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ABSTRACT

Failure mode, effects, and criticality analysis (FMECA) has
become a fundamental tool for identifying critical failure
modes and prioritizing maintenance activities. As part of the
analysis, the risk priority number (RPN), a numeric assess-
ment of the risk, has received much attention as it is com-
puted using severity (S), occurrence (O), and detectability
(D), which serve as the main criteria for criticality analysis
in many practical FMECA cases. In this paper, we assem-
ble and present a dataset containing RPN evaluations from
20 real-world cases. We then apply K-Means clustering to
classify failure modes with different criticality levels and pro-
pose a novel ranking algorithm that prioritizes mitigation ac-
tions based on specific criteria for each failure mode. Our
experimental results suggest that both clustering and ranking
methods can provide prioritization for critical failure modes
under given assumptions, while our novel ranking algorithm
can adapt to general scenarios and provide more accurate pri-
oritization that can help develop effective maintenance strate-
gies to minimize failure risk and optimize maintenance costs.

1. INTRODUCTION

The details of failure mode, effects, and criticality analysis
(FMECA) were first documented as MIL-STD-1629 (1949)
and then revised in MIL-STD-1629A (1980) by United States
Department of Defense, including the procedures of con-
ducting failure mode and effects analysis (FMEA) and the
qualitative and quantitative approaches for criticality analysis
(CA). Since then, FMECA was used by the United States Na-
tional Aeronautics and Space Administration (NASA) in the
aeronautic industry to evaluate aircraft safety such as for the

Jiaxiang Cheng et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

MSFC Saturn 5 Vehicle (Dill, Brown, Curtis, Herrmann, &
Trampus, 1963). In recent decades, it has also been widely
adopted by various industries (Bouti & Kadi, 1994).

Different applications of FMEA may require different pro-
cedures, for instance, IEEE Std C57.125-2015 (Revision of
IEEE Std C57.125-1991) (2015) for FMEA was used on
power transformers (Singh, Singh, & Singh, 2019), while
criticality number and risk priority number (RPN) are com-
monly used for CA across different fields. RPN introduces
severity (S), occurrence (O), and detectability (D) to cal-
culate criticality among failure modes, providing prioritiza-
tion for taking preventative actions. Despite its drawbacks,
RPN has been widely applied in various industries till recent
years (Mohanty et al., 2021; Catelani et al., 2021; Zhai et al.,
2021), making it important to derive reliable insights from
existing RPN evaluations.

Previous research has focused on classifying failure modes
based on RPN results for action planning. Failure modes can
be classified directly into Acceptable, Tolerable, and Unac-
ceptable based on RPN values (Yssaad, Khiat, & Chaker,
2012; Saraswati, Marie, & Witonohadi, 2014). Alterna-
tively, Fuzzy Adaptive Resonance Theory (Fuzzy ART) has
been used to categorize failure modes into priority classes
based on criterion scores (Keskin & Özkan, 2009) , with
K-Means clustering also used for criticality level classifica-
tion (Bezerra et al., 2020). On the other hand, researchers
have used ranking methods to prioritize failure modes for
decision-making. One approach is to improve the RPN, such
as with weighted RPN (Tanjung et al., 2019) or fuzzy measure
and integral (Liu, Deng, & Jiang, 2017). Other studies have
introduced new indices like the Maintainability Criticality In-
dex (MCI) with Technique for Order Preference by Similar-
ity to Ideal Solution (TOPSIS) and Preference Section Index
(PSI) to optimize maintenance planning (Pancholi & Bhatt,
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2017). The Overall Failure Index (OFI) ranks corrective ac-
tions based on RPN (Khorshidi, Gunawan, & Ibrahim, 2016).
While most studies rank failure modes, it’s important to con-
sider that certain failure modes may have significant impact
on a specific criterion, even if their assessment at the failure
mode level is non-significant.

According to the relevant work, it is noticed that both classi-
fication and ranking methods have been studied and applied
for bringing values from RPN evaluations. It is worthwhile
to study and validate how they can provide reliable practices
under different scenarios. In this paper, a dataset collected
from various RPN-based evaluation results is introduced. The
dataset was then used for clustering and ranking experiments
to assess the effectiveness and feasibility of both algorithms.

The remainder of the paper is organized as follows. Section 2
introduces the methods along with relevant validation indices
we used for clustering and ranking tests. The experimental re-
sults are presented in Section 3, while the conclusion is given
in Section 4.

2. METHODOLOGY

This section begins by introducing the adopted clustering
method, as well as the validation indices, and subsequently
presents the proposed ranking method to establish priorities
for taking actions at the criterion level.

2.1. Clustering Methods

The RPN is one of the most widely used methods for calculat-
ing criticality in FMECA. It is defined asRPN = S×O×D,
where Severity (S), occurrence (O), and detection (D) are the
three criteria used to evaluate each failure mode. By consid-
ering these criteria as features, classification or clustering can
be performed to identify patterns for categorizing criticality
levels. In this paper, we employ K-Means to assess the per-
formance of clustering.

2.1.1. K-Means

K-Means is a widely used clustering method. Its earliest con-
tribution dating back to Steinhaus (1957). The development
of the K-Means family of methods has been studied by Pérez-
Ortega et al. (2019). The ultimate objective of K-Means is to
obtain a set of clusters as,

arg min
X

k∑
i=1

∑
x∈Xi

‖x− ci‖2 , (1)

where X = {X1, X2, ..., Xk} denote the k clusters partitioned
from all samples x and ci is the ith cluster.

The algorithms can be defined as two iterative steps: (1) As-
sign the samples to the nearest clusters by comparing the dis-
tances to the clustering centers; (2) Update the clustering cen-

ters by taking the mean of the updated clusters. The algorithm
will cease when all the clusters remain no change after some
number of iterations.

2.1.2. Validity Indices

A successful clustering should demonstrate clear separation
among clusters, while also maintaining compactness within
each cluster. In this paper, we utilize the Davies-Bouldin
(DB) index for evaluating the clustering performance, which
can be calculated as follows (Davies & Bouldin, 1979):

DBk =
1

k

k∑
i,j=1

max
j 6=i

Si + Sj

Mi,j
, (2)

where Si is the within cluster distance of cluster i and Mi,j is
the distance between clusters i and j.

2.2. Proposed Ranking Method

Direct usage of RPN values is the simplest way to rank failure
modes, considering the combined impact of all three criteria.
However, this method can be problematic if, for example, a
failure mode has a high severity rating (e.g., 9 on a scale of
1 to 10) but low occurrence and detection ratings (e.g., 1 for
both), resulting in a low RPN value compared to others with
average ratings for all three criteria. Moreover, the conven-
tional ranking by RPN is done at the failure mode level, while
mitigation actions following FMECA are typically aimed at a
single criterion at a time. Therefore, the conventional ranking
by RPN may underestimate failure modes without consider-
ing criteria that require more urgent action.

To address these limitations, we propose a novel ranking
method in this paper to provide priority for mitigation ac-
tions directly at the criterion level. This method enables us
to avoid the risk of underestimating failure modes with ex-
ceptional criteria that require more urgent attention.

2.2.1. Risk Priority Ranking (RPR)

The proposed RPR algorithm is summarized in Algorithm 1.
With a given evaluation matrix E, there are evaluated S, O,
and D as three columns, along with an identifier assigned to
each failure mode, which is the corresponding row index in E
with a total ofNm rows. Before ranking, the score matrix C is
initialized with the same dimension as E and the original RPN
is calculated and stored in R, while a copy of E is recorded as
E†, used for ranking steps.

During the first step of iterations, the dynamic RPN R† is
calculated first using updated E†. Then the failure mode with
the largest RPN in R† at the current iteration is located, whose
identifier denoted as u, and at the same time, the criterion
with the largest score is selected, denoted as v = 1 or 2 or 3. If
for any step there are multiple choices, we set the priority for
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reference as max (RPN)→max (S)→max (O)→max (D)→
min (u)→ min (v), to ensure a unique answer. After locating
the pair [u, v] at iteration n, the corresponding cell in C, i.e.,
C[u, v], is rewarded with score f(n), where f(n) is defined
as scoring function and solely dependent on the number of
iteration n. After updating the score matrix C, the cell in
the dynamic evaluation matrix, i.e., E†[u, v], is updated by
a minus of δ, which is to simulate the impacts of mitigation
actions. Then the next iteration will start with the same steps
as described above.

The iterations stop when the minimum possible score is
reached, meaning the highest value in the updated evaluation
matrix E† is no longer greater than the minimum score. This
yields the updated score matrix C. The algorithm then selects
the criterion with the highest score iteratively and adds it to
the final priority ranking list L. The corresponding cell in C
for the selected criterion is set to 0, excluded from the next
iteration. This creates a ranking list for mitigation priority at
the criterion level. The scoring function used is crucial and
several have been explored to see how they affect the results.

2.2.2. Scoring Function

The scoring function used in Algorithm 1 is dependent on the
number of iterations. To accurately set the function’s domain,
it’s crucial to determine the total number of iterations needed
to complete the RPR process. The formula to calculate the
total number of iterations, denoted as N̂ , is as follows:

N̂ =
∑
m

∑
n

d
E [m,n]− µ(m,n)

L

∆(m,n)
e, (3)

where E is the evaluation matrix. µ(m,n)
L and ∆(m,n) are re-

spectively the minimal possible rating and the step size for
decreasing the scores during ranking corresponding to each
failure mode m and its certain criterion n. Then the follow-
ing scoring functions are defined and tested,

f1(i) = N(1− i

N
)2, (4)

f2(i) = N − i, (5)

f3(i) = N

√
1− i

N
, (6)

where i = 1, 2, ... corresponding to the number of iterations.
If N ≥ N̂ , all criterion larger than 1 will have scores in the
end, otherwise the selected criterion after a certain iterations
will no longer obtain scores before completing the ranking.

3. EXPERIMENT

3.1. Data Collection & Preparation

The RPN evaluation results were collected from 20 prior
work with 338 instances in total (Keskin & Özkan, 2009;

Algorithm 1 Risk Priority Ranking (RPR) Algorithm

Input: evaluation matrix E =
[
ei,j
]
Nm×3

= [S O D]

Output: priority ranking list L
1: initialize score matrix C = 0Nm,3.
2: let Ri,1 ← Ei,1 · Ei,2 · Ei,3, where 1 ≤ i ≤ Nm.
3: let E† ← E, and n← 0.
4: while there exist x and y such that E†x,y > µL do
5: let R†i,1 ← E†i,1 · E

†
i,2 · E

†
i,3, where 1 ≤ i ≤ Nm.

6: let X← arg maxx R†x,1.
7: for j ← 1 to 3 do
8: let X← arg maxx∈X E†x,j
9: end for

10: let u← min(X), v ← min(arg maxx E†u,x).
11: if E†u,v ≤ µmin then
12: break
13: else
14: let E†u,v ← E†u,v −∆.
15: let Cu,v ← Cu,v + f(n+ +).
16: end if
17: end while
18: while there exist x and y such that Cx,y > 0 do
19: let Z← arg max(x,y) Cx,y .
20: let Z← arg max(x,y)∈argmax(x,y)∈Z Rx,1

Ex,y .
21: let (p, q)← arg min(x,y)∈argmin(x,y)∈Z y x.
22: let Cp,q ← 0.
23: append triplet [i (priority rank), p (failure mode), q

(criterion index)] to priority ranking list L.
24: end while
25: return the priority ranking list L.

Singh et al., 2019; Khorshidi et al., 2016; Catelani et al.,
2021; Zhai et al., 2021; Catelani et al., 2011; Yssaad et al.,
2012; Khalil et al., 2014; Saraswati et al., 2014; El-Dogdog
et al., 2016; Silva et al., 2020; Bezerra et al., 2020; Scriboni,
2020; Royer et al., 2020; Pancholi & Bhatt, 2017; Dumnić et
al., 2020; Nursanti et al., 2018; Ciani et al., 2019; Tanjung
et al., 2019; Mohanty et al., 2021). Each instance is iden-
tified by a specific failure mode. We then have the severity
scores S = [S(1)

1 , S(1)
2 , ..., S(i)

j , ..., S(Nr)
Nm

]T , where i = 1, 2,
..., Nr refers to the reference with Nr the total number of
references collected, and j = 1, 2, ..., Nm refers to the fail-
ure mode withNm the total number of failure modes in allNr

references. TheNm can be computed withNm =
∑Nr

i=1N
(i)
m ,

whereN (i)
m is the number of failure modes in reference i. The

same formats were also defined for the occurrence scores O
and detection scores D.

As in different evaluation the range of scoring for S, O, and
D could be different, the results collected were firstly normal-
ized for both clustering and ranking purposes. We define the
nomarlized S̃ = [S̃(1)

1 , S̃(1)
2 , ..., S̃(i)

j , ..., S̃(Nr)
Nm

]T , where S̃(i)
j
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Figure 1. Histogram of S̃, Õ, D̃, and ˜RPN in the data set.

Table 1. Feature Selection for Clustering

S̃ Õ D̃ S̃O S̃D ÕD ˜RPN

COMB1
√ √ √

COMB2
√ √ √

COMB3
√ √ √ √ √ √

COMB4
√ √ √ √

COMB5
√ √ √ √

COMB6
√ √ √ √ √ √ √

can be computed as,

S̃
(i)
j =

S
(i)
j − µ

(i)
Smin

µ
(i)
Smax − µ

(i)
Smin

, (7)

where µ(i)
Smax and µ(i)

Smin are the max and min scores for S(i)
j

in source i respectively. Then Õ with µ(i)
Omax and µ(i)

Omin and
D̃ with µ(i)

Dmax and µ(i)
Dmin can be defined similarly. Then,

for clustering purpose, we further introduce four normalized
features simply computed with the scores above. The normal-
ized RPN is defined as,

˜RPN
(i)

j =
3

√
S̃
(i)
j × Õ

(i)
j × D̃

(i)
j , (8)

which is the squared root of the RPN computed with the tra-
ditional way. Furthermore, in order to understand the inter-
active impacts between the scores, we similarly introduce the
following values,

S̃O
(i)

j =

√
S̃
(i)
j × Õ

(i)
j , (9)

S̃D
(i)

j =

√
S̃
(i)
j × D̃

(i)
j , (10)

ÕD
(i)

j =

√
Õ

(i)
j × D̃

(i)
j , (11)

As shown in Fig. 1, S is generally evaluated with a higher
score after normalization across different assessments, while

Figure 2. DB index testing results versus number of clusters.

Table 2. K-Means Clusters using COMB5

S̃O S̃D ÕD ˜RPN

Cluster 1 0.32 0.34 0.25 0.31
Cluster 2 0.36 0.66 0.32 0.44
Cluster 3 0.56 0.46 0.43 0.49
Cluster 4 0.66 0.67 0.66 0.66

the scores for O and D are comparatively lower. The normal-
ized RPN shows an approximately normal distribution within
the range of [0.17, 0.87]. The margins at both sides to 0 and 1
respectively indicate that some of the potential values of RPN
can rarely be reached.

3.2. Clustering Results with K-Means

To assess the effectiveness of features for clustering, differ-
ent combinations of features are employed and summarized
in Table 1. A total of 6 combinations, labeled COMB1 to
COMB6, are defined with varying selected features as intro-
duced in Section 3.1.

K-Means clustering has been evaluated on the dataset with
varying numbers of clusters (3 to 10) using the DB index.
The results in Fig.2 show that COMB2 and COMB5 generally
achieve better clustering performance, including interactive
impacts among S̃O, S̃D, and ÕD. The best result achieved
within the range of 3 to 10 clusters is obtained with COMB5
with 4 clusters. The corresponding cluster centers are sum-
marized in Table 2, and the patterns of the 4 cluster centers
align with the previous description of the dataset, where S
was generally evaluated with a higher level while O and D
with comparatively lower scores.

3.3. Ranking Results with Proposed Methodology

The ranking is performed using RPR with scoring functions
f1, f2, and f3. The results are presented in Figure 3 by com-

4



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Figure 3. Changes of ranking results from original rank by
RPN values to proposed rank, while the Rank(f1), RPR re-
sults using scoring function f1 shows the smaller variance to
0 and Rank(f3) shows larger.

Table 3. Ranking Results with Different Scoring Functions

FM Parameter Score RPN Rank(f1) Rank(f2) Rank(f3)

F11 S 7 245 4 4 4
F11 O 7 245 6 6 14
F11 D 5 245 24 25 32
F24 S 8 224 1 1 1
F24 O 7 224 7 9 15
F22 S 7 196 5 5 5
F22 O 7 196 8 10 16
F15 S 8 168 2 2 2
F15 O 7 168 12 12 17
F51 S 7 126 9 7 6

paring the changes from the original rank using RPN values.
It can be observed that the ranking results obtained with RPR
at the criterion level differ from those obtained by using only
RPN as a reference at the failure mode level. Furthermore, the
inconsistency with the original rank by RPN increases from
f1 to f3 as the variance increases.

We adopt the evaluations from (Khorshidi et al., 2016) to test
RPR at the criterion-level for a detailed comparison. Table
3 summarizes our findings. We select the top 10 parameters
with the highest RPN values as examples, while parameters
with a score under 5 are excluded from the table. By compar-
ing the scores of parameters and the corresponding RPN at
the failure mode level, we can observe that the ranking results
with f1 are more closely aligned with the RPN. However, the
results with f3 allocate more importance to the values of in-
dividual criterion.

4. CONCLUSION

In this paper, we presented a novel approach for failure mode
prioritization based on RPN evaluations. We first collected a

dataset of RPN evaluation results and performed a clustering
analysis using K-Means. Our results show that with a prop-
erly selected combination of features, clustering can effec-
tively classify failure modes with different levels of priority.
Then we proposed a ranking method, RPR, that provides a
priority ranking list at the criterion level based on the RPN
evaluations, without requiring any prior processing. The pro-
posed ranking algorithm allows for balancing the impacts at
both the failure mode level and specific criterion level by se-
lecting different scoring functions. Both clustering and rank-
ing methods tested in this paper can provide insights appli-
cable in various industries to prioritize failure modes and op-
timize maintenance plans. Possible future work includes the
implementation of different feature selection and engineering
methods, comparison of various clustering and ranking tech-
niques, case studies with more real-world data, and exami-
nation of life cycle cost changes with provided maintenance
prioritizations. These can further justify the robustness of the
proposed methodology.
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