract increasing attention
due to their consequences related to safety (Brummelen et al.,
2018). The failures of deep learning approaches have some
uniqueness. A deep neural network (DNN) is trained with a
training set of data, which has a finite coverage of cases in
the real world. Those cases not covered by the training set are
corner cases. When a corner case happens during a test, an
incorrect result may be generated by the deep neural network.
Such a fault may generate a failure in perception tasks, for
example, a misdetection in an object detection task. In
addition, corner cases can also happen within the training set.
This is because the training method involves minimizing the
mean of the loss function (which is the error between the
results and the ground truth) over the whole training set. It is
very difficult to make each training sample generate a correct
result without overfitting, given that the size of the training
set is relatively large.

In addition, there are other software failure modes that are
common in general, such as computational faults, data faults,
interface faults, exceptions, etc. These failure modes can be
categorized in functions, locations (Gray, 1990), symptoms,
behaviors (Wang, Quek, Rafacz, & Patel, 2004), causes (Chu,
Martinez-Guridi, Yue, & Lehner, 2006), etc. Also, failure
modes can be defined in different levels, from the system
level (Gray, 1990) to the processor/memory operation level
(Wang et al. 2004). We categorize the perception software
failure modes in the system level in terms of
behaviors/symptoms. Besides the DNN corner cases, which
are the computational faults, we also consider data missing,
data freeze, and timing faults in this study. Section 3
discusses more details.

To assess, detect and identify perception failures, methods
are proposed in mainly three directions. The first direction is
failure prediction based on the input of the perception system
(Zhang, Wang, Farhadi, Hebert, & Parikh, 2014; Daftry,
Zeng, Bagnell, & Hebert, 2016). These solutions calculate a
probability of a failure or a confidence score of the perception
with a given frame of input data, without checking the
perception results. The second direction is perception system
validation and verification (Dreossi, Donzé, & Seshia, 2019;
Pei, Cao, Yang, & Jana, 2017; Pezzementi, Tabor, Yim,
Chang, Drozd, Guttendorf, Wagner, & Koopman, 2018; Pei,
Cao, Yang, & Jana, 2017). These solutions detect and identify
failures during the validation and verification phase of
developing the perception system. The last direction is

runtime diagnostics of the perception system (Ramanagopal,
Anderson, Vasudevan, & Johnson-Roberson, 2018;
Dokhanchi, Amor, Deshmukh, & Fainekos, 2018). The
solution detects and identifies the failure when the perception
system is functioning.

The objective of this study is to develop solutions for runtime
diagnostics of the perception system. We introduce a
reference-based method to diagnose failures when they
happen, instead of assessing failure prior. This type of
solution is significant because of a few reasons. First, the
runtime failures may cause direct consequence including
safety concerns and negative user experience. From the
literature, only a small portion of existing studies is targeted
for runtime diagnostics with posterior assessment. Second,
even with these runtime diagnostics methods, there are still
various failures uncovered. For example, Ramanagopal et al.
(2018) may not cover cases such as object missing in
consecutive frames and simultaneous faults in stereo
cameras. A reference-based method may better detect such a
failure, but there is a lack of study in this direction. Due to
the complexity of perception failures, it’s very challenging to
cover all failures with a single solution. Thus, we need a
solution pool for perception diagnostics. Third, fault isolation
is not discussed sufficiently in the literature. Existing studies
are focused on neural network internal corner cases, while its
upstream and inter-components failures may propagate and
need to be taken into account. Our study is intended to reduce
the gap in these three aspects.

In this work, we focus on the fault diagnostics method for the
perception software of a specific perception task, which is
object detection based on camera images. Section 2
introduces a popular object detection software, Faster R-
CNN (region-based convolutional neural network). Section 3
introduces the fault injection methods for this study. Section
4 discusses the diagnostics algorithm. Section 5 discusses a
method to generate references based on a world model.
Section 6 presents the results.

2. FASTER R-CNN

In this study, we use Faster R-CNN as the target software to
diagnose. Faster R-CNN (Ren et al., 2017) is a DNN model
to detect objects in images. For a given image, Faster R-CNN
outputs the information of each object, including the location
represented by a bounding box, and probability scores of
different object types. Faster R-CNN is one of the
mainstream methods of object detection nowadays. Its inputs,
outputs and internal variables are similar to other methods
such as YOLO (You Only Look Once) (Redmon & Farhadi,
2018) and SSD (single shot multibox detector) (Liu et al.,
2016), which allows the same diagnostics algorithm to be
applied to any of them.

Faster R-CNN’s input image first goes through the
convolutional layers to generate the feature maps. Then the
feature maps go through the region proposal network (RPN)
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to generate proposals of objects. The proposals are also called
regions of interest (RoI). In the RPN, anchors are
predetermined as reference boxes of object proposals. Each
anchor is centered at a predetermined position and has a
predetermined size. The convolutional layers implement a
box regressor and a classifier. The box regressor outputs the
center coordinates, width and height for each proposal. The
classifier outputs a score representing the probability of
object or not object for each proposal. After the convolutional
layers, duplicated and low-score proposals are filtered out.

To classify each RoI, the feature maps in each RoI are fed
into the classifier based on fully connected layers. Since the
RoI size is variant and the input size of the classifier is fixed,
the RoI pooling layer divides each RoI into a fixed number
of small pieces and extract the features of a fixed size. After
RoI pooling, features of each RoI is processed by the
classifier to determine the probabilities of different types.

With the understanding of Faster R-CNN, we inject faults and
develop the diagnostics algorithm for the perception
software.

3. FAULT INJECTION

In this study, we simulate different faults to develop the
diagnostic algorithm. Even though some reports discuss the
high-level failures of autonomous vehicle (such as
Department of Motor Vehicles, 2019), there is a lack of
comprehensive DFMEA (design failure mode and effect
analysis) on perception software. Almost all the related
studies in the literature are focused on the DNN corner cases.
During our work of perception development, we experience
additional faults of data missing, data freeze and timing. In
this study, the faults injected are DNN corner cases, data
missing, data freeze and timing faults.

DNN corner cases represents the DNN model limitation after
training. Due to the limited size of the training sample set and
the training method of stochastic gradient descent, it is
possible that in certain cases the model generates wrong
results. To simulate this fault, we use a pretrained model
without fine tuning. The model is trained on a training set
(PASCAL VOC 2007) (Everingham, Gool, Williams, Winn,
& Zisserman, 2010) and tested in a different set, which is
collected by our test vehicle, without adaptation. The
difference between the two data sets generates the corner
cases.

Data missing fault represents that the data is not presented at
a certain layer of the DNN model. The root causes include
communication error and memory crash. To simulate this
fault, we assign the data to a matrix of all zeros at a given
layer.

Data freeze is another data fault which may happen to the
DNN model. It usually happens at the input layer, which
causes the input frame of image not updating. The root cause
may relate to the upstream sensor and communication. To

simulate this fault, we assign the data of the previous frame
to the current frame.

Timing fault represents that the DNN model runs slower than
normal, including the whole model freeze. The root causes
include memory leakage, memory lock, racing condition, etc.
To simulate this fault, we insert a configurable delay during
the execution of Faster R-CNN between two frames.

Based on these faults, we develop the perception diagnostics
algorithm.

4. PERCEPTION DIAGNOSTICS ALGORITHM

In this section, we discuss details of the algorithm to detect
and isolate of the perception faults of corner cases, data
missing, data freeze and timing faults. To detect the corner
cases, we develop the indicators of false positive rate and
false negative rate. To detect data missing, we develop the
indicator of spatial variance. To detect data freeze, we
develop the indicator of temporal change. To detect the
timing faults, we use the processing time of each frame as an
indicator.

4.1. Pre-processing of Faster R-CNN Results

In this study, we use the Faster R-CNN pretrained with the
PASCAL VOC 2007 data set. There are 21 classes of objects
in total in PASCAL VOC 2007 data set (Everingham et al.,
2010), including aeroplane, bicycle, background, etc. Each
class is associated with an ID. For each object, Faster R-CNN
generates 21 boxes and scores, where each box and score is
associated with one class, respectively. A box represents the
object position in current frame, and a score represents the
probability of the object belonging to a class.

Some pre-processing is performed on the results of Faster R-
CNN. First, we remove the results of “background” class in
boxes and scores. Second, we perform non-maximum
suppression (NMS) to eliminate the overlapped detections of
objects. Last, we keep the detections of high confidence by
filtering out the detections whose scores are lower than a
threshold. We denote the detection results in one image as
൛൫ݔଵ,

 , ଵ,ݕ
 , ଶ,ݔ

 , ଶ,ݕ
 , ܿ

൯|݅ = 1,2, … , .ൟܫ I is the total number of
objects detected in this image. i is the index of each object.
ଵ,ݔ

 , ଵ,ݕ
 , ଶ,ݔ

  and ଶ,ݕ
  are the coordinates of the bounding box

ܾ
. ܿ

 is the class ID of the object associated with ܾ
.

4.2. False Positive and False Negative Rates

When a corner case happens, the observation is that an image
generates incorrect perception results. An indicator of the
corner case is the correctness of the perception results. To
measure the correctness, we compare the perception results
to certain references. The references include predetermined
ground truth, results from other sensor channels, results from
other vehicles, information from a centralized world model,
etc. In Section 5, we will discuss generating references with
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a world model. In this section, we assume the references are
provided without specifying the exact sources.

The correctness of the results can be represented by false
positive and false negative rates. False positive rate
represents how much of the detection is not presented in the
references. False negative rate represents how much of the
references is missed in the detection. In this work, an
assumption is that references are treated as ground truth. In
reality, references may be incorrect if they are not determined
by the ground truth. An incorrect reference may generate a
wrong diagnostic result of false negative or positive. To
improve the accuracy of references requires technologies
such as using temporal information, fusion of object
information from different sensors and vehicles, etc., which
are not discussed in this work.

For a given frame, we denote the references as
൛൫ݔଵ,

 , ଵ,ݕ
 , ଶ,ݔ

 , ଶ,ݕ
 , ܿ

൯|݆ = 1,2, … , .ൟܬ J is the total number
of references in the current frame. j is the index of each
reference. ܾ

 = ൫ݔଵ,
 , ଵ,ݕ

 , ଶ,ݔ
 , ଶ,ݕ

 ൯ is the bounding box of
reference j. ܿ

 is the class ID of reference j. When calculating
the false positive and negative rates, we use the intersection-
over-union (IoU) rate to determine the correlation of two
bounding boxes, ܾ

  from the detection results and ܾ
  from

the references. Figure 1 shows an example of the IoU of two
bounding boxes.

Figure 1. An example of the IoU of two bounding
boxes, ܾ

 ൫ݔଵ,
 , ଵ,ݕ

 , ଶ,ݔ
 , ଶ,ݕ

 ൯ and
ܾ
  ൫ݔଵ,

 , ଵ,ݕ
 , ଶ,ݔ

 , ଶ,ݕ
 ൯. The IoU is the rate of the

intersection (the yellow area) divided by the union
(the area covered by green and red boxes together).

We define the correlation of bounding boxes ܾ
 and ܾ

 as:

,ݎܿ_ܾ =
୲୦ୣ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬ ୟ୰ୣୟ ୭ 

ೝ ୟ୬ୢ ೕ


୲୦ୣ ୳୬୧୭୬ ୟ୰ୣୟ ୭ 
ೝ ୟ୬ୢ ೕ

         (1)

Next, we determine the correlation between a class from the
detection results and a class from the references. We use a
look-up table to determine the correlation between two
classes ܿ

 and ܿ
. Table 1 shows an example of such a look-

up table.

In Table 1, each row is associated with a class in detection
results. Each column is associated with a class in the

references. In general, the set of reference classes may not be
the same as the set of classes of perception results. The values
in the look-up table are pre-determined and configurable. For
example, the correlation between a car and a car is 1; the
correlation between a car and a truck is 0.9. Such a table
provides the correlation c_cori,j between two given classes ܿ



and ܿ
.

Table 1. An example of the look-up table to
determine class correlation.

ܿ


ܿ


Car Truck Adult Child Bicycle …

Car 1 0.9 0 0 0
Bicycle 0 0 0 0 1
Motorbike 0 0 0 0 0.5
Person 0 0 1 1 0
Boat 0 0 0 0 0
…

Now we calculate the false positive rate and false negative
rate for each frame. The detection rate of reference j is:

ݎܿ = max


൫ܾ_ܿݎ, ∙ ,൯        (2)ݎܿ_ܿ
where b_cori,j is the correlation between ܾ

  and ܾ
 , and

c_cori,j is the correlation between ܿ
 and ܿ

.

Then, the rate of missed detection of object j is 1−corj. The
false negative rate of current frame is defined as the average
rate of missed detection of all references, which is calculated
by:

ܰܨ = ଵ


∑ ൫1 − ൯ݎܿ
ୀଵ        (3)

Similarly, the accuracy of a given detection i is:

ݎܿ = max


൫ܾ_ܿݎ, ∙ ,൯        (4)ݎܿ_ܿ

The false positive rate of current frame is the average false-
detection rate of all detections:

ܲܨ = ଵ
ூ

∑ (1 − )ூݎܿ
ୀଵ         (5)

Compared to mAP (mean average precision) used by many
other studies, FN and FP use direct IoU values rather than
comparing IoU with fixed thresholds. They provide a more
precise measurement on the bounding box error. With the
false positive and negative rates, we determine if a failure
happens due to corner cases. Details are discussed in
Subsection 4.6.

4.3. Processing Time

In addition to failures due to corner cases, for the timing
related failures, we use the processing time of each frame as
an indicator. We define the processing time tk as the time used
for Faster R-CNN to process frame k. Denote T1,k as the
timestamp when frame k is fed to the input layer of Faster R-
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CNN. Denote T2,k as the timestamp when the results of frame
k is generated at the output layer of Faster R-CNN. The
processing time is calculated by:

tk = T2,k – T1,k        (6)

This indicator is used to determine if a timing related fault
happens. Details are discussed in Subsection 4.6.

4.4. Temporal Change

Another type of failure that we detect and isolate is the data
freeze. We define an indicator, temporal change, to monitor
the changes in data in Faster R-CNN between two
consecutive frames.

For a given frame k, denote dp,k as the data at layer p of Faster
R-CNN when finishing the processing of frame k. Notice that
d0,k represents the input image of frame k. We can reshape dp,k
into a vector. The temporal change is defined as the mean
square error (MSE) of all the elements in dp,k – dp,k-1:

∆p,k = MSE(dp,k – dp,k-1)        (7)

In Subsection 4.6, we check ∆p,k to determine if a failure of
data freeze happens.

4.5. Spatial Variance

The last type of failure to detect and isolate is the data
missing. We define an indicator, spatial variance, to monitor
the validity of data in Faster R-CNN.

For each layer before RPN, dp,k is a 3D matrix. The three
dimensions are in the order of channel, vertical and horizontal
dimensions. dp,k of ROI pooling layer has four dimensions:
proposal, channel, vertical and horizontal, and is converted
into a 3D matrix by stacking the proposal dimension in the
channel dimension. For the rest of layers, dp,k is a 2D matrix,
whose two dimensions are proposal and channel dimensions.
We extend one dimension of size 1 to make dp,k a 3D matrix.

The spatial variance of dp,k is defined as the variance over the
second and third dimensions. Denote dp,k(l,n,m) as an element
in dp,k. The spatial mean is calculated by:

,,ߤ = mean
,

൛d,(݈, ݊, ݉)ൟ        (8)

Then, the spatial variance is calculated by:

,,ߪ
ଶ = mean

,
ቄ൫݀,(݈, ݊, ݉) − ,,൯ߤ

ଶቅ        (9)

,ߪ
ଶ = mean


൛ߪ,,

ଶ ൟ        (10)

With this indicator, we determine whether the data dp,k is
invalid. If dp,k is missing, then it is filled with default value,
which is shown as an image of pure color such as black. In
this case, ,ߪ

ଶ  equals to 0. Spatial variance can also detect
partial data fault. In our tests, images partially blocked by
black patches have higher or lower spatial variance values
compared to the normal images, depending on the patch size.

In the next subsection, we discuss the details of using ,ߪ
ଶ  for

data missing fault diagnostics.

4.6. Fault Diagnostic Logic

We develop a logic to generate the diagnostic decisions based
on indicators FP, FN, tk, ∆p,k, and ,ߪ

ଶ . The diagnostic
decision includes the color codes for all four types of faults:
corner case, data missing, data freeze and timing fault. Color
codes red represents that a severe fault is detected. Green
represents that no obvious fault is detected for a given type.
Yellow represents that a low severity fault is detected, or the
severity is unknown and needs further inspection. Notice that
both low severity and unknown severity are coded as yellow,
but they are two different severities.

The diagnostic program runs in parallel with the perception
program. In each cycle of processing an image k, we time the
execution of perception program and calculate the indicator
tk. The variables at each layer of the neural network is
buffered to calculate other indicators. After generating the
indicators, we follow the diagnostic logic shown in Figure 2.
we first initialize the diagnostic decision of current frame k.
In this step, we assign unknown severity to all four types of
faults. Next, we check tk against thresholds θ0, θ1 and θ2. The
thresholds satisfy θ0<θ2<θ1. Depending on the value of tk, we
assign the corresponding severity to the timing fault.

Next, we determine the data missing fault. If the spatial
variance equal to 0 at a certain layer, we assign red to the data
missing fault; otherwise, we assign green to the data missing
fault. In the practical implementation, we compare ,ߪ

ଶ  with
a very small threshold to determine whether it is 0. Then, we
check data freeze fault based on the temporal change ∆p,k. If
the temporal change equals to 0 at certain layer, we assign red
to the data freeze fault; otherwise, we assign green to this
fault.

Last, we determine the severity of the corner case fault based
on the false positive and negative rates. The thresholds satisfy
θ3<θ7<θ5 and θ4<θ8<θ6. If both FN and FP are smaller than
the corresponding thresholds θ5 and θ6, we assign green to the
corner case fault; if either FN or FP is greater than thresholds
θ5 or θ6 respectively, we assign red to the corner case fault;
otherwise, if either FN or FP is greater than thresholds θ7 or
θ8 respectively, we assign yellow to the corner case fault to
indicate low severity; otherwise, the severity of corner case
fault is unknown.

If a data missing fault is determined, we skip checking data
freeze and corner case, since the data is invalid. Also, if a data
freeze fault is determined, we skip checking corner case,
since the data is invalid.

The thresholds are calibrated heuristically based on test
samples. With the fault diagnostic logic, we determine the
severity of each type of fault in perception software. These
severities are output as the diagnostic decision for each
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frame. Section 6 discusses the diagnostics results under
different faults.

Figure 2. Fault diagnostic logic for perception software.

5. REFERENCE GENERATION BASED ON WORLD MODEL

In Section 4, we discuss the details of the perception
diagnostic algorithms. To detect the corner case fault, we
need references of the detected objects to calculate the false
positive and negative rates. In this section, we present a
method to generate such references based on a world model.

The world model in this study refers to a digital
representation of the real-world environment. It generates a
collection of data to represent the information of objects in
the environment at any given time. The information of
objects include class, location, pose, size, etc. A detailed
world model may provide the information such as shape and
surface texture of each object. Such a world model can
generate synthesized sensor data such as images, which can
be references for sensor diagnostics. A coarse world model
may provide only the class, location, pose and size of each
object, which is still sufficient to generate references of
object detection results. The sources of information fed into
the world model include pre-determined information of static
objects, HD (high definition) map, perception data and results
from other vehicles, information reported by objects

themselves, information collected in history, information
collected by dedicated agents, etc. Information from all these
sources are aggregated and transferred using technologies
such as V2V (vehicle to vehicle) and V2X (vehicle to
infrastructure).

In this study, we build a world model based on our test dataset
to provide the object information. For each object j in a given
frame k, the world model provides the object class ܿ

, size
(height ℎ

 , width ݓ
  and length ݈

), position (ݔ
,௪ , ݕ

,௪  and
ݖ

,௪) and pose (roll ߮
,௪ , pitch ߠ

,௪ and yaw ߰
,௪). We label

the test dataset to provide object position and pose with
respect to a fixed world frame.

We generate bounding boxes references by converting the
object information from the world model into bounding
boxes in each frame. Since the camera field of view is
relevant to the host vehicle, we use the host vehicle
information to generate references. For frame k, we use the
vehicle position (ݔ,  andݕ ) and pose (rollݖ ߮, pitch ߠ

and yaw ߰), which are collected by the test vehicle during
driving.

First, we convert the object position and pose into the
coordinates and angles with respect to the coordinate system
of the host vehicle. We convert the Euler angles into rotation
matrices to represent the poses of host vehicle and each object
(Mallick, 2016). The rotation matrix ܴ

௪  is determined by

߮
,௪ , ߠ

,௪  and ߰
,௪  to represent the pose of object j in the

world frame. The rotation matrix ܴ
௪  is determined by ߮ ,

 andߠ ߰ to represent the pose of the host vehicle in the
world frame.

The coordinates of the object with respect to the vehicle
coordinate system is:


ݔ

௩

ݕ
௩

ݖ
௩

 = (ܴ
௪)ିଵ

⎣
⎢
⎢
ݔ⎡

,௪ − ݔ

ݕ
,௪ − ݕ

ݖ
,௪ − ݖ ⎦

⎥
⎥
⎤
        (11)

The pose of the object with respect to the vehicle coordinate
system, represented by a rotation matrix, is:

ܴ
௩ = (ܴ

௪)ିଵ
ܴ
௪        (12)

Notice that we ignore the pitch and roll of each object with
respect to the world and vehicle coordinate systems in this
study, since they are very small in our test.

Second, we determine the object corner points positions with
respect to the vehicle coordinate system. An object is
represented by a 3-D box in space, which is represented by
its eight corner points. To determine the coordinates of the
eight corner points, the object coordinate system is defined
by assigning the origin to the center point of the object. The
corner points of the 3-D box are presented by the coordinates
with respect to the object coordinate system:
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We convert coordinates of the corner points into the
coordinates with respect to the coordinate system of vehicle:

ܤ
௩

1
൨ =

⎣
⎢
⎢
⎢
⎡

ܴ
௩

ݔ
௩

ݕ
௩

ݖ
௩

0 1 ⎦
⎥
⎥
⎥
⎤

ቂܤ
1

ቃ        (16)

In this equation, each corner point is rotated by ܴ
௩  and

translated by ݔ]
௩ ݕ

௩ ݖ
௩]்.

Third, we determine the object corner points positions with
respect to the coordinate system of the camera. The test
vehicle calibration provides the extrinsic camera calibration,
which includes in translation vector ௩ݐ

 and rotation matrix
ܴ௩

 from the vehicle frame to the camera frame. Then, the
object corner points in the camera coordinate system are:

ܤ


1
൨ = ቂܴ௩

 ௩ݐ


0 1
ቃ ܤ

௩

1
൨        (13)

In this equation, each corner point is rotated by ܴ௩
  and

translated by ௩ݐ
.

Next, we use the method from OpenCV (2019) to convert
each corner point ,ܤ

  = [ ,ݔ
 , ,ݕ

 , ݖ ,
 ]T into the

coordinates ,ݑൣ , ,൧்ݒ
in the image coordinate system. The

test vehicle calibration provides the intrinsic parameters of
the camera, including the focal lengths fx and fy, the principle
point coordinates cx and cy, the radial distortion coefficients
k1, k2 and k3, and the tangential distortion coefficients p1 and
p2. Refer to OpenCV (2019) for details of the intrinsic
transform.

With the intrinsic transform, we determine uj representing the
horizontal coordinates of corner points in the image frame
and vj representing the vertical coordinates of corner points
in the image frame. They are bounded by the image size.

Last, we generate bounding box references from the
coordinates in the image frame:

ଵ,ݔ
 = min൛ݑൟ, ଶ,ݔ

 = max൛ݑൟ,

ଵ,ݕ
 = min൛ݒൟ, ଶ,ݕ

 = max൛ݒൟ.        (19)

With these steps, we convert the object information from the
world model into the references for perception diagnostics. In
the next section, we discuss the results of perception
diagnostics.

6. RESULTS

In previous sections, we introduce the perception diagnostic
algorithm and the method of generating references from the
world model. In this section, we discuss the results under
different fault cases. As presented in Section 3, the fault cases
included are DNN corner cases, data missing, data freeze and
timing faults.

Due to the lack of similar work in the literature, we didn’t
find a common benchmark to evaluate a perception
diagnostic method. In the two studies on runtime diagnostics
of perception, Ramanagopal et al. (2018) used models trained
with customized dataset (Sim200k) as the target systems to
diagnose, while Dokhanchi et al. (2018) used a different
model without providing statistic result over a dataset. The
literature also shows a variety of definitions on error of object
detection. Ramanagopal et al. (2018) used a fixed threshold
on IoU, while Pezzementi et al. (2018) used flexible
thresholds based on false positive rate.

In this study, all the tests are done in an environment with a
GPU of Nvidia Quadro K2100M. The software is based on
Faster R-CNN with a ZF model pretrained on VOC 2007
trainval and released on https://github.com/rbgirshick/py-
faster-rcnn. Test data is collected from an instrumented test
vehicle. 50 image frames are sampled from the video
recorded by the front camera.

6.1. DNN Corner Cases

This subsection presents the results under DNN corner cases.
Figure 3 shows the false negative and positive rates of each
frame of the test data. Frame 4 generates one of the cases of
false negative. Figure 4 shows the perception results,
references from the world model and the top view of the
world model.

Figure 3. False negative and positive rates of each frame
of the test data. The horizontal axis is the frame index.

There are six objects in the environment based on the world
model. Five of them are in the field of view (FOV) of the
camera, and only one car is detected by the perception
software. The false negative rate is 0.8531. Based on the
value of this indicator, we generate a red decision of corner
case fault type. Meanwhile, the false positive rate is 0.2655
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since the car detection is correct with a slight misalignment
to the reference.

Figure 4. The perception results, references from the world
model and the top view of the world model of frame 4.

Another corner case is identified in frame 35. The results are
shown in Figure 5. With the assumption discussed in
Subsection 4.2, we treat references as ground truth. In this
frame, a potted plant is detected, which is not in the
references. The false positive rate is 1, and generates a red
decision of corner case fault type. The false negative rate is
1, since traffic signs are not detected by the perception
software.

Figure 5. The perception results, references from the world
model and the top view of the world model of frame 35.

6.2. Data Missing

This subsection presents the results under data missing fault.
We simulate data missing by feeding a zero matrix as input
to the DNN for frame 6. Thus, it doesn’t generate any
perception results, as shown in Figure 6.

The spatial variance of this input frame is 8.4207e-09. This
indicates the input is invalid. The final decision is a red for the
data missing fault. For corner cases and data freeze faults, the
decision is yellow, since their evaluations are not applicable.
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Figure 6. The perception results and references
from the world model under a data missing

fault. The horizontal axis of the input spatial
variance chart is the frame index.

6.3. Data Freeze

This subsection discusses the results under data freeze fault.
We simulate the fault by keeping the input frames not
updating from frame 10 to frame 30. Thus, the input images
from frame 11 to 30 are exactly the same as frame 10. The
results are shown in Figure 7.

The results show that since frame 11, the temporal changes
are 0 for input and output layers. Based on these indicators,
the final decision is a red for the data freeze fault for these
frames. The decision of the data missing fault is green, since
the spatial variance is normal. The decision of the corner case
fault is yellow, since the evaluation is inapplicable.

Frame 0 has relatively high temporal changes, since the input
and output of frame 0 is compared with zero matrices instead
of the previous frame.

Figure 7. The temporal changes of input and
output layers when a data freeze fault is

injected from frame 10 to 30. The horizontal
axis of these two curves is the frame index.

6.4. Timing Faults

This subsection discusses the results under timing faults. We
inject a time delay when processing frame 10. The results are
shown in Figure 8.

Figure 8. Processing time of each frame.
A delay is injected at frame 10. The
horizontal axis is the frame index.

The processing time of each frame from 1 to 9 is about 0.49
second, which indicates the regular time to process each
frame. The processing time of frame 0 is 0.58 second. Some
overhead time is used for initializing the memory. Frame 10
has a longer processing time than normal, which is 1.38
second. Based on this indicator, a red decision of timing fault
is generated.

7. CONCLUSION

With the tests discussed in previous subsections, the
perception diagnostics algorithm detects and identifies the
correct fault types, and generates the corresponding
diagnostic decision based on the values of indicators. The
perception diagnostics algorithm can be used in vehicle for
fault mitigation. It can also be used offline for perception
software development, verification and validation.

The future work of perception diagnostics will be focused on
diagnosis based on other references such as temporal
information, scene information, pre-determined images, etc.
They will cover the scenarios when the world model is not
available.
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