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ABSTRACT 

The propulsion system in a spacecraft is an important 

subsystem for orbit transfer and attitude control. A fast and 

accurate fault diagnosis system contributes to the safety of 

the entire system. As the system becomes more complex, 

identifying faults, their locations, and root causes becomes 

increasingly difficult. This study utilized Principal 

Component Analysis (PCA) and feature optimization with 

Fast Fourier Transform (FFT) analysis using greedy 

algorithm to achieve fault diagnosis systems for spacecraft 

to replace the current operation based on the expert 

knowledge. By applying PCA to simulation data for the 

faults were successfully detected and their locations and 

root causes identified． 

1. INTRODUCTION 

In recent years, due to the space development beyond 

Earth's orbit, such as the lunar Gateway and Mars 

exploration, there is a demand for the development of 

orbital transfer vehicles capable of transporting supplies to 

such remote locations. In such remote missions, due to 

communication delays between ground stations on Earth 

and spacecraft, autonomous systems that do not rely on 

human decision become necessary. In particular, the 

propulsion system in a spacecraft is an important subsystem 

for orbit transfer and attitude control. Therefore, a fast and 

accurate fault diagnosis system contributes to the safety of 

the entire system. 

In previous research, anomaly detection, isolation, and 

diagnosis methods based on expert knowledge, such as 

expert systems, have been the focus of attention. These 

approaches offer the advantage of diagnosing anomalies in 

more detail compared to the classical red-line judgement 

(Yairi, 2017). However, the preparation of knowledge-based 

systems requires enormous time and human resource costs. 

As the target systems become more complex, these costs 

increase even further. On the other hand, anomaly detection 

systems based on data-driven methods that discover general 

rules and patterns from large amounts of data have gained 

attention in various fields. An advantage of this approach is 

that it does not require complete expert knowledge 

beforehand. However, data-driven approaches require an 

enough amount of data to be collected in advance. Due to 

the high testing costs of spacecraft, data collection through 

physical experiments is challenging.  

In this study, a low computation cost machine learning 

method is proposed for realizing on-board fault diagnosis 

using the data generated by a physical simulation model for 

the supply piping of spacecraft propulsion systems and 

demonstrate the effectiveness of the proposed approach. 

Specifically, the evaluation of an on-board anomaly fault 

diagnosis system using principal component analysis (PCA) 

is conducted using internal pressure data of the spacecraft 

propulsion system obtained from the simulation model 

created by Japan Aerospace Exploration Agency (JAXA), 

with appropriate preprocessing and feature extraction 

applied. 

The remaining sections of this paper are organized as 

follows. Section 2 briefly introduces the previous methods 

of anomaly detection and diagnosis for various systems as 

well as the propulsion systems of spacecraft. Section 3 

describes the physical simulation model built by JAXA and 

the data generated by using it. Section 4 introduces the 

feature extraction of the data and the fundamental concepts 

of the proposed method. Section 5 resent and discuss the 

results of the proposed method. Section 6 presents some 

concluding remarks. 
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2. RELATED WORK 

In this section, an introduction to the previous research are 

provided. Specifically, data-driven anomaly detection 

method related to the approach used in this study is 

discussed. Additionally, research on anomaly detection 

systems for spacecraft are presented. The relationships and 

differences between each study and this research are 

discussed. 

2.1. Anomaly Detection by Using Data-Driven Approach 

Hoan and Nguye (2018) builds a PCA-based anomaly 

detection method for IoT networks. In anomaly detection for 

IoT networks, a low computational cost algorithm is 

desirable for rapidly detecting anomalies in high-

dimensional and enormous amounts of data. The authors 

introduced a new distance calculation method to further 

reduce the computational cost of PCA and achieved high-

precision anomaly detection model with a small number of 

computers. However, IoT anomalies include those related to 

performance (network failures, changes in link traffic, flash 

crowd, etc.) and security (attacks such as denial of service 

attacks, network scans, etc.), and this study is limited to 

anomaly detection without the capability to isolate and 

diagnose the root causes. In contrast, the proposed research 

demonstrates not only anomaly detection but also the ability 

to isolate and diagnose the root causes of anomalies using 

PCA. 

With the development of “deep learning” method, such 

techniques have also been applied to anomaly detection in 

spacecraft. Hundman, Constantinou, Laporte, Colwell, and 

Soderstrom (2018) demonstrated the ability to detect 

anomalies with high accuracy by applying non-parametric 

threshold processing to Long Short-Term Memory (LSTMs) 

for learning and prediction on telemetry data from the 

orbital satellite (SMAP) and Mars rover (Curiosity). 

However, while these deep learning-based anomaly 

detection systems can be operated in ground stations with 

abundant computational resources, their execution on-board 

is challenging due to computational resource and memory 

limitations. In this study, more relatively low computational 

cost and higher feasibility for on-board execution method 

for anomaly detection, isolation and diagnosis is proposed. 

2.2. Anomaly Detection for Spacecraft Propulsion 

System 

JAXA focuses on health monitoring systems for highly safe 

propulsion systems, aiming for the realization of next-

generation orbital transfer vehicles. For example, Kawatsu, 

Noumi, Ishihama, and Nagata (2020) focused on pressure 

propagation called “water hammer” in the piping system of 

spacecraft propulsion systems and proposed an approach to 

fault diagnosis method based on the frequency domain 

dynamic response. This method demonstrated the possibility 

of building a health management system with high 

reliability and robustness using only general pressure sensor 

information rather than traditional system based on attitude 

information. Additionally, it was shown that by building a 

physical model of the propulsion system in a simulation 

environment, it is possible to generate datasets of failure 

scenarios that are difficult to obtain in physical experiments. 

In this study, an anomaly detection method using data 

generated from such physical models is proposed.  

Tominaga, Fujii, Nagata, Wada, Hisada, Kawatsu, and 

Kasai (2022) used lightweight and multi-channel Fiber 

Bragg Gratings sensors (Vohra, 1999) to measure pressure 

fluctuations in supply piping caused by water hammer 

through the physical experiments. They demonstrated the 

feasibility of anomaly detection using the mean squared 

error of the Frequency Response Function (FRF) obtained 

from any two arbitrary measurement points during normal 

and abnormal operation. However, difficulty still exists in 

the determination of threshold to separate fault from normal 

condition, which results in degrading the robustness of the 

method. In addition, diagnosis of the root cause of the fault 

was still a challenge. In this study, a method is proposed 

that not only detects anomalies but also enables the 

separation of abnormal locations and the diagnosis of their 

causes.  

3. PROBLEM STATEMENT 

In this section, the dataset used in this study is introduced. 

The dataset was generated from a fluid simulation model 

created by JAXA (Tominaga, 2023) using SimulationX® 

(SimulationX, 2023), which supports Modelica-based 

(Modelica, 2023) modeling and simulation capability. The 

diagram of the model is shown in Figure 1. Note that the 

propulsion system in this study is simplified compared to an 

actual spacecraft propulsion system. The fluid is driven 

from the left upstream side to the right downstream side and 

the water is pressurized up to 2.0 MPa. Here, SV is a 

solenoid valve that is opened and closed three times with a 

duty ratio of 100 ms open, 300 ms close, and an error range 

is 1 ms. P is a pressure measurement point that the pressure 

data at the point is obtained. BV and BP are accumulators 

for simulating bubble localization, and the amount of the 

bubble injected at this point can be controlled. As an 

example, Figure 2 shows the pressure fluctuations at P1 

under normal conditions. The reason that the timing of open 

and close does not match the pressure fluctuations is that the 

pressure fluctuations generated at the solenoid valve 

position take time to propagate. The large pressure 

fluctuations called water hammer occurs when the valve is 

closed. In this study, the water hammers followed by 

acoustic modes generated inside the propulsion system were 

used for the features of fault diagnosis system. The data was 

divided into three independent datasets for each water 

hammer to increase the amount of data. Detail of the data 

set used in this study is summarized in Table 1. There are 18 

normal data (Case1). Assuming one of the valve failures, 
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there are 3 fault data (Case2-5) for each of the valves SV1 

to SV4, remaining valve are closed. Additionally, there are 

3 abnormal data (Case6-13) each for the bubbles added at 

one of BP1 and BV1 to BV7. 

 

 

Figure 1. The diagram of the simulation model of a 

spacecraft propulsion system. 

 

Figure 2. Time-series result at P1 under normal condition. 

 

4. METHODOLOGY 

In this section, the feature extraction of the data and the 

fundamental concept of the proposed method is introduced. 

4.1. Feature Extraction 

In data-driven methods, including PCA used in this study, 

the feature extraction that extracts variables that well 

represent the differences between normal and abnormal data 

is essential to improve the model. According to Tominaga et 

al. (2022), it is known that there are significant differences 

in the frequency domain between normal and abnormal data 

in pressure fluctuations caused by water hammer. Therefore, 

in this study, data extracted by Fast Fourier Transformation 

(FFT) was used as features. Additionally, basic statistical 

features were extracted from the time-series signal data. 

Table 2 shows the candidate features. To optimize these 

features, a greedy algorithm was used for feature 

optimization. Specifically, for all possible combinations of 

these features, the area under the curve (AUC) based on the 

anomaly scores introduced in the following chapter was 

calculated. The optimal features were determined as those 

that maximize this AUC. By performing a greedy feature 

optimization for the features, a total of three features were 

finally extracted from the seven sensors P1 to P7: the 

standard deviation of the time-series data, and the peak 

frequency values at 0-100 Hz and 100-150 Hz ranges in 

FFT. Thus, the total number of features obtained is 21.  

 

Table 2. List of candidate features. 

 

 Feature name 

Statistical 

Mean 

Standard deviation 

Maximum 

Minimum 

Skewness 

Kurtosis 

FFT 

Peak amplitude at 0-100Hz 

Peak frequency at 0-100Hz 

Peak amplitude at 100-150Hz 

Peak frequency at 100-150Hz 

Peak amplitude at 150-200Hz 

Peak frequency at 150-200Hz 

Peak amplitude at 200-300Hz 

Peak frequency at 200-300Hz 

Peak amplitude at 300-500Hz 

Peak frequency at 300-500Hz 

 

Table 1. List of datasets. 

 

Case name Condition 
Number of 

data 

Case 1 Normal 18 

Case 2 Fault in SV1 3 

Case 3 Fault in SV2 3 

Case 4 Fault in SV3 3 

Case 5 Fault in SV4 3 

Case 6 Bubble anomaly at BV1 3 

Case 7 Bubble anomaly at BP1 3 

Case 8 Bubble anomaly at BP2 3 

Case 9 Bubble anomaly at BP3 3 

Case 10 Bubble anomaly at BP4 3 

Case 11 Bubble anomaly at BP5 3 

Case 12 Bubble anomaly at BP6 3 

Case 13 Bubble anomaly at BP7 3 
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4.2. Anomaly Detection Using PCA 

With the notable advancements in deep learning in recent 

years, its application in the field of health management is 

gathering attention (Khan and Yairi ,2018). However, the 

performance of deep learning models is heavily dependent 

on the quality and quantity of the data. Moreover, when 

considering the application of deep learning to spacecraft 

using FPGA (Field-Programmable Gate Array),  there is a 

risk associated with the computational complexity of the 

model, as it remains uncertain whether the deep learning 

system would function adequately. In this work, a fault 

diagnosis algorithm utilizing Principal Component Analysis 

(PCA) is proposed as a potential solution to develop a 

lightweight method that is independent of data quality or 

quantity and does not impose significant computational 

requirements. Principal Component Analysis (PCA) is one of 

the dimensionality reduction methods, which finds the axes 
called principal component that maximize the overall variance 

from the original high-dimensional data. The variation in the 

data can be obtained with fewer dimensions using principal 
components while minimizing the loss of information (Wold, et 

al., 1987). In PCA anomaly detection, only normal data is used 

as training data to determine the normal subspace. The 

"anomaly score" of the test data can be evaluated by calculating 
the error (reconstruction error) between the original data and 

the reconstructed data using the learned subspace. Considering 

the mapping to 𝑞 -dimensional ( 𝑞 < 𝑝 ) space from the 

normalized training dataset 𝑿𝒕𝒓𝒂𝒊𝒏 =  [𝒙𝟏 , 𝒙𝟐 … 𝒙𝒑]  with 𝑝 

features. The projection matrix 𝑾 =  [𝒘𝟏 , 𝒘𝟐 … 𝒘𝒒] , 

consisting of the eigenvectors corresponding to the top q 

eigenvalues 𝜆1, 𝜆2 … 𝜆𝑞  of the variance-covariance matrix 

obtained from 𝑿𝒕𝒓𝒂𝒊𝒏, is defined. Here, the 𝑘-th column of W is 

the 𝑘-th principal component of 𝑿𝒕𝒓𝒂𝒊𝒏. The vector 𝒚𝒊,𝒕𝒆𝒔𝒕 in the 

lower-dimensional space of the 𝑖-th test data 𝒙𝒊,𝒕𝒆𝒔𝒕 in the test 

dataset 𝑿𝒕𝒆𝒔𝒕 is calculated as Eq. (1). 

 𝒚𝒊,𝒕𝒆𝒔𝒕 = 𝑾𝑻𝒙𝒊,𝒕𝒆𝒔𝒕 (1) 

The reconstructed data �̂�𝒊,𝒕𝒆𝒔𝒕 is calculated as Eq. (2). 

 �̂�𝒊,𝒕𝒆𝒔𝒕 = 𝑾𝒚𝒊,𝒕𝒆𝒔𝒕 = 𝑾𝑾𝑻𝒙𝒊,𝒕𝒆𝒔𝒕 (2) 

By calculation of the error 𝒆𝒊  between the original data 

𝒙𝒊,𝒕𝒆𝒔𝒕 and the reconstructed data �̂�𝒊,𝒕𝒆𝒔𝒕, The anomaly score 

of each data point from the normal subspace is obtained as 

Eq. (3). 

 𝒆𝒊 = ‖𝒙𝒊,𝒕𝒆𝒔𝒕 − �̂�𝒊,𝒕𝒆𝒔𝒕‖
𝟐
 (3) 

Here, ‖∙‖𝟐 represents the Euclidean norm. If the test data is 

abnormal, it is expected that the reconstructed data will be 

significantly different from the original data, resulting in a 

larger error 𝒆𝒊.  

The importance of the principal components is evaluated as 

the “contribution ratio”, α [%]. The contribution ratio of the 

𝑘th principal component is calculated as Eq. (4).  

 𝛼 = (𝜆𝑘/ ∑ 𝜆𝑖

𝑝

𝑖=1
) × 100 (4) 

4.3. Fault Diagnosis Using PCA 

PCA can be applied as supervised learning method for fault 

diagnosis. The training data 𝑿𝒕𝒓𝒂𝒊𝒏 =  [𝒙𝟏, 𝒙𝟐 … 𝒙𝒑]  differs 

from the one in the previous section, as it includes abnormal 

and fault data. It is assumed that PCA can calculate 

principal components that cluster normal, abnormal and 

fault cases in a low-dimensional space. By checking which 

cluster in the low-dimensional space the 𝑖-th test data 𝒙𝒊,𝒕𝒆𝒔𝒕 

maps to nearby, it is possible to determine which abnormal 

case the test data corresponds to. A schematic diagram is 

shown in Figure 3. This enables the identification of the 

known anomaly locations and causes. Furthermore, data that 

do not belong to any known clusters can be considered as 

unknown cases. 

 

Figure 3. Schematic diagram of PCA clustering for anomaly 

isolation and diagnosis in two dimensions. 

5. RESULT AND DISCUSSION 

In this section, results obtained from two experiments, 

anomaly detection, isolation and diagnosis are presented. 

5.1. Anomaly Detection Using Reconstruction Error 

from PCA 

In this experiment, 12 normal data was used for training 

data, and the remaining 42 data was used for test data. 

Considering the contribution ratio of PCA, the dimension 

was set to 𝑞 = 2. At this time, the contribution ratio 𝛼 was 

99.1%. The reconstruction errors for each test data were 

calculated and the averages for each case are shown in 

Figure 4. The error bars represent the variance for each case. 

From the figure, the reconstruction error for Case 1, the 

normal case, is relatively smaller than that for the other 

anomaly and fault cases. This is because PCA appropriately 

learned the normal subspace during training, resulting in a 

better reconstruction for the test data in Case 1, while the 

reconstructions for the other cases were significantly 

different from the original data. Furthermore, when 

comparing the reconstruction errors for the anomaly and 

fault cases, the reconstruction errors for Case 6 and Case 13 

are relatively small, and both have similar average values. 
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The reason for the smaller reconstruction errors is that the 

pressure fluctuations in these cases were similar to the 

normal case, as the bubble injection locations were farthest 

from downstream locations where water hammer occurs. 

The similarity in error values is presumed to be attributed to 

the relatively close distance between BV1 and BP1 

compared to the distances of other accumulators, resulting 

in similar pressure fluctuations. The important point to note 

in these results is that the number of test data points used, 6 

for Case 1 and 3 for the others, is small and there is a 

possibility that the distribution of normal, abnormal, and 

fault cases has not been adequately captured. This issue can 

be improved by generating more data points with a broader 

distribution through simulation and using them for training 

and test data.  

 

Figure 4. Result of reconstruction error for each cases using 

PCA. 

5.2. Fault Diagnosis by Plotting into Two Dimensions 

In this experiment, 12 normal data and 2 anomaly or fault 

data was used for training data, and other 18 data is used for 

test data. Figure 6(a) shows the results of plotting the 

training and test data in two dimensions, using the first 

principal component (PC1) as the X-axis and the second 

principal component (PC2) as the Y-axis. The training data 

is represented with dotted lines, while the test data is shown 

with solid lines. The test data is displayed larger than 

training data. Figure 6(b) shows only the SV fault data and 

Figure 6(c) shows only the bubble anomaly data in two 

dimensions. From Figure 6(a), normal data (Case1) forms 

clusters in the range of PC1: -2.0 to -1.7 and PC2: -2.1 to -

2.9, SV fault data (Cases 2-5) in the range of PC1: -3.4 to -

3.2 and PC2: -3.6 to -3.3, and bubble anomaly data (Cases 

6-13) in the range of PC1: -2.5 to -7.5 and PC2: 1.2 to -1.2. 

Furthermore, Figures 6(b) and 6(c) show that the clusters 

are formed for each abnormal location of SV fault and each 

abnormal location of bubble anomalies. However, in Figure 

6(c), the positions of Cases 6 and 7 are very close, and the 

clusters are not clearly separated compared to other cases. 

This is thought to be the similar reason, which is explained 

in previous section, the bubble injection points were farthest 

from downstream locations where water hammer occurs, 

resulting in pressure fluctuations similar to normal cases, 

and the distances between BV1 and BP1 were relatively 

close compared to other accumulators, resulting in similar 

pressure fluctuations. As with the previous section, 

important point of this result is that the number of test data 

points used is small and there is a possibility that the 

distribution of normal, abnormal, and fault cases has not 

been adequately captured. This issue can also be improved 

by generating more data points with a broader distribution 

through simulation and using them for training and test data. 

Additionally, the result of this experiment has not been 

quantitatively evaluated. It will be necessary to 

quantitatively evaluate the classification accuracy. 

 

Figure 6(a). The scatter plot of 2-dimension feature space by 

PCA. 

 

Figure 6(b). Result of reconstruction error for each cases 

using PCA, SV fault. 

 

Figure 6(c). Result of reconstruction error for each cases 

using PCA, bubble anomaly. 
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6. CONCLUSION 

In this study, a method for fault diagnosis using Principal 
Component Analysis (PCA) , feature extraction for its input, 

and feature optimization using the greedy algorithm is 

proposed. The effectiveness of this method was evaluated using 
data generated from a physical simulation model of a spacecraft 

propulsion system. By comparing the PCA reconstruction error 

between normal data and the target data, it was demonstrated 

that fault detection is possible. Additionally, it was 
demonstrated that by reducing the high-dimensional data to two 

dimensions using PCA trained with data containing anomalies, 

identification of abnormal locations and diagnosis of root 
causes can be achieved by comparing the data clusters with 

known data. The quantitative evaluation for fault diagnosis has 

not yet been accomplished, indicating the need to take this 
aspect into account in future research. The data used in this 

experiment were generated experimentally, and since the 

number of data was small, further data generation is planned to 

create a more accurate model that can handle the various cases. 

Additionally, since the physical model used in this study is 
relatively simple, it is necessary to confirm whether this 

method can be adapted to more realistic spacecraft propulsion 

system models. Furthermore, when applying this kind of data-
driven method on-board, computational cost becomes a 

significant element. Therefore, it is necessary to measure the 

execution time using a computer with equivalent performance 
to those installed on actual spacecraft and evaluate the 

feasibility of on-board execution.  
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