
Data-Driven Prognostics and Diagnostics of Industrial Machinery — A

Turbofan Engine Case Study

Russell Graves1, Peeyush Pankaj2, Rachel Johnson1, Michio Inoue3 and Vineet Jacob Kuruvilla4

1MathWorks USA, 3 Apple Hill Drive, Natick, MA, USA 01760-2098

russellg@mathworks.com

rachelj@mathworks.com

2 MathWorks India, Trillium Building, Blocks I & J, Embassy Tech Village, Bangalore, India 560103

ppankaj@mathworks.com

3MathWorks Japan, 7/F Akasaka Garden City, 4-15-1 Akasaka Minato-ku, Tokyo 107-0052 Japan

minoue@mathworks.com

4 MathWorks Singapore, 10C, #06-49, Ubi Techpark, Singapore 408564

vkuruvil@mathworks.com

ABSTRACT

A machine’s Remaining Useful Life (RUL) is the expected

life or usage time remaining before the machine requires

repair or replacement. In data-driven methods, typical RUL

estimation is performed using models trained with health

condition indicator values derived from measured system

data. A significant challenge in developing an RUL

estimation model is transforming large, multivariate, noisy

sensor datasets into useful format(s) that make the data

analysis and processing pipeline efficient and extract

valuable condition indicators from the data. This work uses

the N-CMAPSS dataset to explore options and implications

for efficiently organizing and storing large time-series

datasets to support prognostics and diagnostics applications.

We extend the work to demonstrate a predictive maintenance

workflow and solution to (1) detect and classify faults in a

turbofan engine and (2) estimate the RUL once we detect

performance degradation.

Under data engineering, we investigate the impact of various

file formats and file types on memory and execution time

when dealing with large datasets like N-CMAPSS. We

analyze, pre-process, and extract/engineer critical features

from the transformed dataset by leveraging our

understanding of gas turbines' operation (e.g., Brayton

Cycle). We also analyze the performance of various engine

submodules for different flight phases (climb, cruise, and

descent). This work also explains an approach to down-

sample the time series data without losing information

relevant to our goals. Using the health condition indicators

derived and synthesized in the data engineering stage, we

train machine learning models for diagnostics (differentiate

between healthy operation and seven different types of faults

in the turbofan engine) and prognostics (RUL estimation).

1. INTRODUCTION

Predictive maintenance can be considered the holy grail of

industrial machinery equipment manufacturers and operators.

It helps monitor the health of equipment to estimate its

Remaining Useful Life (RUL). These techniques will help

transition from reactive maintenance to a preventive and

optimized maintenance strategy. There is immense value to

gain from having a proactive maintenance strategy, such as

cost savings [1], productivity increase for the maintenance

crew, and even opening new service/revenue streams [2].

This paper focuses on a data-driven approach to aircraft

engine prognostics and diagnostics. We used the N-CMAPSS

dataset [3] to demonstrate a predictive maintenance

development workflow, and we answered the three main

questions for any predictive maintenance application: 1. Is

our aircraft engine or engine components’ health degrading

at an abnormal rate? 2. Which subsystem(s) is failing? and 3.

How many flight cycles remain before the engine fails?

Figure 1 depicts a typical data-driven predictive maintenance

development workflow. In the work, we will delve into key

aspects of each stage in the workflow. Reliable data pipelines

ensure the availability of high-quality data, enabling accurate

predictive models. We will focus on the data engineering

portion of the workflow. We touch upon transforming data

into usable formats and comparison of these formats’ impact

Russell Graves et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS02-11

mailto:russellg@mathworks.com
mailto:rachelj@mathworks.com
mailto:ppankaj@mathworks.com
mailto:minoue@mathworks.com
mailto:vkuruvil@mathworks.com

Asia Pacific Conference of the Prognostics and Health Management Society 2023

2

on memory footprint and computation time. We will briefly

describe the N-CMAPSS dataset, explain each step of the

workflow and our implementation details, and conclude with

potential extensions to this work. We will not focus on the

deployment stage in this paper.

Figure 1 A typical data-driven Predictive Maintenance development workflow

2. DESCRIPTION OF DATASET

N-CMAPSS refers to a new and improved version of the

CMAPSS dataset [4]. CMAPSS stands for Commercial

Modular Aero-Propulsion System Simulation, the high-

fidelity system model developed at NASA used to generate

the dataset. The dataset contains eight run-to-failure

trajectories for a fleet of 128 aircraft engines under different

flight conditions. Failures can occur in either the flow (F) or

efficiency (E) of different subsystems: fan, low-pressure

compressor (LPC), high-pressure compressor (HPC), high-

pressure turbine (HPT), and low-pressure turbine (LPT), as

indicated in Table 1.

Table 1 Overview of N-CMAPSS datasets [3]

Each file contains the simulated results of aircraft engines as

second-by-second flight data up to 100 flights or engine

failure, whichever comes first. Each unit experiences flights

of a specific duration, indicated by flight class, and enters an

"abnormal degradation state" randomly according to the file

number and specified failure type.

In the dataset, we have access to:

• Generic airflow cycle measurements across the

engine length, such as total temperature, pressure,

and flow.

• Two rotor speeds, compressor stall margins, and

some operational parameters (e.g., Mach number,

altitude, throttle resolver angle, current cycle count,

and flight class).

• A binary health state indicator and RUL label.

• A passenger/commercial aircraft goes through a

well-defined mission: ground idle, take off, climb,

cruise/mini-cruise, and descend. Only the climb,

cruise, flight idle, and descend information in this

dataset is present.

3. WORKFLOW, IMPLEMENTATION & RESULTS

As described in the introduction, we followed the workflow

depicted in Figure 1 with the iteration of some stages to

improve performance based on our observations at each

stage. The workflow and analysis described in this paper are

implemented using MATLAB R2023a [5]. We will highlight

the salient aspects of each step of the workflow in this

section.

3.1. Data Access & Restructuring

It is well known that schema and storage format can impact

processing performance, drive footprint, portability,

readability, and ease of access to data. The initial dataset was

provided in a set of HDF5 files. This storage solution may be

preferred if the analysis was performed with Hadoop or

Spark. However, in this case, the compute environment was

MathWorks Cloud Center using 24 parallel workers on an

AWS instance with a 2.5Ghz Intel Xeon Platinum 8259CL

CPU. A trade study was performed to determine if the data

should be refactored into a new schema or file format for the

best performance in our compute environment.

MATLAB® datastore enables us to point to the location of the

data, ingest it using a built-in h5read function, and establish

a transformation pipeline with the datastore methods

readall and writeall. We explore several data

configurations by refactoring the original dataset with help

from built-in write functions: save, writetable, and

parquetwrite. The configurations are described in Table

2 [6], along with their disk footprint and the time it took to

write them to the disk.

The selected data configurations were then exercised with

two tasks: separate flight phases (Figure 5b) and report full

dataset mean temperature difference across high-pressure

turbines (Figure 2a). The datastore construct in MATLAB

provides many tools for working with data that will not fit

into memory or exists across many files. Common large data

analysis methods like transform and tall are used to address

the two tasks. The transform function exercises a function on

Asia Pacific Conference of the Prognostics and Health Management Society 2023

3

each element of a datastore to produce a

TransformedDatastore, which can be read into

memory or written back to disk. The transformation is only

executed at read or write time and is optimized by MATLAB.

In the case of this flight data, tall can produce a single

monolithic table where all flight data has been vertically

concatenated. The tall table object is not loaded into

memory, and MATLAB can still interrogate this object as if

it were a table in memory.

Table 2 Data configuration trade study. Disk size of final dataset reported in Gb, write time for the dataset in Minutes,

ranking for access and readability from 1 (best) to n (worst), and whether the file format is portable (Y/N).
 Wide Narrow Nested

Disk

(Gb)

Write

(min)

Disk

(Gb)

Write

(min)

Disk

(Gb)

Write

(min)
Access Portable

HDF5 27.2 0 - - - - 4 Yes

CSV 27.3 N/A 50.5 32.6 - - 3 Yes

MAT 12.0 4.41 9.43 6.15 8.26 6.41 2 No

Parquet 12.0 4.57 11.3 6.05 12.0 6.30 1 Yes

Readability 1 3 2 - -

Access 1 3 2 - -

Figure 2 (a) Scatter plot of Engine age vs. Temperature and HPT Entry temperature, (b) Histogram of count of flights vs. the

temperature drop across HPT

Figure 3 Comparison of computation time for Flight phase segmentation and HPT temperature for various data formats

The flight phase separation task used the datastore transform

workflow. The designed transform function contains two

steps for each flight:

1. Smooth data. Each flight contains climb, cruise, and

descend phases, impacting the engine operation differently.

We investigated whether data from some flight phases are

more useful for identifying faults. Smoothing the differences

in altitude will give us a cleaner way to apply a threshold to

determine when the aircraft is in each flight phase, as shown

in Figure 5.

2. Segment flight data. In smoothed plot, it becomes

clear from the smoothed data when the aircraft is climbing,

descending, or cruising. We can now apply a threshold to

identify the flight phases and color-code them for easy

analysis. The threshold value was specified after

experimentation with single-flight data and scaling it up for

the whole dataset.

The transform function produces an array of categorical

labels indicating the flight phase for each sample in the time

series data. The total time to read this information back into

memory was recorded.

The second task was informed by domain expertise. The

temperature drop across the HPT is a good measure of its

overall health [7]. In this case, a tall table is created from the

dataset, and the temperature drop is calculated. Functions

such as gscatter [6] help to visualize these relationships,

as shown in Figure 2a. The figure shows a strong relationship

between the age of the engine and the temperature drop

across HPT.

Tasks 1 and 2 were executed on the contents of the first HDF5

file, the first two files, the first three files, and so on until all

nine files were evaluated to understand the impact of

increasing dataset size. The resulting execution times (Figure

3), in addition to the performance metrics table (Table 2),

gave us the motivation to refactor the dataset into a wide-

schema set of parquet files for further processing and feature

engineering.

3.2. Data Pre-processing and Feature Engineering

As with most sensor data, you need to clean and transform

the raw data to create/identify the right set of condition

indicators for any given asset. This is true even in the N-

CMAPSS dataset. Figure 4 depicts the simplified data pre-

processing steps we used in our work.

Figure 4 Data pre-processing steps

The flight phase extraction performed in task 1 of the

performance evaluation for the data schema and format

comprised the first portion of the pre-processing workflow

for the dataset. A third and final step and data reduction were

carried out as follows:

Reduce data: As we build this data by recording more flight

data, the storage costs of retaining the complete dataset and

processing time to train our algorithms will increase. Instead

of simply downsizing, we extract change points from each

sensor trajectory to retain its shape to reduce the data while

maintaining enough useful information. We easily achieved

this data reduction using the findchangepoints

algorithm in MATLAB [6]. We prototype the algorithm with

one sensor data and scale it up to apply it to the entire dataset

(Figure 5). We were able to reduce the memory footprint

from 18 GB to 7GB with this technique. A word of caution:

this approach may not be a good technique if there are

features of interest in the frequency domain.

Engine behavior is different in each flight phase. Therefore,

we explore features from each flight phase individually. We

focused on time-domain statistics such as the mean, standard

error of the mean, standard deviation, skewness, variance,

minimum, maximum, and range. We extracted a total of 361

features from the dataset, and based on the ANOVA

algorithm, we selected the top 25 ranked features. We also

engineered some features like temperature difference and

pressure ratio across various subsystems and estimated their

trendability. All of this feature engineering was semi-

automated using MATLAB's Diagnostic Feature Designer

app [6].

Figure 5 (a) Smooth data, b) Flight phase segmentation based on threshold, c) Reduction of data using change points

Asia Pacific Conference of the Prognostics and Health Management Society 2023

5

Figure 6 Visualization of health indicator trends, RUL estimation and Probability Density Function of RUL as new data

streams into the data processing pipeline

4. AI MODELING

There are two critical questions for any predictive

maintenance application in the AI modeling stage. First,

which subsystem of the turbofan engine is failing? We treat

this question as a fault classification problem. Second, what

is the remaining useful life of the turbofan engine? We

estimate the number of flight cycles the engine can operate

before it needs to be scheduled for maintenance.

Fault classification: We train a set of machine learning

models using the selected features and corresponding health

labels. Using the Classification Learner app [8], we train

multiple machine learning models [8] in parallel and compare

and evaluate their performance with the test data using a

confusion matrix and looking at the prediction accuracy. In

our tests, narrow neural network models using cruise phase

data were the best-performing model for turbofan engine

fault classification with a prediction accuracy of 86.9%.

RUL Estimation: Estimating the RUL is a crucial part of the

predictive maintenance solution. Together with fault

classification, we will be able to give a complete picture of

the health of the turbofan engine – which part is failing and

how much time remains before requiring maintenance action.

Our analysis showed temperature drop across HPT and the

pressure ratio across LPT are good health indicators for HPT

and LPT failure, respectively.

As multiple failure mode events are simulated in parallel, we

use an Exponential Degradation model [9] as the RUL

estimator model with a pre-defined threshold value (based on

historical evidence). We can now use the selected health

indicators to fit RUL models for each failure mode. We can

also provide a complete classification and RUL estimation

workflow combined with the fault classification model. We

build a simple engine health monitoring dashboard (See

Figure 6) that visualizes the evolution of the health indicator,

estimated RUL, and the probability density function of RUL

as new data from various engine unit streams into the data

processing pipeline.

5. DISCUSSION & CONCLUSION

This work demonstrates a streamlined workflow for

developing a predictive maintenance application that gives

two important pieces of information: the failing subsystem(s)

and the RUL estimation. We touched upon all the key stages

in the development workflow.

Using the N-CMAPSS dataset, the paper delved into the

importance of data engineering and how seemingly simple

decisions like selecting data formats significantly impact the

computation time and memory footprint along with easing or

worsening the data readability and access. For the N-

CMAPSS dataset, we found that the parquet wide format

gave the best performance and ease of use. We also

showcased an approach to reduce the dataset size without

losing useful dynamics and trends in the sensor data.

We described our workflow in a linear fashion. However,

developing a robust and reliable analytics pipeline requires

iterating over each stage and improving the prediction

performance, whether it is through enhancing data pre-

processing, featuring engineering and selection, or picking

the right AI model. Though we demonstrated the workflow

using a turbofan engine example, we believe this approach

can be generalized for any industrial machinery.

An important limitation of the method described is that only

one type of fault is identified in the fault classification stage.

For example, if there is an HPT and LPT failure, it is treated

Asia Pacific Conference of the Prognostics and Health Management Society 2023

6

as just an HPT failure. This is primarily due to the challenge

in creating an feature extraction algorithm that can delineate

patterns in sensor data due to different faults. One of the

approach could be to model the subsystem and various faults

to understand the faults and its effect on sensor data [10]

There is potential to extend this work by exploring various

deployment options, whether to a cloud computing platform

or as a desktop application for offline data analysis.

Deploying the feature extraction module to edge devices to

reduce memory storage and data transmission cost is also

worth exploring. Using Deep Learning techniques for RUL

estimation could also be another method to explore.

REFERENCES

1. MathWorks User Stories, ‘Mondi Implements Statistics-

Based Health Monitoring and Predictive Maintenance

for Manufacturing Processes with Machine Learning’,

https://www.mathworks.com/company/user_stories/mo

ndi-implements-statistics-based-health-monitoring-

and-predictive-maintenance-for-manufacturing-

processes-with-machine-learning.html (Accessed on

Oct 27th, 2022).

2. MathWorks Stories, ‘Baker Hughes Develops

Predictive Maintenance Software for Gas and Oil

Extraction Equipment Using Data Analytics and

Machine

Learning’,https://www.mathworks.com/company/user

_stories/baker-hughes-develops-predictive-

maintenance-software-for-gas-and-oil-extraction-

equipment-using-data-analytics-and-machine-

learning.html (Accessed on Oct 27th, 2022).

3. Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and

Olga Fink. (2021) Aircraft Engine Run-to-Failure

Dataset under Real Flight Conditions for Prognostics

and Diagnostics. Data, 6(1):5, 2021.

4. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N.(2008),

Damage propagation modeling for aircraft engine run-

to-failure simulation. In Proceedings of the 2008

International Conference on Prognostics and Health

Management, Denver, CO, USA, 6–9 October 2008 pp.

1–9.

5. MATLAB. version 9.14.0 (R2023a). Natick,

Massachusetts: The MathWorks Inc.; 2023

6. MATLAB R2023a Documentation,

https://www.mathworks.com/help/releases/R2023a/ind

ex.html (Accessed on 07 May 2023)

7. Ideal Brayton Cycle, https://www.grc.nasa.gov/www/k-

12/airplane/brayton.html, NASA (Accessed on 05 April

2022)

8. MathWorks, Classification Learner – Choose Classifier

Options,https://www.mathworks.com/help/stats/choose

-a-classifier.html (Accessed on 07 May 2023)

9. MathWorks, RUL Estimation using RUL Estimator

Models,https://www.mathworks.com/help/predmaint/u

g/rul-estimation-using-rul-estimator-models.html

(Accessed on 07 May 2023)

10. MathWorks, Multi-Class Detection Using Simulated

Data,https://www.mathworks.com/help/predmaint/ug/

multi-class-fault-detection-using-simulated-data.html

(Accessed on 15 July 2023)

Russell Graves is an Application Engineer based at

MathWorks, Natick, USA. He specializes in machine

learning and systems engineering. Before joining

MathWorks, Russell worked with the University of

Tennessee and Oak Ridge National Laboratory in intelligent

transportation systems research with a focus on multi-agent

machine learning and complex systems controls. Russell

holds a B.S. and M.S. in Mechanical Engineering from The

University of Tennessee.

Peeyush Pankaj is a Senior Application Engineer based at

MathWorks, Bangalore, India. He has deep experience in

aircraft engine designs, testing and certification. He has filed

multiple patents on Advanced Jet Engine technologies and

Prognostic Health Monitoring of aircraft engines. He holds a

master’s degree in advanced mechanical engineering from

the University of Sussex, UK.

Rachel Johnson is the Product Manager for Predictive

Maintenance Toolbox based at MathWorks, Natick, USA.

Previously, she was a Senior Application Engineer

supporting the Aerospace and Defense Industry. She holds a

B.S.E. in Aerospace Engineering from Princeton University,

an M.S. in Aerospace Engineering from the University of

Maryland, and an M.A.T. in Mathematics Education from

Tufts University.

Michio Inoue is a Senior Team Lead, Application

Engineering at MathWorks Japan. His team focuses on data

science and predictive analytics applications. Prior to

MathWorks, he was a postdoctoral scholar at NASA/JPL

engaged in Computation Fluid Dynamics (turbulence

modeling) research. He received his Bachelor’s degree from

University of Tokyo and Ph.D. from California Institute of

Technology in aeronautics and applied & computational

mathematics.

Vineet Jacob Kuruvilla is the PHM Segment Manager

(AeroDef) based at MathWorks, Singapore. Prior to joining

MathWorks, he was a Chief Researcher at Nidec

Corporation. He has extensive experience in robotics and has

filed multiple patents on robotics technologies for factory

automation. He received his Bachelor’s degree from Cochin

University of Science and Technology and, Ph.D. from

Nanyang Technological University in the field of robotics

system control and computer vision.

https://www.mathworks.com/company/user_stories/mondi-implements-statistics-based-health-monitoring-and-predictive-maintenance-for-manufacturing-processes-with-machine-learning.html
https://www.mathworks.com/company/user_stories/mondi-implements-statistics-based-health-monitoring-and-predictive-maintenance-for-manufacturing-processes-with-machine-learning.html
https://www.mathworks.com/company/user_stories/mondi-implements-statistics-based-health-monitoring-and-predictive-maintenance-for-manufacturing-processes-with-machine-learning.html
https://www.mathworks.com/company/user_stories/mondi-implements-statistics-based-health-monitoring-and-predictive-maintenance-for-manufacturing-processes-with-machine-learning.html
https://www.mathworks.com/company/user_stories/baker-hughes-develops-predictive-maintenance-software-for-gas-and-oil-extraction-equipment-using-data-analytics-and-machine-learning.html
https://www.mathworks.com/company/user_stories/baker-hughes-develops-predictive-maintenance-software-for-gas-and-oil-extraction-equipment-using-data-analytics-and-machine-learning.html
https://www.mathworks.com/company/user_stories/baker-hughes-develops-predictive-maintenance-software-for-gas-and-oil-extraction-equipment-using-data-analytics-and-machine-learning.html
https://www.mathworks.com/company/user_stories/baker-hughes-develops-predictive-maintenance-software-for-gas-and-oil-extraction-equipment-using-data-analytics-and-machine-learning.html
https://www.mathworks.com/company/user_stories/baker-hughes-develops-predictive-maintenance-software-for-gas-and-oil-extraction-equipment-using-data-analytics-and-machine-learning.html
https://www.mathworks.com/help/releases/R2023a/index.html
https://www.mathworks.com/help/releases/R2023a/index.html
https://www.grc.nasa.gov/www/k-12/airplane/brayton.html
https://www.grc.nasa.gov/www/k-12/airplane/brayton.html
https://www.mathworks.com/help/stats/choose-a-classifier.html
https://www.mathworks.com/help/stats/choose-a-classifier.html
https://www.mathworks.com/help/predmaint/ug/rul-estimation-using-rul-estimator-models.html
https://www.mathworks.com/help/predmaint/ug/rul-estimation-using-rul-estimator-models.html
https://www.mathworks.com/help/predmaint/ug/multi-class-fault-detection-using-simulated-data.html
https://www.mathworks.com/help/predmaint/ug/multi-class-fault-detection-using-simulated-data.html

