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ABSTRACT 

The performance of a machine learning model depends on the 
quality of the features used as input. Research into feature 
extraction methods for convolutional neural network (CNN)-
based diagnostics for rotating machinery remains in a 
developmental stage. In general, the input to CNN-based 
diagnostics consists of a power spectrum without significant 
pre-processing. This paper introduces octave-band filtering 
as a feature extraction method for pre-processing a spectrum 
prior to use with a CNN. This method is an adaptation of a 
feature extraction method originally developed for noise 
measurement. The method developed for diagnosis of 
machinery faults differs from filtering methods applied to the 
noise measurement in that its filter design reflects the 
knowledge of a bearing’s characteristic frequencies. The 
effectiveness of octave-band filtering is demonstrated 
through a case study. The method reduces the CNN size and 
improves the diagnostic accuracy in a noisy environment. 

1. INTRODUCTION 

Deep learning-based prognostics and health management 
systems have been inspired by audio-visual applications of 
deep learning such as image classification and speech 
recognition. The process of detecting faults for rotating 
machinery using vibration data is similar to the process of 
transcribing a speech. They both process one-dimensional 
time-domain data and find patterns in the data to determine 
outputs. 
 
A speech recognition system comprises two models: an 
acoustic model and a language model. An acoustic model  
extracts acoustic characteristics from the system input and a 
language model estimates sequences of words using those 
characteristics. State-of-the-art speech recognition systems 

(He et al., 2019, Synnaeve et al., 2019; Saon et al., 2017) use 
a combination of a convolutional neural network (CNN) and 
a recurrent neural network (RNN) to generate a combination 
of an acoustic and a language model. 

Many deep learning-based diagnostics for rotating machinery 
that use CNNs to extract vibrational characteristics are an 
adaptation of the CNN structure of speech recognition 
systems. Janssens et al. (2016) used a one-dimensional CNN 
to diagnose machinery faults using a power spectrum of 
vibration data. The diagnostics often incorporate domain 
knowledge into a CNN structure. Zhao et al. (2017) 
developed a CNN structure having dynamic weighting layers 
that are applied to wavelet coefficients. The structure enables 
automatic feature selection while other systems select 
features manually during the training process. The usage of 
an RNN is optional when determining machinery health state 
as some machinery data may not have sequential information 
useful for diagnosing health. 

In comparison with advancements in the structure of CNNs, 
feature extraction methods for diagnostics have room for 
improvement. Jiang et al. (2019) used the mel frequency 
cepstral coefficients (MFCCs) (Davis & Mermelstein, 1980) 
as inputs for CNN-based bearing diagnostics and 
demonstrated the robustness of the diagnostics to Gaussian 
noise. As the MFCCs are derived from the human auditory 
system, their direct use may result in the loss of useful 
information for detecting machinery faults. Although Sun et 
al. (2017) introduced compressed sensing to compress raw 
vibration data using a random Gaussian matrix, this method 
utilized the characteristics of generic vibration data. Previous 
researchers did not incorporate domain knowledge into the 
way they process vibration data. Therefore, their feature 
extraction methods may omit defect frequencies of rotating 
machinery such as characteristic frequencies of a bearing. 

State-of-the-art speech recognition systems use an 
established domain-specific input, the mel frequency 
cepstrum (MFC). The MFC is a power spectrum that is 
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filtered by a mel filter bank. A mel filter bank consists of 
bandpass filters that analyze logarithmically scaled frequency 
bands. The filtering compensates for discrepancies between 
human nonlinear auditory perception and the spectral 
representation of sound on a linear scale. As a result, the MFC 
result encompasses a relatively large number of frequency 
components in low-frequency bands, and a small number of 
frequency components in high-frequency bands compared to 
frequency components’ composition of a power spectrum 
that uses a linear frequency scale. The logarithmic scale, a 
mel scale, models human pitch interpretation. By infusing 
auditory knowledge into the feature extraction method, the 
performance of speech recognition models improves while 
reducing the size of original inputs. 

This paper introduces octave-band filtering as a feature 
extraction method that is inspired by the development of the 
MFC. The method analyzes a power spectrum using an 
octave filter bank. The frequency bands of filters that 
comprise the bank are designed with the knowledge of a 
bearing’s characteristic frequencies such as inner race ball 
pass frequency, and outer race ball pass frequency. The 
filtering minimizes the loss of useful information for 
diagnosis and improves diagnostic accuracy. The filtering 
also reduces the CNN size as a result of input size reduction. 

2. METHOD 

Octave-band filtering is spectral analysis that uses octave 
filters as bandpass filters for noise measurement. This paper 
uses the filtering to pre-process a power spectrum of vibration 
data prior to using a CNN for rotating machinery diagnosis. 
The vibration data are collected from an accelerometer, 
which is mounted near or at an element of rotating machinery. 
An overview of the developed pre-processing method that 
includes octave-band filtering is shown in Figure 1. 

Vibration data are divided into several segments by sliding a 
Hann window. The windowing provides a certain length of 
time-domain data for Fourier transformation and 
compensates for spectral leakage. The magnitude squared of 
the Fourier transform generates a power spectrum, which is 
fed to a modified octave filter bank. The filter bank bins the 
spectrum at certain frequency bands, multiplies weights, and 
sums the weighted bands. The output of the filter bank, an 
octave frequency cepstrum (OFC), is converted to decibels 
and has a reference power of 1 g2/Hz. 

An octave filter bank is an array of octave bandpass filters 
that are defined based on the ANSI S1.11-2004 standard 
(2004). Similar to bandpass filters in a mel filter bank, the 
range that each octave filter handles, the bandwidth, is 
logarithmically scaled. 

 
Figure 1. An overview of the developed feature extraction 

method. 

The range of the ith filter’s frequency band (fi, fi+1) is defined 
as follows:  

where l is the number of filters in one octave and determines 
the frequency resolution.  

The bandwidth setting helps to identify and isolate 
characteristic frequencies in rotating machinery. In general, 
the characteristic frequencies can be categorized into two 
types. The peaks in a power spectrum that are located below 
1 kHz are associated with the defective components’ impact 
frequencies. These frequencies include inner race ball pass 
frequency (BPFI), outer race ball pass frequency (BPFO), 
and ball spin frequency (BSF). The locations of the 
frequencies are determined by the structural features of the 
defective components, and the distance between the 
frequencies is relatively short. Since octave filters have a 
narrow bandwidth in this frequency region, these frequencies 
can be efficiently isolated.  

Another type of characteristic frequency is located at above 
3 kHz. The peaks in the region are related to the natural 
resonances of the machinery components. Compared to the 
defect frequencies, the peaks have a broad width and small 
magnitude. A noisy environment that adds white noise to the 
vibration can attenuate the peaks’ height and hamper finding 
the resonant frequencies. The octave filter’s wide bandwidth 
in  this frequency region helps identify these peaks.  

Although the octave filter bank’s logarithmic frequency scale 
is suitable for identifying the characteristic frequencies, the 
bandwidth in the low frequency region can be either too 
narrow or too broad to detect the defect frequencies. In order 
to resolve the issue, a modified octave filter bank is 
introduced that has a minimum bandwidth according to the 
minimum distance among the defect frequencies. The graph 
in Figure 2 shows an exemplary profile of the modified 
octave filter bank. 

 
𝑓𝑓𝑖𝑖+1
𝑓𝑓𝑖𝑖

= 2
1
𝑙𝑙 , 𝑖𝑖 = 1,2,3, … ,𝑁𝑁 (1) 
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Figure 2. The profile of a modified octave filter bank. 

Each bar in the graph of Figure 2 represents an octave 
bandpass filter. Based on the original bandwidth definition in 
Eq. (1), the first few filters that have a narrower bandwidth 
than k are replaced to filters that have a fixed bandwidth k. 
The bandwidth of the original filters before the replacement 
is too narrow to capture any defect frequencies. The fixed 
bandwidth ensures the minimum filter resolution to isolate 
the defect frequencies. The bandwidth k is determined by half 
the minimum distance among defect frequencies.  

The filters that have a logarithmic frequency scale come after 
fixed bandwidth filters when the logarithmic bandwidth is 
larger than the fixed bandwidth k. In general, the transition 
occurs at around 1 kHz, and the logarithmic scaling 
contributes to feature size reduction. The bandwidth setting 
follows the original formula in Eq. (1), and the resolution of 
the filter is determined by the number of filters in one octave 
l. The filter number l should be set to contain the peak in a 
high-frequency band in one filter.  

The height of the filters is defined as the inverse of the 
bandwidth. For example, in Figure 2, the filter that has a fixed 
bandwidth of 32 Hz has a height of 1/32 ≈ 0.03. During the 
filtering process, the sum of a spectrum’s magnitudes within 
the filter’s band is multiplied by the height. Therefore, the 
height normalizes the sum’s magnitude. 

3. A CASE STUDY 

The efficacy of the octave-band filtering is demonstrated by 
applying the method to bearing datasets that are provided by 
Case Western Reserve University (CWRU). From the 
datasets, three features are extracted: a power spectrum, an 
MFC, and an OFC, which is the result of octave-band 
filtering. The three features and acceleration data without pre-
processing are used as inputs to train CNN-based diagnostic 
models, and the models’ performance is evaluated. 

3.1. Experimental setup 

The CWRU dataset simulates three bearing faults by 
generating a dent on a drive end bearing’s component that 
includes an inner race, an outer race, and a ball. The faults are 

diagnosed by analyzing acceleration data that are sampled at 
12 kHz while operating a 2-hp Reliance electric motor at 
around 1750 RPM. An accelerometer that collects the data is 
mounted at the 12 o’clock position at the drive end of the 
motor housing.  

Acceleration data are prepared by splitting the data into 
0.25-s time frames without overlapping, and the features are 
extracted by following the developed pre-processing method. 
From the datasets, 2164 time series data are obtained. The 
details about the data are summarized in Table 1. Among 
them, 60% of the data are used for training the CNN, 20% of 
the data are used for validation, and the rest of them are used 
for testing.  

 

The data are processed using a 0.25-s Hann window and 
converted to spectral data through Fourier transform. By 
taking the absolute square of the data, a power spectrum that 
has 1501 frequency components is obtained. The spectrum is 
used for training the first CNN model and is also processed 
to generate an OFC and an MFC. 

In order to obtain an OFC, an octave filter bank is designed. 
A fixed bandwidth is set using the specification of a drive end 
bearing (6205-2RS JEM SKF) that is provided by CWRU. 
Since the bearing’s rotating frequency is about 29 Hz, the 
bearing’s BPFI, BPFO, and BSF are 158 Hz, 105 Hz, and 137 
Hz, respectively. Since the minimum distance among them is 
21 Hz, the linear bandwidth k should be 10.5 Hz. Because the 
motor’s rotating speed varies over time, the bandwidth is set 
to 8 Hz, which gives a safety margin to segregate the 
bearing’s defect frequencies. The number of filters in one 
octave l is set to 16 after examining some spectral data to 
determine if the setting identifies global maxima in the 
frequency region where elements in the electric motor 
resonance. The filter bank designed by this process generates 
an OFC that has 103 frequency components. 

The process of generating an MFC is similar to the OFC 
generation process. The mel scale is calculated using 
Slaney’s formula (1998), which is implemented in 
MATLAB. The formula creates the scale between the lowest 
and highest frequency to be expressed, with the number of 
filters as a hyperparameter. The lowest and highest 
frequencies are set here at 0 Hz and 6 kHz, accordingly. In 

Table 1. The composition of the dataset  
 

Fault Size Label 
Normal 564 0 

Ball fault 640 1 
Inner race fault 640 2 
Outer race fault 320 3 
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order to make a fair comparison with the CNN model that is 
trained using an OFC, the number of filters is set to 103. 

All spectral features are rescaled from 0 to 1 using a 
constrained min-max scaling function as follows: 

where M and m represent the maximum and minimum input 
threshold, accordingly. In this experiment, M and m are set to 
0 and –80, respectively. If an input x falls outside the range 
defined by the thresholds, the scaling function sets the input 
to the nearest threshold. 

The CNN models diagnose the drive end bearing’s health 
state regardless of the severity of the damage and the motor 
load. The high-level schematic of the models is shown in 
Figure 3. The models have a base CNN structure to find 
patterns in spectral features that are related to the bearing’s 
state and determine the state of the bearing. The three CNN 
models that have hand-crafted spectral features as inputs only 
use the base structure. The CNN model that has raw 
acceleration data as inputs extracts spectral features by 
inputting the data into a convolutional module. 

The models’ base structure is shown in Figure 4. The 
structure. The input layer size of the structure is determined 
by the size of spectral features to be analyzed. To avoid 
overfitting, the structure has only one convolutional module 
and two fully connected layers. The structure’s inputs go 
through a one-dimensional convolutional layer (Conv 1D) 
with eight filters. The output of the Conv 1D, called a feature 
map, is compressed using a one-dimensional max-pooling 
layer (MaxPool 1D). This layer finds maximum values while 
sliding a window.  

The compressed outputs are flattened and fed to a fully 
connected layer (FC) to find correlations between the health 
state and the outputs. The Conv 1D and FC use a rectified 
linear unit (ReLU) function as an activation function that is 
defined as follows: 

where z is the result of convolution. This function enables the 
model to express nonlinear relationships between inputs and 
outputs. 

The FC is connected to an output layer to decide the health 
state using a softmax function as follows: 

where k is the order of output nodes, and z is the output of the 
FC’s matrix multiplication.  

 

Figure 3. An overview of convolutional neural network 
model for rotating machinery diagnosis. 

 

Figure 4. A convolutional neural network structure for 
rotating machinery diagnosis. 

 

Figure 5. A convolutional module to extract spectral 
features from raw acceleration data. 

The structure has four nodes that indicate four states: healthy, 
an inner race fault, an outer race fault, and a fault on a ball. 
The model decides the health state by selecting the node that 
has the maximum value among them. 

 𝑥𝑥′ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑖𝑖𝑚𝑚(𝑚𝑚,𝑀𝑀),𝑚𝑚)−𝑚𝑚
𝑀𝑀−𝑚𝑚

  (2) 

 𝑓𝑓(𝑧𝑧) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑧𝑧) (3) 

 𝑓𝑓(𝑧𝑧𝑖𝑖) =
𝑒𝑒𝑍𝑍𝑖𝑖

∑ 𝑒𝑒𝑍𝑍𝑘𝑘𝑘𝑘∈𝐾𝐾
 (4) 
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The convolutional module is shown in Figure 5. This module 
was devised by Hoshen et al. (2015) for speech recognition. 
Their work showed that a convolutional layer can function as 
finite impulse response (FIR) bandpass filters. 

The Conv 1D in the module in Figure 5 works as FIR 
bandpass filters and the MaxPool 1D compresses the Conv 
1D’s outputs. Since the filter length determines frequency 
resolution, the kernel size of the Conv 1D is set to 300. This 
setting enables the filter to decompose accelerations with 
about 43 Hz frequency resolution. 

In order to match the output size of the module with the  
feature size of the MFC and the OFC, the pooling size of the 
module is set to 26. The output of the module, a feature map, 
replaces hand-crafted spectral features and is fed to the base 
structure’s input. 

All CNN models are trained using an Adam optimizer 
(Kingma & Ba, 2014) with constant learning rate of 0.001. 
Each neural layer’s weights in the models are initialized 
depending on its activation function type. A ReLU based 
layer’s weights are initialized using the He initializer (He et 
al., 2015), and a softmax based layer’s weights are initialized 
using the Xavier initialization (Glorot & Bengio, 2010). All 
neural layers’ biases are initialized to zero. The training 
continued until the training epoch reached 80 and the model 
that shows the minimum validation loss during the training is 
selected for testing. 

3.2. Experimental results 

In order to show the characteristics of an OFC in comparison 
with other spectral features, a power spectrum, an MFC, and 
an OFC are extracted from the same acceleration data and 
plotted in Figure 6. The asterisk and circle markers in the 
graph represent the central frequencies of the MFC and the 
OFC, respectively.  

Octave-band filtering compresses the size of a power 
spectrum by 93% while preserving the characteristic 
frequencies of a bearing. The MFC reproduces the overall 
shape of the power spectrum, including the approximate 
location of prominent minima and maxima. Although the 
MFC has the same number of compressed features, the OFC 
has higher frequency resolution in the low-frequency region. 
This difference impacts the identification of bearing defect 
frequencies. 

In Figure 7, the graph’s low-frequency region (0–250 Hz) is 
magnified, and three defect frequencies are annotated using 
vertical dashed lines. In the graph, the MFC has only nine 
frequency components in the region, while the OFC has 29 
frequency components. Both the MFC and the OFC capture 
the peaks at the BPFO and BPFI because both cepstral central 
frequencies are located near the defect frequencies.  

 
 Figure 6. Spectral features of a data sample: a power 
spectrum, a mel frequency cepstrum, and an octave 

frequency cepstrum. 

 
Figure 7. Bearing’s defect frequencies and center 

frequencies for three spectral features 

On the other hand, the MFC is not able to localize the BSF. 
The MFC’s central frequencies are located away from the 
BSF. Moreover, if the motor speed were to decrease, the 
distance between the defect frequencies would get closer, so 
the MFC would not distinguish between a BSF and a BPFI.  

In order to reveal the observed differences among the MFC 
and the OFC in the input analysis, the acceleration data for 
testing are perturbed by adding white Gaussian noise into the 
data. The noise level is set to a 5 dB signal-to-noise ratio. The 
added noise distorts the landscape of spectral features. 
However, the frequency components that are related to defect 
frequencies are not distorted.  

All CNN models are trained and validated using unperturbed 
training data, and the perturbed data are used for testing. This 
setup reveals whether the CNN models interpreted the 
defective frequencies as important features for the models’ 
decisions. The noise fades some patterns in the spectral 
features that are generated due to the dependency among 
data. If a trained model learned these features to decide the 
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health state, this manipulation can interfere with the model’s 
decision resulting in low test accuracy. 
 
To show how models converge, exemplary loss curves of the 
four CNN models are shown in Figure 8. The graphs’ titles in 
Figure 8 represent the trained models’ input type. The 
models’ training and validation losses were recorded at every 
epoch. All models converged in the training process, but their 
convergence rates were different depending on the number of 
spectral features that were used for diagnosis.  

The model that uses a power spectrum had 1501 spectral 
features as inputs, and it converged at 10 epochs. On the other 
hand, the other models have 103 spectral features as inputs, 
and they converged at about 40 epochs. This result indicates 
that the redundant features in the power spectrum accelerate 
a model’s learning curve, although this redundancy does not 
improve a model’s accuracy. 

The performance of the four models for the second 
experiment is listed in Table 2. 

 
The training and testing procedure are conducted five times 
without replacing data, and the mean and standard deviation 
of the results are calculated. This experiment evaluates the 
CNN models’ capability to learn informative features. The 
model that uses an MFC (MFC model) shows the worst 
accuracy due to the model’s overfitting. Three test records 
out of five have accuracy below 95%, which reduces the 
mean accuracy.  

The accuracy of the model that uses raw acceleration data 
showed a similar problem. One 85% accuracy test result 
dropped the mean accuracy. This result can be related to the 
model’s learning process. Since the model learns spectral 
features by itself, the features do not represent the 
characteristics of the system with as much fidelity as the 
features obtained from the other methods.  

 

Figure 8. Loss curves of four models while training 

The other two models gave consistent test accuracy, and the 
difference between the two models was not significant. The 
precisions and recalls of the results did not show significant 
difference (0.1% difference at most) and the values were 
closed to the accuracy results. 

The confusion matrix in Figure 9 shows the one of the 
overfitted MFC model’s diagnostic results. The labels in the 
matrix represent the states of the bearings. B, IR, and OR are 
the abbreviations of a defect on a ball, an inner race defect, 
and an outer race defect. The model is prone to detect inner 
race faults over other faults. This result supports the analysis 
of features provided above with reference to Figure 6.  

The model’s overfitting may result from the lack of 
information about the defect frequencies. The deficiency 
makes the model rely on frequency characteristics in high-
frequency bands that may have a spurious correlation with 
the bearing’s health.  

The results of the model that uses an OFC (OFC model) in 
Figure 10 contrast with the results of the MFC model. 
Although both the MFC and the OFC have the same number 
of features, the OFC model is able to classify defective 
bearings correctly. These results show the role of defect 
frequencies in diagnostics. 

The number of parameters of the CNN models is related to 
the size of the model and the execution time. The power 
spectrum model is about 14.5 times larger than the MFC and 
the OFC models. The difference between the power spectrum 
model and other models results in the connection between the 
flattened feature map and the FC.  

Table 2. Performance of convolutional neural network-
based diagnostics 

 

Input 
Accuracy Number of 

Parameters Mean Standard 
Deviation 

Octave 
frequency 
cepstrum 

98.66 % 0.69 % 2,196 

Mel frequency 
cepstrum 91.22 % 8.63 % 2,196 

Power spectrum 98.06 % 1.39 % 32,020 

Acceleration 96.54 % 5.82 % 4,828 
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Figure 9. A confusion matrix that shows the diagnostic 
results of the MFC model. 

 
Figure 10. A confusion matrix that shows the diagnosis 

results of the OFC model. 

As the input for a power spectrum processed by a CNN is 
large, the feature map is also large. Since every component in 
the feature map is connected to FC, the CNN model 
processing a power spectrum has a large number of 
parameters compared to the other two CNN models. 

4. CONCLUSIONS 

Vibration-based diagnostics for rotating machinery 
employing a convolutional neural network (CNN) uses 

domain knowledge to improve its accuracy. Creating features 
that reflect the machinery vibrational characteristics is a 
means of infusing domain knowledge into diagnostics. 

This paper introduces octave-band filtering as a feature 
extraction method and develops an approach to incorporate 
knowledge about the machinery’s characteristic frequencies 
into the filtering. The octave-band filtering outputs spectral 
features by analyzing the power spectrum of vibration data. 
The developed approach designs bandpass filters that select 
the frequency bands to be analyzed during the filtering for 
better identification of the machinery’s characteristic 
frequencies. 

The frequency bands in the low-frequency region, usually the 
bands under 1 kHz where the bearing defect frequencies are 
located, have a fixed narrow width to improve the separation 
of those frequencies from each other. The frequency bands 
that are above the low-frequency region are logarithmically 
scaled, resulting in broader bandwidth compared to the fixed 
width bands. This scaling helps the CNN to identify resonant 
frequencies of a bearing’s components because the 
resonances affect the magnitudes of a wide range of 
neighboring frequencies. The scaling is also applicable to 
other rotating machinery elements such as gears and shafts, 
since these elements’ defect frequencies are also related to 
the rotating speed of machinery and their resonance.  

The case study demonstrated the performance improvement 
of CNN-based diagnostics due to octave-band filtering. The 
filtering reduced the spectrum data by 93%, resulting in a 
decrease of the CNN input size by the same amount. The 
decrease in the CNN input size did not affect the diagnostic 
accuracy. The accuracy improved slightly by 0.6%, achieving 
98.66% accuracy in a 5 dB signal-to-noise ratio white noise 
environment, compared to a CNN using spectrum data 
without octave-band filtering.  

The same case study compared the method with mel-scale 
filtering that inspired the development of octave-band 
filtering. The mel-scale filtering extracted the same number 
of spectral features, but its features reflect human auditory 
perception, resulting in loss of information about 
characteristic frequencies of machinery in low-frequency 
bands. The implementation of the mel-scale filtering dropped 
the accuracy by 7.44% compared to the CNN with octave-
band filtering in the same noise environment. 

The results of the case study show that logarithmic frequency 
scaling is suitable for compressing power spectrum of 
machinery vibration. In particular, octave-band filtering 
improves the quality of compression result since it infuses 
knowledge about defect frequencies of a bearing into 
frequency filtering process. The improved quality can reduce 
the risk of overfitting during the training and enhances 
robustness to noise. 
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