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ABSTRACT 

Prognostic models have gained favor for the promise of 

avoiding costly unscheduled operational interruptions. The 

models collect information and make predictions that 

ultimately support a decision for proactive interventions. Yet, 

the overall value proposition of these models can become 

unclear when the prediction errors compound or the observed 

rate of degradation changes.  Any model output is essentially 

a degradation estimate and can be converted to a remaining 

life estimate. This life estimate and its associated confidence 

interval directly influence the decision. Considering both the 

cost of action and inaction, model behavior and uncertainty 

can inform when intervention makes the most operational 

sense. In this manner, an evaluation construct is proposed that 

can serve both to measure performance and optimize it. With 

an effective means of evaluating prognostic models, better 

benchmarks can be established to communicate model 

effectiveness and appropriately schedule routine service. 

1. INTRODUCTION 

Unscheduled or unanticipated component failures present 

serious challenges to the operator. First, there is the prospect 

of lost revenue from the mechanism itself. Second, in order 

to accommodate the first, provisions and spares must be 

stocked to minimize overall disruptions. Third, labor must be 

held in reserve to affect the overall mitigation plan, and 

finally, customers may require compensation for lost service. 

A fifth point may be made regarding the overall market 

perception of the operator. Any disruption presents a 

challenge to reputation, and reputation impacts are not quite 

quantifiable. The combined cost of these challenges are 

nonetheless formidable, and so there is an interest in 

developing strategies to avoid unscheduled failures in the 

first place, whether by early planned removals, condition-

based maintenance, or data-driven prognostic models. 

Recent trends in compute availability, data storage, and 

sensor proliferation have expanded the scope for prognostic 

models and prognostic health management (PHM). Models 

become feasible when the degradation modes are observable 

with the available sensors, the data processing infrastructure 

exists, and a timely mitigation plan is implementable. A 

model that is implemented for PHM is essentially a 

degradation estimate. 

There is no single approach to prognostic model 

development, as they can incorporate varying levels of 

physics-based modelling, data-driven statistical elements, 

and prior event data. One class of models will simply indicate 

when failure is imminent. These are similar to the ‘low oil’ 

indicator light in an automobile. A higher fidelity model will 

track degradation over time and estimate the remaining useful 

life (RUL). The automobile analog would be a ‘miles 

remaining’ indicator on a fuel tank. The fidelity of the model 

correlates closely to the amount of operational flexibility it 

allows the end user along with the level of confidence in the 

estimate. A low oil light indicator provides almost no 

indication of the actual issue and therefore becomes more 

urgent than a fuel gauge which can predict e.g.20 miles 

remaining range during a trip when assuming a near constant 

fuel consumption rate.  

Beyond the forementioned costs associated with unplanned 

interruptions, regulations may play a role as well. Regulatory 

bodies have investigated the airworthiness equivalency of 

reducing inspection frequency when prognostic health 

monitoring is available (International Maintenance Review 

Board Policy Board, 2018). Under review is a strategy to use 

prognostics to increase inspection intervals and apply 

airworthiness credits for condition-based maintenance (Le, 

Ghoshal, and Cuevas, 2011). However, the framework for 

evaluating these models is not standardized. This deficiency 

will become more acute as more health monitoring methods 

seek airworthiness credits. There is therefore a need to 

formalize methods which best evaluate the performance of 

prognostic models. Shashvat Prakash et al. This is an open-access article distributed under the 
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1.1. Prognostic Models 

The role of a prognostic model is to aggregate available time-

varying data from the component to ultimately support a 

proactive intervention decision. The intended result is to 

provide an operational benefit over allowing an in-service 

failure event. A depiction of the prognostic model 

environment is shown in Figure 1. With sensors providing 

information about the component health, it falls on the system 

to decipher the data and develop a decision architecture that 

drives a discrete maintenance. The burden of the model is to 

fulfill three sub-roles: sensor signal processing (including 

data fusion), accurate estimation of health condition, and 

decision support. Relative to the stream of monitoring inputs, 

the maintenance actions are discrete events. Hence, there is a 

continuous side of the environment where conditions are 

constantly being evaluated and a discrete side that involves 

concrete actions. The model and component bridge the two 

realms. 

Advances in sensors, electronics, and data have enabled an 

evolution from more traditional reliability-based inspection 

and maintenance intervals (e.g. Weibull) to some data 

augmented hybrid. Generally, more information on failure 

modes and usage profiles can drive a more efficient physics-

based maintenance paradigm. However, with the high 

availability of data and computation, these approaches can 

incorporate more data-driven heuristics. Further on the 

spectrum are the purely data-driven approaches, where the 

outcome is calculated by statistical inference (Luo, Namburu, 

Pattipati, Qiao, Kawamoto, and Chigusa, 2003, and Fornlof 

Galar, Syberfeldt, Almgren, Catelani, and Ciani, 2016). 

While this allows for decisions outside the realm of human 

expertise, they are more difficult productionize since the 

outcomes are less explainable. To overcome the lack of 

interpretability and transparency of data-driven models, 

reliable uncertainty quantification (UQ) is required. UQ is 

critical for decision making in real world scenarios. Yet, 

many data-driven models with promising RUL estimations 

provide deterministic solutions that lack the UQ component. 

Among these data-driven models, different types of deep 

learning (DL) models have shown the most promising results 

in RUL estimation. Most common DL architectures for RUL 

estimation include Convolutional Neural Networks (CNNs) 

(Zhu, Chen, Peng, 2018), (Li, ding, and Sun, 2018), (Ren, 

Sun, and Wang 2018), Recurrent Neural Networks (RNNs) 

(Zhang, Xiong, Hem and Pecht, 2018), (Song, Li, Peng, and 

Liu, 2018), (Deng, Zhang, Cheng, Zheng, Jiang, Liu, and 

Peng, 2019), Transformers (Ding and Jia 2021), Auto-

Encoders (AE) (Ren, Sun, Cui, and Zhang, 2018) and Deep 

Belief Networks(DBN) (Zhang, Lim, Qin, and Tan, 2017).  

Attempting to attribute UQ to DL models is an active area of 

research. Bayesian modeling an effective way to introduce 

uncertainty to a DL model by treating the previously 

deterministic weights and random variables. In recent years, 

 

Figure 1. Prognostic analytic diagram. Sensor signals are 

continuously fed to a failure estimation model, which 

supports a decision for discrete maintenance. 

 

Figure 2. Prognostic model environment and structure with physics and heuristic components. Factors driving 

degradation are not all observable, and degradation is apparent only when observed at failure. The model must align 

the available inputs to the degradation trend with some connection to physical fundamentals. 
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various Bayesian DL (BDL) frameworks have been proposed 

for addressing the uncertainty of RUL estimations including 

BDL framework that estimates both the uncertainty of the 

model (epistemic uncertainty) and uncertainty due to random 

disturbance (aleatoric uncertainty) (Li, Yang, Lee, Wang, and 

Rong, 2021), and Bayesian CNNs (BCNNs) (Mazaev, 

Crevecoeur, and Hoecke, 2021). Additionally, data-driven 

solutions that provided UQ information based on non-

parametric solutions include Gaussian Process Regression 

(GPR)(Biggio, Wieland, Chao, Kastanis, and Fink, 2021), 

and Relevance Vector Machine (Zhang, Lim, Qin, and Tan, 

2017) approaches.  

Combining a physics model with a data-driven one was 

termed as a ‘physics – data hybrid’ by Sprong, Jiang, and 

Polinder (2020). Considering the expense involved in 

preventative maintenance, it makes sense to maintain the 

failure mode models grounded in physics but in a way that is 

enhanced by additional data.  

Model based and expert systems use, respectively, a model 

and a set of rules to infer when the degradation level requires 

attention (Zhang, Li, and Yu, 2006). Models may be trained 

on a set of failure modes each with its own signature and 

associated probabilities in a Hidden Markov Model (HMM) 

(Kwan, Zhang, Xu, and Haynes, 2003). Zhang, Xu, Kwan, 

Liang, Xie, and Haynes (2005) developed and implemented 

an approach where principal components of the input signals 

were mapped to HMM degradation states. Capturing 

degradation modes in this manner may not always be scalable 

across multiple components of a complex system. Further, 

identifying and training against perceived discrete 

degradation states might not be needed if a simple signature 

can be processed out from the available data. The anomaly 

detection methods like HMM and multivariate Gaussian 

methods (Liu and Chen, 2019) work best when there is some 

level of cleaned data. In other words, we need to first 

separate, as best as possible, the signal from the noise in order 

to produce the best detection outcomes. One hybrid approach 

is shown schematically in Figure 2. The system inputs and 

outputs are rarely known to a complete extent. Rather, only 

the observables inputs are captured at some time interval and 

those signals are accompanied with noise. Similarly, real time 

actual output is not traceable, but a sampled version is 

available. The truncated input and output information can 

inform a physics model, with some data-based augmentation 

to compensate for the modeling and sensing deficiencies. The 

goal is to reduce estimation error while maintaining the 

intuition. The ultimate utility of a prognostic model is in the 

level of certainty it delivers to the decision making process. 

The uncertainty around the expected life represents the 

overall operational flexibility offered by the model. As the 

estimate of remaining life diminishes, the horizon to take 

action is a function of the relative error distribution of the 

estimate. 

1.2. Novel Contributions 

This paper will deconstruct the development of a prognostic 

model in two steps described below: 

(1) Signal Estimation: The problem of maximizing a 

degradation signal and minimizing noise, building 

upon previous work in (Prakash and Brzoska, 

2021), (Prakash, Brzoska, and Ensberg, 2022). This 

will involve defining a sensitivity objective, which 

can be maximized to produce an optimal time-series 

filter, and used as a proxy for evaluating signal 

correlation to events. 

(2) Characterizing Error: The amount of uncertainty in 

predicting RUL determines the effective operational 

life before a prognostic removal. As less uncertainty 

provides more operator flexibility, the usefulness of 

a model may be characterized by this metric. 

Optimizing for error increases reliability. 

Finally, the elements will come together in an 

implementation framework. The concepts presented here 

overlap with previous works, but then go on to develop a few 

key assertions not previously mentioned. 

(1) Methods of optimizing a filter to detect 

degradation over background noise are explored 

(2) Numerical examples of signal processing and 

value assessment are provided in detail 

(3) The value in reducing unscheduled expense to a 

scheduled expense can be directly converted to a 

unit of operational life; this life saving is the 

critical ‘break-even’ point 

This paper is organized as follows. First, in section 2, we will 

review the current status quo evaluation, including the binary 

classifier and RUL evaluation metrics like mean absolute 

error (MAE), mean absolute percent error (MAPE), and root 

mean squared error (RMSE). Then, we will propose an 

alternate methods such as (1) signal sensitivity to the event 

and (2) the confidence interval for RUL estimate in section 3, 

including a numerical example where different filter 

objectives are compared. This will constitute the first part of 

the evaluation construct, examining how well the signal 

correlates to the event. Then, we will discuss operational 

impacts that affect the placement of the threshold. Section 4 

will discuss the uncertainty model and how RUL uncertainty 

affects the overall estimation. Section 5 will delve into the 

operational impact of the prognostic model, building up from 

a run-to-failure case and an inspection interval case. Taken 

together, the correlation of the prediction signal to the 

discrete event and the level of uncertainty around the 

remaining life estimate constitute a holistic picture on how to 

evaluate a prognostic model. Section 6 will discuss the 

implementation from start to finish, with a numerical 

example. 
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2. CURRENT MODEL EVALUATION METHODS 

Common assessments of prognostic models have considered 

the overall goal of maximizing reliability (Fornlöf, 2016) or 

the trade-off between part availability versus operational 

efficiency (Pipe, 2008). Such considerations are relevant 

when the model is already operational and logistic questions 

remain. This work will consider whether a given model can 

be tuned to optimize its key performance metrics, and what 

those metrics should be. Currently, in the literature and in 

practice, the commonly accepted evaluation constructs are 

either the binary classifier or the RUL evaluation schemes 

like MAE and MAPE. 

 

Figure 3. The binary classifier confusion matrix, 

showing the outcome when the prediction agrees and 

disagrees with the observed reality. Derivative metrics 

precision and recall capture high-level performance. 

2.1. Binary Classifier 

A common assessments of prognostic model performance is 

the binary classifier [26]. The capability to detect is 

quantified with ‘recall’ and the reliability of prediction is 

similarly quantified with ‘precision’. Recall and precision are 

based on a confusion matrix, where one axis is detection and 

the other reality (Figure 3). If both reality and detection agree, 

the model has scored a ‘true positive’ and if the model alerts 

without the event it is a ‘false positive’ while a ‘false 

negative’ means the model failed to adequately detect. 

 Recall = P (Prognostic Alert | Impeding Event)  

(1)  =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

    

 Precision = P (Impeding Event | Prognostic Alert)  

(2)  =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

 

Recall is then the probability of alerting given the event will 

occur, while precision is the probability of the event 

occurring given an alert has been annunciated. 

2.2. Remaining Useful Life Evaluation Metrics 

When models are developed for predicting RUL specifically, 

the error between the predicted and actual life remaining are 

generally evaluated using a suite of three commonly used 

metrics (Liu and Chen, 2019). These are 1) the mean absolute 

error (MAE), 2) the mean absolute percent error (MAPE), 

and 3) the root mean square error (RMSE). The equations are 

defined in (3)-(5), respectively, where yi is the true and 𝑦𝑖
∗is 

the predicted RUL, and n is the total number of data points. 

 

 𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∗|

𝑛

𝑖=1

 (3) 

 𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
∗

𝑦𝑖

| ∗ 100%

𝑛

𝑖=1

 (4) 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦𝑖

∗)2𝑛
𝑖=1

𝑛
 (5) 

Each of the three performance metrics provides a different 

insight into the results. The MAE gives less weight to the 

outliers which means that the metric is less sensitive to them. 

This also means that it may not adequately reflect the 

performance when dealing with large error values. On the 

other hand, the RMSE is heavily dependent on large errors. 

Furthermore, both MAE and RMSE are absolute errors 

specific to the scale of the data. These metrics do not provide 

any insight into the performance of data at different scales. 

For such application it is better to use MAPE which is the 

absolute error normalized over the data. The MAPE generates 

a metric that can be used to compare results across different 

scales. However, the MAPE does have drawbacks. True 

value data points that are equal to zero have to be excluded 

from the dataset to avoid dividing by zero. Additionally, 

errors at small values of yi will have a large bearing on the 

result (Vuckovic, 2022). 

While the above equations are adequate in evaluating the 

performance of the prediction across all time intervals, this 

unnecessarily over-weights the predictions at large RUL 

values. Indeed, the error tolerance of the prediction is much 

larger when the component is still healthy and the prediction 

is likewise not indicating a critical condition. The MAPE 

algorithm is less affected by this as the evaluation is more 

sensitive at small values of yi, but the sensitivity increases 

geometrically whereas practicality, there is an interval around 

RUL = 0 where the prediction is equally critical to overall 

performance. 

The overall problem of a clear evaluation regime can be 

subdivided into two parts. First, the issue is whether the 

model is properly capturing the intended degradation leading 

up to the event. The second part is the fundamental trade-off 

between too early or unnecessary maintenance against the 

probability of an unanticipated failure. 
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3. FEATURE SENSITIVITY 

A prognostic model is only as effective as its ability to detect 

a set of given failure modes. This is a correlation problem. 

Evaluating a model only on the discrete outcomes (like true 

positives or false positives) misses the nuance of whether the 

underlying degradation is even well observed. 

As depicted in Figure 4, the first problem in estimation is that 

the available data might not be complete. There are 

observable as well as unobservable system inputs that 

contribute to the degradation state. Second, even when the 

degradation is perfectly observable, the derived features will 

detect not only the degradation, but other confounding noises. 

Usually, there are several noise sources, each of which 

operate with a unique frequency signature. In the case of 

aircraft components, often there is a strong seasonality effect, 

driven by ambient temperature variation. Additionally, the 

idiosyncrasies of flight schedules, flight patterns, and daily 

weather also result in high variability. The goal is then to find 

the appropriate filter that can best track the real degradation 

(Figure 4). 

 

Figure 4. Noise in the feature may prevent it from 

accurately capturing the escalating level of degradation. 

A time-series filter can improve the outcome. 

3.1. Filter Design 

A base feature can be derived many ways, usually reflecting 

some amount of physical modeling. While a feature is 

sometimes a directly measured attribute like petal length 

(Dua and Graf, 2017), in PHM applications a feature can 

itself be an estimated quantity like an effective age or crack 

length. However, given limitations on sensing and 

observation, the computed feature will propagate these 

inaccuracies. Therefore, a signal processing step is required 

to improve the overall estimation. A dynamic filter modifies 

the feature in a manner that amplifies certain spectral content 

and suppresses the rest. Filters are commonly applied for 

noise rejection, modeling, estimation, and data fusion. The 

generic linear discretized filter that produces filtered output 

Y from input U has the form: 

 𝑌𝑘 = ∑ 𝑎𝑖𝑈𝑘−𝑖

𝑖

+ ∑ 𝑏𝑗𝑌𝑘−𝑗

𝑗

 
(6) 

The filtered output at time instance k is Yk and the output at 

preceding time samples are Yk-1, Yk-2, …Yk-M. Similarly, the 

input at the current kth instance is Uk and the preceding values 

are Uk-1, Uk-2, …Uk-N. The filter output at the current time 

instance is therefore a weighted summation of current and 

previous inputs, and in some cases, previous outputs. The 

filter coefficients ai and bj are chosen to achieve a spectral 

objective: suppression and amplification or a specified 

frequency range.  

The filter described in equation (6) is a specific case of a 

linear filter. However, the filter structure need not follow this 

form. In this paper, a filter is simply any operation that acts 

along the time dimension of the input and prior outputs to 

produce an output at the current time instance.  

In this case, we wish to evaluate the filter and with this 

evaluation, drive it to an optimal result. In the linear case 

above, we can assign coefficients ai and bj if we have the right 

objective function capturing performance. A description of 

such a performance evaluation criterion follows. 

3.2. Lead Time Aggregation 

Designing the appropriate filter requires an evaluation 

construct. Since the main objective is detection, the ideal 

filter will produce a signal that deviates most from its 

standard values during time intervals preceding known 

events and will return to its standard values once events have 

transpired.  

Capturing the filter behavior across all known events requires 

isolating the filter output for a set lead time interval before 

each event (Figure 5, top).  Each lead interval data point is 

averaged on a time or cycle basis with all other lead time 

traces at the same relative distance from the event. 

 Xi= ∑ Fij/N
N

j=1
 (7) 

The lead interval value X at the ith sample before the event is 

the average of all trace feature values F across N events, at 

the ith value before each j event.  The resulting signal 

represents typical behavior for the signal ahead of an event.  

These aggregated averages X are then standardized using z-

score normalization. 

 𝑍 = (𝑋 − 𝐸(𝐹))/𝑆𝑇𝐷(𝐹) (8) 

The normalized value Z is the aggregated signal value X 

subtracted by the original signal mean E(F) divided by the 

original signal standard deviation STD(F). The z-score 

normalization has the advantage of allowing comparisons 

across all signals with different base units. Further, 

normalization produces a signal in terms of its standard 

deviation value so that the larger values, either positive or 

negative, are more anomalous. 

There may be events which produce no detectable precursor, 

as may happen with a false negative. In that case, all filtered 
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outputs X will be penalized equally, and the event will not 

play a role in filter selection. Conversely, there may be 

maxima in a signal that are not associated with an event. 

These false positives will raise the mean value E(F) and result 

in a lower normalized Z value. 

The aggregated and normalized pre-event trace Z of each 

filter can be considered at some fixed interval before the 

event for comparison (Figure 5). In the figure, the normalized 

and averaged traces of two candidate features are plotted, and 

the time axis has time of event (tE), minimum lead time to act 

before the event (t0), and the initial time of the lead interval 

(ti). Filter 1 in the bottom plot of Figure 5 exhibits maxima 

both well ahead of t0 as well as in the t0 to tE interval. The 

filter value between t0 and tE is irrelevant since there isn’t 

enough lead time to mitigate the event. However, too much 

lead time reduces useful life. Filter 1’s behavior is less 

desirable compared to Filter 2, which has a maximum just 

before t0, providing ample lead time ahead of the anticipated 

event without sacrificing much useful life. 

 Table 1. Evaluation Methods for Lead Intervals 

 

3.3. Evaluation Methods 

The Z value at the critical lead interval, Zc=Z(t0), can be a 

useful gauge of the relative performance of a given filter 

compared to others.  This does not require any arbitrary rules 

or limits, only the process-defined, requisite minimum lead 

time.  

In certain cases, the lead trace Z values can be better 

evaluated with a weighting function V (Figure 5) which rises 

monotonically from 0 at some ti< t0 up to 1 at t0, then 

returning to 0 for the t0 to tE interval. For a given filter, each 

Z value can be combined with its weight V in a weighted sum:   

 

The above equation ascribes a score S to the lead time 

averaged trace by weighting the i Z values with the weights 

Vi. High Z values near the event but before the critical 

actionable time (t0) will have high V weights and increase the 

score while the other Z values will have less bearing on the 

score.  

Applying equation (9) as an objective is functionally close to 

applying Pearson’s correlation, shown as ‘CORR’ in Table 1. 

There is a benefit to equation (9), however, since maximizing 

‘CORR’ can lead to the trivial result where STD(Z) is  

minimal or even near zero. In both cases, the result is a 

correlation of the filtered value against a severity function. 

The V function can be customized to suit the filter objectives. 

Any monotonically increasing function over ti and t0 will 

isolate signal components which show similarly increase 

Method Formula Description 

Critical Z 𝑍𝑐 = 𝑍(𝑡0) 

Aggregated 

normalized value at 

min lead time t0 

Score S i(ZiVi)/i(Vi
2) 

Weighted Correlation 

to value function V 

Correlation 

CORR 

∑ 𝑍𝑖(𝑉𝑖 − 𝐸(𝑉))

STD(𝑍) ∗  STD(𝑉)
 

Pearson’s Correlation 

to value function V 

Recovery R 𝑍(𝑡0) −  𝑍(𝑡𝐸 + ∆𝑡) Ability of feature to 

return to nominal 

Nominal 

Stability 
STD(𝑍(𝑡𝑖 − ∆𝑡 ∶ 𝑡𝑖)) Variance of nominal 

signal 

Monotonicity d/dt Z > 0 Tendency of feature 

to increase 

Estimate 

Uncertainty 

𝑆𝑇𝐷(𝐹(𝑡0))

𝑍(𝑡0)
 Relative error of the 

anomaly 

RUL Error 
𝑍𝑐 − 𝑍

𝑑𝑍/𝑑𝑡
− 𝑅𝑈𝐿 Remaining useful life 

prediction error 

 

S = i(ZiVi)/i(Vi
2) (9) 

 

 
 

Figure 5. Method of averaging the lead intervals before 

each event  
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steadily in the interval. A linearly increasing V value, either 

over cycles or flight hours, best captures the consumption of 

useful life on a cost basis. A sigmoid or step would 

acknowledge that any signal anomaly in the interval has 

comparable value, and loss of useful life is less important. 

Note that correlating with a linear V as a proxy for RUL is 

fundamentally different from measuring RUL prediction 

error. In the former case, we are aiming to converge on a 

degradation estimate that has some increasing trend near the 

event with enough lead time. In the latter case, there is no 

consideration for a critical lead time or the beginning of the 

lead time period, rather the entire history of the RUL estimate 

is compared to the actual RUL. 

3.4. Signal Conditioning 

Employing optimized time-domain filters is a more 

meaningful alternative to the traditional precision, recall, and 

receiver operating characteristic of binary classifiers as well 

as a less ambiguous version of the RUL evaluation criteria. 

The latter methods have niche applications which do not 

translate as well to a continuous signal which can be filtered 

and correlated.  

In this framework, the evaluation methods in Table 1 are both 

a measure of signal correlation to a discrete event and the 

mechanism for obtaining the optimal signal. If V is chosen to 

reflect the value of remaining useful life, the score S and 

correlation CORR reflect monetary benefit of the detector.  

Conceptually, the filter tuning method is a way to model 

missing physical elements in a catch-all filter, with the 

ultimate objective of producing a feature anomaly near 

failure events but with sufficient lead time. This idea is shown 

in Figure 2. True degradation is driven by both known and 

unknown sources.  Detection of the degradation is not perfect 

because confounding factors and sensing limitations 

respectively introduce noise and limit observability.  The 

resulting signals are arranged into features using the known 

degradation mechanisms so that the features are physically 

explainable.  The heuristics acknowledge the imperfections 

in the feature and attempts to compensate for them in order 

to estimate the degradation level. 

3.5. Numerical Results 

Three different objective functions were evaluated against 

simulated degradation data. In order to synthesize data, we 

consider a component which has a lifespan distributed 

normally with mean 1250 cycles and standard deviation 250 

cycles. Over the course of 10000 cycles, there are 7 discrete 

failure events. 

A degradation signature is modeled as a linearly increasing 

signal in the 500 cycles leading up to the event, and zero at 

all other points. This represents a form of physical process 

where the degradation is evident only in the final stage of life 

and progresses at a constant rate until failure. In many 

practical scenarios, the degradation signal may not always be 

present before failure. To simulate this case, the degradation 

element has been removed for failure number 4. This is a 

false negative example. Furthermore, the interval between 

failure numbers 2 and 3 has an additional degradation 

progression that does not immediately precede an event. This 

represents a case where the event record is missing, or a 

different action (aside from the labeled event) resolved the 

degraded state. 

A noisy indicator will contain traces of the component 

degradation and noise from various sources. For this 

example, the noise is a set of 8 sinusoidal signals with random 

amplitudes up to .65 and frequencies spanning .01 to .03 Hz. 

Then, uniform random noise is added with zero mean and 

amplitude 2.5. The resulting noisy degradation signal is 

shown in the top plot of Figure 6. This represents a raw sensor 

signal. 

This raw signal now contains degradation signatures prior to 

each event but one, and an additional degradation signature 

has been inserted between removals 2 and 3. Where these 

signatures exist, they are almost indistinguishable against the 

noise. A plot of lead time traces prior to each of the seven 

events is shown, mean-normalized, in Figure 7. The 

individual profiles are the signal value subtracted by the mean 

and then divided by the standard deviation, in the 500 cycles 

 
Figure 6. (top) Degradation, in red, grows linearly ahead 

of each event except the fourth, and an extra signature is 

inserted ahead of the third event. The sensor signal, in 

gray, is comprised of this degradation signal and 

multispectral noise. (bottom) Filtering the sensor signal 

with filters optimized for different objective functions. 
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immediately before each event. Even though Profile 4 has no 

degradation component, it is similar to all the other profiles 

which do contain the linear degradation. 

Next, a set of optimal filters were developed in the form of 

equation (6). Note that we could have also used a nonlinear 

time series approach like a deep neural net or Gaussian 

process regression (GPR). The coefficients ai and bi were 

chosen to maximize different objective functions listed 

below: 

1. S/STD(X(t0)) 

2. Correlation (CORR) 
3. RUL RMSE 

These three filters with their associated performance metrics, 

compared against the no filter case is shown in Table 2. The 

time series results are shown in the bottom plot of Figure 6. 

Profiles of the resulting filtered signal leading up to each 

event are shown in figures 8-10. 

Considering only the skipped degradation profile, i.e. profile 

4, it is clear that each of the three filters effectively separates 

this case from the others, where degradation is present. 

 

Figure 7. Behavior of the raw sensor signal (profiles) 

ahead of each event. Note that profile 4 had no 

underlying degradation, but it is indistinct from the other 

profiles. 

 

 

Figure 8. Behavior of the filtered signal (profiles) ahead 

of each event, using a filter optimized to the objective 

function S/STD(X(t0)). Note that profile 4 lacks a 

signature and is distinct from the other profiles. 

 

 
Figure 9. Behavior of the filtered signal (profiles) ahead 

of each event, using a filter optimized to the objective 

function based on correlation CORR. Note that profile 4 

lacks a signature and is distinct from the other profiles. 

 

 

 
Figure 10. Behavior of the filtered signal (profiles) ahead 

of each event, using a filter optimized to the objective 

function RUL RMSE. Note that profile 4 lacks a 

signature and is distinct from the other profiles. 
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Beyond that behavior, each filter has its own nuances. Note 

that the best RUL RMSE is achieved not by minimizing this 

quantity, but rather going after either a high score S or a high 

correlation CORR. Also, the recovery behavior post-event 

seems to be slower for the filter that is tuned for RUL RMSE, 

even though it appears to have the lowest noise. By 

eliminating more high frequency content, this filter produces 

a smoother trace which is also slower to respond to an abrupt 

change in condition post-event. 

4. RUL UNCERTAINTY 

The degree of correlation to RUL (as shown with S in 

equation (9)) is more intuitively applicable to prognostic 

models than comparing the error against RUL When S is 

maximized, the optimal filter transforms the base signal F 

such that the aggregated and normalized Z is most correlated 

with RUL. Using S as an evaluation metric avoids the pitfall 

of a growing error near low RUL like the MAE and 

determines whether there is a trend, unlike the MAE. 

Nonetheless, there is the impetus to translate this correlation 

to a RUL since that is the more applicable metric. The degree 

to which the prognostic model can estimate RUL belies its 

fundamental usefulness.  

Having a low degree of confidence in the RUL estimate 

means that operationally, the mitigation must be more urgent, 

perhaps even rising to the level of the unscheduled event 

itself. Hence, there is a direct relationship between model 

operational performance and its RUL uncertainty.  

4.1. Uncertainty Estimation 

If we start with the scenario where the underlying degradation 

signal has been filtered such that the correlation to RUL (via 

an objective like S or C, with a linearly increasing V), the 

resulting signal will be as close to linear as possible with 

RUL. We can consider a conversion from the averaged lead 

interval trace Z to RUL. One technique is described below. 

 𝑅𝑈𝐿𝑒𝑠𝑡 =  (𝑍𝑐 − 𝑍)/(𝑑𝑍/𝑑𝑡) (10) 

Or, alternatively, 

 𝑅𝑈𝐿𝑒𝑠𝑡 =  −�̃�/�̃�′ (11) 

Here, the estimated remaining useful life RULest is the 

difference between the normalized anomaly (Z) at its critical 

value Zc (the value of Z considered effectively failed) and its 

current value Z. We define the margin parameter 𝑍 = 𝑍𝑐 −
𝑍. 𝑍′ is the time derivative of 𝑍 and is equal to −dZ/dt. The 

time parameter t can be expressed in the relevant ‘life units’ 

of operation time or operation cycles. 

The determination of Zc is not trivial, but the ambiguity can 

be factored in symbolically. The variability for the anomaly 

Z and its critical value Zc can be expressed as a combined 

variability on 𝑍 . This variability is denoted ∆𝑍 . If we 

consider the uncertainty around the estimated RUL, we get 

the following relationship 

 RULest =  (∆�̃�′ ∙ �̃� − �̃�′ ∙ ∆�̃�)/𝑍′2 (12) 

The uncertainty of the RUL estimate is governed by not just 

the uncertainty of the anomaly indicator 𝑍, but also its rate of 

change 𝑍′. 

Generally, there is a limit where the uncertainty on the RUL 

estimate ∆RULest approaches a sufficiently large percentage 

of the RUL itself. At this point, any buffer has been expended 

and mitigation will have to be prioritized. We can consider 

the uncertainty normalized by the value itself as a relative 

uncertainty. 

 ∆𝑅𝑈𝐿𝑒𝑠𝑡

𝑅𝑈𝐿𝑒𝑠𝑡

=
∆�̃�

�̃�
−

∆�̃�′

�̃�′
=

∆�̃�

�̃�
+

∆𝑍′

𝑍′
 

(13) 

The analysis shows that the relative uncertainty in RUL is a 

combination of the relative uncertainty in the anomaly 

margin estimate 𝑍 and the relative uncertainty of the slope of 

the anomaly estimate Z′ (Note that Z′ = −𝑍′) 

At large RUL when 𝑍 is also large, there can also be a large 

overall uncertainty ∆ RUL. This is captured by the first term 

in (12). Intuitively, this means the uncertainty for predicting 

the future grows with how far away that future is. But the 

mere virtue of a high RUL does not mean that the relative 

uncertainty (∆RUL/RUL) is high, so long as the rate of 

degradation can be ascertained (Equation (13)).  

Determining the rate of change of anomaly growth and the 

error associated with it has its own challenges. In spectral 

terms, a derivative operator (jω in Fourier Transforms) 

Table 2. Result of different filter objectives on 

performance metrics 

 

 
NO 

FILTER 
𝑺

𝑺𝑻𝑫(𝑿𝒄)
 CORR 

RUL 

RMSE 

ZC 0.76 2.14 2.3 2.28 

STD(XC) 1.16 1.04 1.18 1.11 

S 0.568 1.77 2.07 1.52 

CORR 0.555 0.908 0.937 0.916 

RUL 

MAE 
161 63.9 65.5 100 

RUL 

MAPE 
291 52 52.9 50.5 

RUL 

RMSE 
205 79.1 79.9 128 
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increases linearly with frequency so high frequency noise 

will be amplified. In a general sense, more data drives a better 

estimate so there must be some ongoing degradation before 

the slope and its uncertainty can be ascertained. This 

represents another tradeoff between accurately determining 

the relative uncertainty of RUL and giving up some RUL to 

do so.  

Secondly, the rate of RUL consumption can change due to a 

variety of factors and these changes may not be immediately 

detected. This is a fundamental tradeoff of signal processing. 

Either a lot of time is consumed in forming an accurate 

estimate or there must be a reckoning with high speed but 

inaccurate calculations. 

4.2. Operational Implications 

The threshold for prognostic mitigation, considering only the 

RUL estimate, can be expressed in terms of the relative 

uncertainty from Equation (13). Action should be planned 

when the relative uncertainty is above some fractional value, 

and considering that positive error on RUL is operationally 

palatable while negative error is not. Further, the planned 

action should take into consideration the required scheduling 

lead time for corrective mitigation. We can express the mean 

end of operational life as follows 

𝑇𝑝𝑟 = 𝑀𝑇𝐵𝑈𝑅 − 𝐾 ∗ ∆𝑅𝑈𝐿𝑒𝑠𝑡,𝑒𝑜𝑙 − ∆𝑡𝑠𝑑  (14) 

Here, the average component life (prognostic end of life Tpr) 

with prognostic estimation of RUL is reduced from the 

nominal mean time between removal (MTBUR) by 

subtracting the appropriate estimation confidence interval 

with scale factor K and the time interval required to schedule 

the intervention, ∆tsd. Note that the RUL uncertainty at this 

end of operation condition ∆RULest,eol  is from Equation (12) 

evaluated at Tpr. Since 𝑍 diminishes to small values near end 

of life, and ∆𝑍  ≅ ∆𝑍,  ∆RULest,eol  becomes: 

∆𝑅𝑈𝐿𝑒𝑠𝑡,𝑒𝑜𝑙 ≈
∆𝑍

𝑍′
|𝑡=𝑇𝑝𝑟

 (15) 

In this manner, the uncertainty around the anomaly estimate, 

∆𝑍  scaled by the inverse of the rate of change of the anomaly 

growth Z′ determines a key term in the overall operational 

life reduction. This is an important consideration when 

weighing different strategies for maintenance cost 

management. 

5. STRATEGY ANALYSIS 

The operator can pursue a few different strategies depending 

on resources and data availability. The overall strategy that 

best suits a given scenario can be identified by evaluating the 

relative costs. The goal would be to best characterize the 

advantages and disadvantages of each strategy in a common 

set of unit costs such that the trade-offs can be modeled. 

Fundamentally, maintenance strategies will prefer a lower 

cost of scheduled removal, Csr, over the cost of unscheduled 

removal, Cur provided that there isn’t too much additional 

cost in terms of inspection time and labor and lost operational 

life. 

5.1. Run to Failure Case 

In order to construct the overall cost model, the case of no 

interventions may be considered first. The expected cost per 

unit life (J = C/T) is simply the following: 

𝐽𝑟𝑡𝑓 =
𝐶𝑢𝑟

𝑀𝑇𝐵𝑈𝑅
 (16) 

In this ’run to failure’ scenario the cost per unit life of run to 

failure, Jrtf, is the unscheduled removal cost Cur divided by 

the mean time between unscheduled removal (MTBUR). 

5.2. Inspection Interval Case 

When operational risks of failure are somewhat higher, there 

is occasionally an inspection routine implemented to monitor 

and manage component health. Further, when there is a 

feasibility for in-situ repairs, the overall life may even be 

extended.  

Over the course of component life, the component may be 

removed at final inspection, when the inspection is effective, 

or at its end of life when the inspection is ineffective. The 

total number of inspections over the course of component life 

can be described as follows: 

𝑁𝑖𝑛𝑠 =
𝑀𝑇𝐵𝑈𝑅 + ∆𝑇𝑟𝑒𝑝_𝑔𝑎𝑖𝑛 − 0.5 ∗ ∆𝑇𝑖𝑛𝑠 ∗ 𝑃𝑖𝑛𝑠

∆𝑇𝑖𝑛𝑠

 (17) 

The number of inspections Nins is equal to the total component 

life divided by the inspection interval ∆Tins. The total life is 

increased when there are beneficial repairs by ∆Trep_gain and 

reduced when an inspection with effectiveness probability 

Pins can detect the issue within an inspection period before in-

service failure. For this analysis, we will consider only the 

case where there is no life extension from repairs, i.e. 

removals are the only option. Further, we will assume the 

fractional loss of life with an inspection interval is relatively 

small compared to the overall expected life, the MTBUR. 

This simplifies equation (17) to Nins = MTBUR/∆Tins. 

The total cost of operation for a component undergoing 

regular inspections must take into account the cost of the 

inspections themselves. The payoff is a reduction in 

unscheduled repair costs when the inspection can 

successfully locate the impending failure in advance. The 

cost per unit life of this strategy is given as follows: 

𝐽𝑖𝑛𝑠 =
𝐶𝑖𝑛𝑠𝑁𝑖𝑛𝑠 + 𝐶𝑠𝑟𝑃𝑖𝑛𝑠 + 𝐶𝑢𝑟(1 − 𝑃𝑖𝑛𝑠)

𝑀𝑇𝐵𝑈𝑅
 (18) 

The overall maintenance cost has the summation of the 

inspection costs Cins, the scheduled removal costs Csr when 

the inspection was effective, multiplied by the aggregate 

probability that the failure would be detected by the 

inspection, Pins. The last term captures the unscheduled 

removal costs Cur when the inspection fails to catch the 
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failure mode, with a probability of 1 − Pins. This overall 

maintenance cost is divided by expected component life, 

which was simplified to the mean time between unscheduled 

removals, MTBUR. 

Applying the simplification Nins ≈ MTBUR/∆Tins to (18), and 

incorporating (16) yields the following. 

𝐽𝑖𝑛𝑠 = 𝐽𝑟𝑡𝑓 +
𝐶𝑖𝑛𝑠

∆𝑇𝑖𝑛𝑠

+
𝑃𝑖𝑛𝑠(𝐶𝑢𝑟 − 𝐶𝑠𝑟)

𝑀𝑇𝐵𝑈𝑅
 (19) 

When the costs of inspection Cins or scheduled removal Csr 

are low relative to the unscheduled removal cost Cur, this 

scenario can provide some cost savings over the run to failure 

case Jrtf. Further improving this scenario’s advantage would 

mean increasing the inspection interval ∆Tins or improving 

the effectiveness of the inspection regime in detecting 

impending failures Pins. 

5.3. Prognostic RUL Estimation Case 

With the proper framework, the case of estimated RUL may 

now be examined for the relative cost advantage against the 

run to failure and the inspection cases. Generally, prognostic 

applications require some overhead infrastructure like 

sensors, and data handling, storage, and compute resources. 

These costs will be excluded for the analysis as we consider 

an overall advantage without these contributors. Like the 

inspection scenario, the prognostic has some probability of 

observing the incipient failure with enough lead time to avoid 

the unscheduled event. Unlike the case of inspections, 

however, the operational life lost with an analytic is not 

limited to the inspection time interval, but grows as a function 

of RUL uncertainty, as already shown in Equation (14). The 

lost life from estimation error presents a concrete loss of 

value in terms of lost operational time. The expected life of a 

component with prognostic health monitoring through an 

analytic is as follows: 

𝑇𝑝𝑟,𝑒𝑓𝑓 = 𝑀𝑇𝐵𝑈𝑅 ∗ (1 − 𝑅𝑒) + 𝑇𝑝𝑟 ∗ 𝑅𝑒 (20) 

Essentially, we can expect to see the effective component life 

Tpr,eff reduced when the analytic can detect the failure mode. 

This is the concept of recall Re from Equation (1). When 

there is no detection, the component life is unaltered. 

The overall expected time lost while including the scenario 

of imperfect recall may now be calculated. This is simply a 

manipulation of Equation (20). 

∆𝑇𝑝𝑟,𝑒𝑓𝑓 = 𝑀𝑇𝐵𝑈𝑅 − 𝑇𝑝𝑟,𝑒𝑓𝑓 = 𝑅𝑒 ∗ ∆𝑇𝑝𝑟 (21) 

Here, ∆𝑇𝑝𝑟𝑒𝑜𝑙 Here, ∆T𝑝𝑟 = MTBUR − T𝑝𝑟 . The overall 

maintenance cost per unit life, considering the savings when 

the detection is successful and a penalty for lost operational 

time is expressed below: 

𝐽𝑝𝑟 =
𝐶𝑠𝑟𝑅𝑒 + 𝐶𝑢𝑟(1 − 𝑅𝑒) + 𝛾∆𝑇𝑝𝑟,𝑒𝑓𝑓 

𝑀𝑇𝐵𝑈𝑅 − ∆𝑇𝑝𝑟,𝑒𝑓𝑓

 
(22) 

This equation acknowledges that there is a conversion from 

operational time lost to cost impact. The scale factor γ 

converts the lost time to a cost. One conversion may take γ = 

Ccomp/MTBUR, where Ccomp is the price of a new component. 

This would mean that the price of a component reflects its 

expected service life so lost operational time is as valuable 

monetarily as a fractional price of a new component.  

To compare the prognostic maintenance scenario more 

directly to the run to failure case, Equation (22) can be 

manipulated assuming that the lost operational life ∆Tpr
∗

 is 

small relative to the overall component life, so MTBUR − 

∆Tpr
∗

  ≈ MT BUR. With this simplification, the cost per unit 

life of prognostic maintenance becomes the following: 

𝐽𝑝𝑟 = 𝐽𝑟𝑡𝑓 +
𝑅𝑒

𝑀𝑇𝐵𝑈𝑅
(𝛾∆𝑇𝑝𝑟 − (𝐶𝑢𝑟 − 𝐶𝑠𝑟)) (23) 

The advantage of a prognostic analytic is improved when 

there is a large difference between the unscheduled removal 

cost Cur and the scheduled removal cost Csr, when there are a 

large fraction of failures detected early enough to avoid the 

unscheduled event (recall Re), and when the loss of life ∆T𝑝𝑟 

is relatively small when scaled by the time to cost conversion 

rate γ. The last two criteria are in opposition; detection must 

be early enough to allow for avoiding the event, yet close 

enough to the actual failure so that operational time is 

maximized. 

Substituting the life lost relationships from the previous 

section, as outlined in (14) and (15), the overall advantage of 

a prognostic can be expressed in terms of the RUL 

uncertainty ∆RUL and relative anomaly uncertainty ∆Z/Z′. 

Equation (23) becomes: 

𝐽𝑝𝑟 = 𝐽𝑟𝑡𝑓 +
𝑅𝑒

𝑀𝑇𝐵𝑈𝑅
(𝛾(𝐾

∆𝑍

𝑍′
|𝑇𝑝𝑟

+ ∆𝑡𝑠𝑑) − (𝐶𝑢𝑟 − 𝐶𝑠𝑟)) (24) 

It is evident that the additive costs associated with a high 

anomaly estimation error ∆Z can counteract any value gained 

from avoiding the unscheduled costs Cur − Csr. Key in this 

analysis is the value of K, which scales the uncertainty into a 

confidence interval around the RUL estimation, and γ, the 

conversion from lost time to lost value. 

From equation (24), there is a clear point where the 

prognostic analytic adds value and where is subtracts value 

compared to the nominal run to failure case. Generally, in 

order to show a positive cost outcome, the following must 

hold: 

𝐾
∆𝑍

𝑍′
≤

(𝐶𝑢𝑟 − 𝐶𝑠𝑟)

𝛾
− ∆𝑡𝑠𝑑  (25) 

When evaluated near the end of life, equation (25) can 

determine whether the component should be removed 

proactively or not. The scale factor K represents a confidence 

interval providing some threshold that the part will still be 

functional upon removal. Ultimately, as the ratio Z/Z’ varies 

near the expected prognostic life Tpr, the decision of whether 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

12 

to take action on the indicator will depend on the value of that 

ratio. 

6. IMPLEMENTATION 

Considering all the relationships established so far, a process 

may be implemented to evaluate a prognostic model. This 

would involve two main steps. First, a feature must be 

composed using either a data-driven or physics based 

approach. This indicator will be subject to limitations around 

data availability and sensor noise. Accordingly, this feature 

may be processed in a manner that best reflects the 

underlying degradation. Finally, operational cost 

considerations and signal uncertainties can be factored 

together for the best performing model. 

6.1. Signal Processing 

It is evident that the health indicator should reliably trend 

toward anomalous values as end of life approaches. In the 

most fundamental sense, the indicator should be anomalous 

at a critical stand off period before the event, and this should 

be proven with historical failure data. Time series filters can 

be tuned to reduce noise and amplify the degradation 

signature, as was demonstrated. The most effective methods 

involve maximizing the time correlation of the indicator to 

the remaining useful life, or RUL, either via a weighted score 

S or direct correlation CORR from Table 1. 

6.2. Operational Value Assessment 

Once the sensitivity to degradation has been optimized, 

operational costs may be considered, as described in section 

5. Begin first by establishing a generalized removal criterion, 

considering equations (13) and (14). 

∆𝑅𝑈𝐿𝑒𝑠𝑡

𝑅𝑈𝐿𝑒𝑠𝑡,𝑐𝑟𝑖𝑡

=
∆�̃�

�̃�
+

∆𝑍′

𝑍′
=

1

𝐾
 

(26) 

Here, 𝑍 = 𝑍𝑐 − 𝑍, this is the difference or margin between 

the prognostic indicator value Z and its critical value Zc. Z’ 

and Z’ are the slope and the uncertainty of the slope, 

respectively. Fundamentally, the component should be 

removed when the error margin of the RUL (or RUL) is a 

large enough fraction of the estimated RUL. 

Near the beginning of life, 𝑍 is large and the second term 

dominates the inequality. If there is enough error in 

determining the slope, Z’, or if the slope is sufficiently small 

compared to the uncertainty, this could lead to an early 

removal, or a reduced reliance on the indicator Z. 

Towards the end of life, as 𝑍 shrinks, the first term dominates 

and other considerations become relevant. We may now 

apply the approximation from equation (15) and the 

relationship from equation (27). 

𝑅𝑈𝐿𝑒𝑠𝑡,𝑐𝑟𝑖𝑡 =
�̃�

𝑍′
≈

(𝐶𝑢𝑟 − 𝐶𝑠𝑟)

𝛾
− ∆𝑡𝑠𝑑  

(27) 

According to the equation above, the critical time to remove 

a component depends on the relative cost savings between 

unscheduled and scheduled removal (Cur - Csr), converted 

from cost to time with conversion factor , and then reduced 

by a standard response time tsd. This critical RUL value 

depends on the ratio between the margin of the estimator to 

its critical failure value and the slope of the estimator. As 

either quantity changes, the critical value to remove the 

component changes as well.  

The critical RUL from equation (27) represents a ‘break 

even’ point where any loss of operational RUL is balanced 

by the savings from converting the unscheduled to a 

scheduled removal. If the estimate uncertainty Z is small 

relative to its rate of change Z’, the component may remain 

operational while the inequality in equation (25) remains true. 

6.3. Numerical Results 

An example was generated using simulated operational data 

similar to the one examined in section 3. The assumed values 

are shown in Table 3. 

Applying the relationship in equations (23-25), we see that 

the maximum allowable useful operational time lost due to 

the prognostic is computed as follows: 

∆𝑇𝑝𝑟,𝑚𝑎𝑥 = 𝐾
∆𝑍

𝑍′
+ ∆𝑡𝑠𝑑 = 170 𝑐𝑦𝑐𝑙𝑒𝑠 (28) 

This represents a ‘break even’ where any further operation 

beyond 170 cycles presents positive value. Converting this to 

cost using conversion  yields $850. This is the minimum 

value gain between unscheduled and scheduled cost to make 

this detector viable, or: 

𝛾∆𝑇𝑝𝑟,𝑚𝑎𝑥 = $850 ≤ 𝐶𝑢𝑟 − 𝐶𝑠𝑟  (29) 

Note that neither the recall Re nor the nominal life of the 

component  MTBUR has any impact on the above assessment. 

If we now suppose that Cur-Csr = $5000, we can compute the 

overall cost advantage against the run-to-failure case using 

equation (24): 

𝐽𝑝𝑟 = 𝐽𝑟𝑡𝑓 +
. 75

1350 𝑐𝑦𝑐𝑙𝑒𝑠
($850 − $5000) (30) 

The savings compared to a run-to-failure scenario are about 

$2.305 per cycle, or $2720 per unit if it is removed, on 

Table 3. Initial values for example calculations 

 

Parameter Value 

Z’ .01 score/cycle 

Z 0.8 score 

K 2 

tsd 10 cycles 

 $5 / cycle 

Re 0.75 
MTBUR 1350 cycles 
Cur-Csr $5000 
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average, at the critical time period of MTBUR-Tpr,max=1180 

cycles. This will be true when the RUL determination is at 

170 cycles. 

Note that while there is value in letting the component run 

beyond the RUL=170 cycles point, the risks due to the 

estimation error exceeds the acceptable bounds dictated by 

the confidence interval parameter K. 

7. CONCLUSIONS 

The paper has investigated an evaluation method for a 

prognostic analytic, comparing it to both a run-to-failure case 

and an inspection interval case. While the analytic may be 

based on an understanding of physical degradation, unknown 

effects, confounding factors, and signal limitations will 

present estimation challenges. The level of signal correlation 

to an expected degradation progression is one type of 

evaluation metric, but ultimately the uncertainty around the 

RUL estimation determines the operational benefit. 

The approaches presented here address shortcomings evident 

in alternate evaluation methods like the binary classifier and 

the various RUL estimation errors. The binary classifier 

cannot handle the time varying nature of signals without 

introducing ambiguity and strict errors to RUL throughout 

the life neglect that RUL is most critical near end of life. 

Instead, this paper evaluates behavior in the lead intervals 

ahead of events and considers key behavior patterns like 

whether the signal is anomalous (critical Z from Table 1) or 

whether the signal correlates with the RUL (S score and 

CORR correlation from Table 1). Ultimately, the key marker 

for applied benefit is the uncertainty of the RUL estimate, 

∆RUL. The level of uncertainty can be used to define a 

confidence interval. The uncertainty at the point of decision 

crucially determines one aspect of the expected loss of 

operational life as a result of estimate uncertainty. 

While there is significant cost saving from avoiding 

unscheduled removal events, this savings is possible only 

when failure modes are detectable in advance. Accordingly, 

savings are tempered by lost value in unrealized operational 

time. This time increases with higher estimation uncertainty, 

thereby c1losing the conceptual loop on evaluating the 

prognostic model estimate. 

Understanding and modeling all aspects of degradation 

estimation and operational cost savings reveals a better 

picture of the overall benefit and impact of an analytic. These 

relationships can then be applied to optimize the right model 

parameters or converge to a more optimal model design. 

NOMENCLATURE 

CNN convolutional neural networks 

(B)DL (Baysean) deep learning 

FN false negative 

FP false positive 

 

GPR Gaussian process regression 

HMM hidden Markov model 

MAE mean absolute error (to RUL) 

MAPE mean absolute percentage error (to RUL) 

MTBUR mean time between unscheduled removal 

PHM prognostics and health management 

RMSE root mean squared error (to RUL) 

RUL remaining useful life 

TN true negative 

TP true positive 

UQ uncertainty quantification 

 

Cp pressure coefficient 

Fx X component of the resulting force 

Fy Y component of the resulting force 

m mass 

dt time step 

T temperature 

P pressure 

f, g generic functions 

h height 

I current 

V voltage 

 dummy variable 
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