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ABSTRACT

Efficient sensor selection for health monitoring of complex
systems is studied for leakage detection and diagnosis in a
reusable liquid rocket engine developed in Japan. The contri-
bution of this study is bridging data-driven and model-based
approach for anomaly detection and sensor placement with
Monte Carlo simulation. Training data that includes varia-
tions of engine operating conditions were obtained from sim-
ulations with reduced order models. Although leakage could
not be detected by conventional univariate red-line judge-
ment, a multivariate data-driven analysis detected the simu-
lated leaks. In the analysis, multiple sensor measurements
are linearly projected onto a vector that characterizes the dis-
tribution of normal and anomalous data. The number of sen-
sors is optimized based on how well leakage was detected. It
was found that only 13 out of 31 sensors were sufficient to
maintain the detection performance. The leakage was located
by evaluating the difference in outputs of selected sensors be-
tween normal cases and those with leakage.

1. INTRODUCTION

Health management based on sensor measurements is in-
dispensable for safe operation of complex industrial sys-
tems (Manohar, Brunton, Kutz, & Brunton, 2018). The num-
ber of sensors that can be installed in such systems is usually
limited, especially in aerospace systems where sensor number
and placement is severely restricted due to cost and because
of inadequate downlink capacity to ground systems. In apply-
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ing machine learning to system health management, a smaller
number of sensors is also preferable because of the curse of
dimensionality. Therefore, optimization of sensor selection
is an important part of the design process required for health
management of aerospace systems.

According to Maul, Kopasakis, Santi, Sowers, and Chicatelli
(2008), there are generally four performance requirements in
sensor selection: observability, reliability, fault detectability,
and cost. They stated that research into sensor optimization
rests on expressing each requirement as an algorithm for eval-
uation. This paper focuses on the third requirement, fault de-
tectability, to optimize sensor placement.

Anomaly detection can be roughly classified into data-driven
and model-based approaches. Data-driven approaches in-
clude a supervised approach that refers to abnormal data and
an unsupervised approach that does not. One of the biggest
problems in the supervised approach is that failures rarely oc-
cur in industrial systems and it is generally difficult to ob-
tain enough abnormal data for training. The unsupervised ap-
proach detects anomalies by measuring deviations from nor-
mal data. This has the advantage that it is easy to obtain re-
quired data and that it can cope with any anomaly because the
given data does not limit the type of anomaly cases. How-
ever, the disadvantage is that it is unclear which part of the
data is characteristic of the anomaly because the anomaly is
unknown to the method.

The model-based approach has recently become a promising
candidate for health management because numerical simu-
lations can model both normal and abnormal conditions (as
shown in Kawatsu, Tsutsumi, Hirabayashi, & Sato, 2020).
The model-based approach first determines reference data to
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Figure 1. Locations of sensors and leaks in the RSR engine.

characterize normal and abnormal conditions, then the abnor-
mality is sought by comparing the similarity of measured data
to the reference data. The advantage of this approach lies in
the conformity of the model to physical reality, and its dis-
advantage is that it cannot be applied without manual mod-
eling. In addition, simulation based on the first principle is
a deterministic method and cannot account for variations of
operating states or noise.

The health management method developed in this study em-
ploys both the model-based and data-driven approaches and
performs data-driven fault detection on the data obtained
from model-based simulations. This approach has not been
often considered because model-based simulations could not
generate enough data for data-driven methods due to their
high computational costs. This study solves the problem us-
ing Monte Carlo simulations with reduced order modeling
(called system level simulations, or SLS).

A reusable liquid-propellant rocket engine, the RSR engine,
was developed by the Japan Aerospace Exploration Agency
(JAXA) and is used as an example of a complex system.
Leakage of cryogenic propellants from pipe connections is
one of the major failure modes which lead to critical ac-
cidents, so a high cost is paid for inspection and mainte-
nance between flights and static-firing tests. However, there
is little difference between leaked sensor values and normal
sensor values, and detection of fuel leakage is hardly possi-
ble with conventional red-line judgement giving a threshold
value. This study focuses on fuel leakage in the RSR engine,
and a methodology for selecting sensors crucial for the leak-
age detection is presented.

2. THE RSR ENGINE

The RSR engine employed in this study was developed in the
Reusable Sounding Rocket (RSR) program (Sato et al., 2014;

Table 1. Specifications of the RSR engine.

Item Value
Propellant LH2 & LOX
Engine cycle Expander bleed
Throttling range 40–100 %
Thrust (sea level) 40 kN
Specific impulse 320 s
Combustion pressure 3.4 MPa
Mixture ratio 6.0

Kimura et al., 2016). The aim of this program is to realize
a reusable rocket that can launch a payload to an altitude of
100 km, return to the launch site, then be ready to fly again
within 24 hours. To meet these requirements, the RSR engine
is equipped with the following features:

1. capability of wide-range throttling;

2. accurate control of the operational sequence;

3. long-lasting durability; and

4. fast, advanced health monitoring.

A schematic diagram of the RSR engine is shown in Figure 1,
and its specifications are shown in Table 1. Propellants for
the RSR engine are liquid hydrogen (LH2) and liquid oxygen
(LOX). The yellow line in Figure 1 represents the cryogenic
liquid hydrogen line, and the red line is the line for hydro-
gen heated by the combustor in regenerative cooling. The
blue line is the oxygen line. This engine employs the ex-
pander bleed cycle, and a fuel turbopump (FTP) and oxidizer
turbopump (OTP) are driven by the heated hydrogen after re-
generative cooling. The rocket engine is a complex system
composed of many components and many valves. As many
as 60 sensors are installed to monitor the engine condition.
The sampling rate of these sensors is 100 Hz.

The RSR engine has been subjected to various operational se-
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Figure 2. Sensor values for normal and leakage cases in the continuous combustion sequence of the RSR engine.

quences in static firing tests to verify its performance (Kimura
et al., 2016). Only the steady-state combustion sequence is
considered in this study. In the engine sequence, 40 % thrust
was maintained for 8 seconds after ignition and then 100 %
thrust for 120 seconds. The measurements taken for this se-
quence are shown by dotted black lines in Figure 2 for three
typical sensors (PC, TT1F, and QCO1). It is found that a
steady combustion state is reached about 20 seconds after ig-
nition according to all other sensors.

3. SYSTEM-LEVEL SIMULATION OF THE RSR ENGINE

As mentioned, the RSR engine needs to be re-prepared within
a short time. However, manual health management of an en-
gine between flights is time-consuming, so fast and accurate
failure prediction and diagnosis has been developed for the
RSR engine utilizing machine learning techniques (Tsutsumi
et al., 2019; Sato et al., 2019). These methods utilize unsu-
pervised learning for data-driven anomaly detection.

A large amount of data is required for supervised data-driven
failure detection. Obtaining sufficient data from experiments
is not realistic because of the time and costs involved. High-
fidelity simulation, such as computational fluid dynamics
(CFD), is another way to generate training data but the phys-
ical models required for simulating a liquid rocket engine in-
clude two-phase flow, chemical reactions, heat transfer, etc.
Using high-fidelity simulation to generate training data in this
way is also unrealistic.

One solution that has been developed is the SLS
model (Satoh, Tsutsumi, Hirabayashi, Kawatsu, & Kimura,
2020). The SLS model for an RSR engine calculates the
pertinent behavior of the system and returns the time-series

values of n = 31 sensors placed in various parts of the en-
gine, such as FTP, OTP, combustor, and regenerative cooling.
Among these 31 sensors, 15 are pressure sensors, 11 are
temperature sensors, and the remaining sensors measure flow
rate, rotation speed, etc. The SLS decomposes the entire
engine into multiple components including pipes, orifices,
pumps, and combustors, and reduced order modeling is
performed to each component.

One example of such model is the calculation of the mass
flow rate through an orifice:

ṁ = kdp R ρA

√
2∆P

ρ
(1)

where ṁ is the mass flow rate, R the resistance coefficient, ρ
the density, A the cross-sectional area, ∆P the pressure dif-
ference, and kdp the correction coefficients (i.e., a parameter
in the model). As for the orifice models, each component
have correction coefficients for adjusting their resistance and
performance. Let θs represent the set of all correction coeffi-
cients.

Pump performance is determined from the state calcu-
lated from the rotation speed, the flow rate, and the Suter
curve (Suter, 1966) that is obtained in advance to repre-
sent its performance. The combustion of fuel and oxidizer
in the combustor is calculated by a chemical equilibrium
program (McBride, Zehe, & Gordon, 2002). The amount
of heat exchanged between the fuel and the regenerative
cooling channel can be obtained from the heat transfer co-
efficient of the combustion gas calculated using the Bartz
equation (Bartz, 1968). Details of the SLS model and the
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parameter θs have been summarized in the literature (Satoh
et al., 2020).

In this study, leakage of the fuel and oxidizer is included in
the model. Leakage is assumed to occur from one of the four
pipes shown in Figure 1: the FTP turbine inlet (Leak 1),
regenerative cooling outlet (Leak 2), fuel-side igniter inlet
(Leak 3), and OTP pump outlet (Leak 4). Leaking of fuel and
oxidizer is simulated by the orifice model shown as Eq. 1. The
parameters for the leakage model are determined as follows.
Assuming leakage into the atmosphere, the pressure differ-
ence from atmospheric pressure is ∆P . The values of kdp
and R in this model are determined according to Kobayashi,
Naruo, Maru, Takesaki, and Miyanabe (2018), which exam-
ined in detail the outflow coefficient of high-pressure hydro-
gen leaked into the atmosphere. The magnitude of the leak-
age is adjusted by the area of hole A, and one of four patterns
from 1π to 4π mm2 is used. The leakage is assumed to occur
before engine ignition. Sudden leaks that may occur during
engine operation are not considered here because they can be
detected by a sudden change in a sensor value.

Based on the static-firing test result for the operational se-
quence of stationary combustion shown in Figure 2, the best
model parameter θ̂s in the SLS was obtained using an ensem-
ble Kalman filter (Satoh et al., 2020). The result of simulating
this sequence using θ̂s is shown as a solid black line in Fig-
ure 2. From the overview on the left side, although there is
a subtle difference between the experimental values and the
simulated ones during the transient period up to t = 80 s, the
values during steady combustion are in reasonable agreement.

The simulation results for leakage of A = 4π mm2 at four
locations using θ̂s are also shown in Figure 2 as blue, yellow,
green and red lines, respectively. There is little difference to
be seen in behavior shown as solid lines for the normal and
leakage cases. It is evident that detecting leaks using these
sensor values is almost impossible.

The detailed behavior when the sensor values have settled are
shown in the enlarged view, the right side of Figure 2. The
experimental values have fluctuations due to system and sen-
sor noise not modeled in the simulation. The mean of the
experimental values and that of the simulation are in subtle
disagreement, which reflects the shortcomings of reduced or-
der SLS modeling. Even worse, these effects are larger than
the small changes due to the leaks, and it is impossible to de-
tect the leaks by comparison with the SLS results of normal
and leakage cases without further measures.

4. MONTE CARLO SIMULATION UNDER NORMAL AND
ABNORMAL CONDITIONS

As shown in Figure 2, measurements show fluctuations due to
sensor noise and system noise, and they vary for such reasons
as the test environment and the state of the system, even if the

same tests are performed normally. Simulation results under
identical conditions are uniquely determined but, because the
SLS model is based on a reduced order model, the result of
an SLS simulation does not always agree perfectly with actual
measurements. The variations and deviations in model-based
anomaly detection have not been explicitly considered as yet.

In order to carry out model-based anomaly detection consid-
ering the above variations and to make data-driven methods
applicable, Monte Carlo simulation is performed to reproduce
the realistic variations. In the Monte Carlo simulation, varia-
tions are introduced to the SLS result using the model param-
eter θs. Random variations δθs are added to the determined
model parameter θ̂s as

θs = θ̂s + δθs, (2)

and varied simulation results within the range of normal oper-
ation are generated. Each element of δθs is chosen indepen-
dently from a uniform distribution to give a ±10 % variance
to the model parameters. In addition, data outside the normal
design range for the RSR engine are excluded. Monte Carlo
simulation was run for 10,000 cases of which N = 8, 800
were normal cases.

Monte Carlo simulation was also carried out on models with
leakage to generate a variety of abnormal data. There were
210 θs parameters, randomly selected from those for normal
8,800 cases. For these selected parameters, four leak loca-
tions and sizes (described in the previous section) were con-
sidered for a total of M = 210 × 4 × 4 = 3, 360 abnormal
cases to be calculated.

The results of the Monte Carlo simulation in normal cases
are shown in Figure 2 as gray lines. The sensor value varies
within the normal design range, and the difference for the ex-
perimental conditions is reproduced. The range of variation
in this Monte Carlo simulation is sufficiently larger than the
range of fluctuation in the experimental values and the dif-
ference between the experimental and simulation values. It
is shown that the Monte Carlo simulation sufficiently absorbs
the difference between the experimental and the simulation
values observed in Figure 2.

The results of the simulations with leakage are within the
range of the Monte Carlo simulation results without leakage,
as shown in Figure 2. This indicates that the normal variation
larger than the effect of the leaks is sufficiently modeled. Fig-
ure 3 shows the histograms of the three sensor values at the
end of the simulated sequence for both normal and leakage
cases. The variation of the sensor value is almost the same,
and the leaking of fuel and oxidizer cannot be detected by
conventional red-line judgment.
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Figure 3. Histograms of sensor values at the end of the simulated sequence (t = 128 s).

5. DEMONSTRATION OF LEAKAGE DETECTION

Figure 2 shows there is no large fluctuation in the sensor
values after the simulation reaches steady state with 100 %
thrust. This paper focuses on leak detection from sensor val-
ues in the steady state as an initial stage of development, and
simulated sensor values at t = 128 s:

x = {x1, x2, . . . , xn} (3)

are used in the following discussion. Results without leakage
are represented as xN (θs). When there is a leak, there are
two additional parameters: the magnitude A and the location
l of the leak. The result can be written xA(θs, A, l). The task
of anomaly detection in this study is to determine whether
the sensor value during steady combustion x originates from
xN (θs) or xA(θs, A, l).

An example of leakage detection using multiple sensor val-
ues is shown below for two sensors (n = 2). Figure 4 shows
the multidimensional space of stationary sensor values where
the normal cases are in the normal space SN and the anomaly
cases are in the anomaly space SA. Focusing on a sensor, the
ranges where the sensor value normally exists is indicated by
the dashed black line, and the range for anomalous cases is
indicated by the dashed red line. Since the dashed red line
overlaps the dashed black line for both sensors, univariate
anomaly detection such as red-line judgement is impossible.

If we can obtain the axis shown by the blue line, all anomalies
can be detected by using both of these sensors. This discrim-
ination can be achieved by projective transformation of the
multiple sensor values onto the projection vector p, which
characterizes the distribution of the normal and anomalous
data. The projection result can be expressed as

s = p · x =
∑
i

pixi, (4)

and indicates how anomalous the sensor values are and is
called the anomaly score.

The problem is how to determine the projection vector p
and calculate the anomaly score. Assuming that the anomaly

space SA is a space shifted in the direction of anomaly vec-
tor a from the normal space SN , one of the criteria to op-
timize p is considered as follows. First, the projection with
the anomaly vector p · a is maximized to increase the effect
of anomalous conditions on the anomaly score. The anomaly
vector a is obtained as the mean of the difference between
normal and anomaly sensor values:

a =
1

M

∑
θs,A,l

xA(θs, A, l)− xN (θs) (5)

On the other hand, the projection of the normal space on the
vector p·SN is minimized so that the effect of variation under
normal conditions is small. Here, the projection p · SN is
defined by the standard deviation of the normal sensor values
projected onto p:

p · SN = std(p · xn) (6)

The projection vector p is obtained to minimize the ratio of
the two projective results:

p = arg min
p

(
p · SN

p · a

)2

. (7)

The result of this optimization can be written analytically as

p = Σ−1
N a, (8)

where ΣN is the covariance matrix of the normal sensor val-
ues:

ΣN =
1

N

∑
θs

(xN − x̄N )(xN − x̄N )T. (9)

This formulation is almost equivalent to Fisher’s linear dis-
criminant analysis (LDA) (Fisher, 1936) and is also applica-
ble when there are more than two sensors.

One may consider using anomaly vector a as projection vec-
tor p. However, as shown in Figure 4(b), the leakage and
the normal cases overlap, and there are indeterminate cases.
This is because vector a contains not only the direction of
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Figure 4. Discrimination of anomalies by linear projection in the multidimensional space of sensor values.

the vector p peculiar to the abnormal condition but also the
component of the variations under normal conditions. An-
other choice would be to use principal component analysis
(PCA), which achieves the projection for maximum variance.
As shown in Figure 4(b), however, a similar overlap exists,
and leakage again cannot be detected. Since PCA searches
for the direction of maximum variance in normal (and abnor-
mal) cases, the component of normal variation is included in
the first principal component.

According to Eqs. 4–9, the projection vector p was ob-
tained from the result of the Monte Carlo simulations, and
the anomaly score s of each simulated case was obtained by
projecting the sensor data x. Note that the sensor data here
is normalized by subtracting the averaged value for normal
cases x̄N . The histograms of the anomaly score for the nor-
mal and abnormal cases are shown in Figure 5. The average
value of the anomaly score in the normal case is zero due to
normalization. Leaks from the LH2 line, Leak 1, 2, and 3,
show a similar tendency, a distribution different from that of
the normal case, although there is a small overlap with the
normal case. The projection results for Leak 4, leakage from
the LOX line, are all out of the distribution for the normal
case. The four peaks in this distribution correspond to the
size of the leak hole A. The results obtained here indicate
that leakage can be detected by using a linear transformation
in the multidimensional space of sensor values.

6. SENSOR SELECTION BASED ON FAULT DETECTION
PERFORMANCE

In this section, reduction of the number of the sensor is inves-
tigated by optimizing the combination of sensors so that the
performance of leakage detection is maximized. There are 2n
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Figure 5. Histogram of the anomaly score s for the normal
and leakage cases.

available combinations of sensors, and it is time-consuming
to evaluate the performance for all combinations by brute
force. Therefore, a greedy approach is employed, and sen-
sors are removed one by one.

The procedure for the greedy method for sensor optimization
is as follows. First, one sensor is removed from the classifier
that uses all n sensors. There are n candidate sensors to be
removed, and, n classifiers using n − 1 sensors can be ob-
tained by trying all of them. The performance score of detec-
tion is calculated for each classifier, and the classifier with the
highest score is adopted as the classifier using n− 1 sensors.
Next, another sensor is removed from the obtained n−1 sen-
sor classifier. All of the n − 1 candidates are tested, and the
one with the highest score is adopted as the classifier using

6
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n− 2 sensors. By repeating the same procedure, the number
of sensors can be reduced one by one.

Instead of the linear projective transformation, a linear sup-
port vector machine (SVM) is employed as the classifier. Lin-
ear SVM is a general supervised machine learning method for
discrimination that can derive a data-adapted transformation.
For convenience, let y = 0 indicate the sensor value x for the
normal case, and y = 1 indicate the result for the anomaly
case. The linear SVM uses (a part of) the sensor value x as
input and y as output, and discriminates positive and negative
examples by the following linear transformation:

y = step(p · x+ b) (10)

where p and b are parameters in SVM. Note that other meth-
ods such as decision tree, neural network, discriminant anal-
ysis in the previous section are also available for discrimina-
tion.

In the implementation of an SVM, 800 normal cases out of
8,800 and 480 abnormal cases out of 3,360 were used as test
data, all the rest as training data. The area under the curve
(AUC) score of the receiver operating characteristic (ROC)
curve (ROC-AUC score) was used as the detection perfor-
mance score. Instead of directly using the sensor value x,
the input data to the SVM was standardized so that the mean
and standard deviation of each sensor value were 0 and 1, re-
spectively. Hyperparameters of the SVM were determined by
cross-validation using the ROC-AUC score. The SVM and
cross-validation programs are implemented by scikit-learn, a
widely used open-source Python library for machine learning.

The ROC curves for leakage detection using the SVM are
shown in Figure 6. The ROC curve for more than 10 sensors
show a similar performance, and roughly 80 % of the faults
can be detected from the sensor data with a false alarm rate
of about 10 %. However, the ROC curve for 9 sensors is
generally lower than the other curves, and its performance is
obviously poor.

Figure 7 summarizes the relationship between the number of
sensors and the ROC-AUC score. It is indicated that the per-
formance is almost the same for using all n = 31 sensors
and using only 13 sensors. For models with the number of
sensors between 13 and 31, the performance is slightly better
than that using all sensors, even though the number of sensors
is reduced. This reflects the resolution of the curse of dimen-
sionality. Further reduction in the number of sensors from 11
results in severe degradation of performance. Although the
interpretation of the combination of the selected 13 sensors
are not yet known, the advantage of the efficient sensor selec-
tion based on the data-driven method is evident.
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7. FAULT DIAGNOSIS USING SELECTED SENSORS

In a complex engine system such as shown in Figure 1, it was
a significant advance to realize effective leakage detection.
To reduce maintenance and cost, identifying the location of a
leak is an important part of fault diagnosis.

The diagnosis of leakage is tried using the selected sensors.
Two sensors, TT1F and QCO1, are selected, and the differ-
ences of the stationary value between normal and abnormal
cases

∆x = xA(θs, A, l)− xN (θs) (11)

are evaluated, and then scattered as in Figure 8. According
to the location of the leak, ∆x is classified into four groups.
Therefore, by constructing a multi-class classifier using ∆x,
finding the location of a leak is possible.

When this approach is applied to flight data or static firing test
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results, normal data corresponding to the engine condition
when the anomaly occurs is necessary. However, as shown in
Figure 2, it is currently difficult to distinguish the engine con-
dition and obtain normal data. Further study is required for
better diagnosis of leakage, and demonstration of this method
also is a future issue.

8. CONCLUSION

Leaks of cryogenic fuel and oxidizer from pipe connections is
one of the major failure modes of a reusable liquid rocket en-
gine. To reduce maintenance and cost, efficient sensor place-
ment for leakage detection and diagnosis was studied. To
avoid expensive experiments on complex systems, the train-
ing data (including variations in engine operation) was ob-
tained by Monte Carlo simulations using reduced order mod-
eling.

It was demonstrated that leaks could be detected by perform-
ing the appropriate linear projective transformation for the
stationary values of multiple sensors, while conventional red-
line judgement could not. Based on the performance of leak-
age detection using a linear SVM, the sensor placement was
optimized by the greedy approach. It was shown that the
ROC-AUC score could be maintained using only 13 of the
31 sensors. Using only some of the selected sensors, the lo-
cation of the leak could be identified from the difference be-
tween normal and abnormal cases. It is required to validate
of the proposed methods in the future, and there is a plan to
conduct experimental hydrogen leakage tests to validate the
SLS modeling and the methods.
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NOMENCLATURE

A area of the leakage hole
b bias parameter in SVM
kdp correction coefficient in the orifice model
l indicator for location of leakage
ṁ mass flow rate
M the number of anomaly cases
n the number of sensors
N the number of normal cases
p, pi projection vector and its component
P pressure
R resistance coefficient in the orifice model
s anomaly score
SA, SN space of sensor values for anomaly and normal

cases
x, xi vector of sensor values and its component
xA,xN sensor values for anomaly and normal case
x̄A, x̄N averaged sensor values for anomaly and normal

cases
θs set of all parameters for SLS
θ̂s the most likely parameters for SLS
ρ density
ΣN covariance matrix of normal sensor values
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