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ABSTRACT 

It is a common belief that convolutional neural networks 

(CNN) are incapable of acquiring knowledge from domain 

experts for fault detection and diagnosis. To address the 

challenge, this paper proposes a knowledge-transfer scheme 

from computer-aided engineering (CAE) models to CNN 

models. Domain experts build the CAE models that emulate 

the faulty behavior of rotating machines by incorporating 

fault symptom and controlling the degree of fault severity. 

Fault data are hardly acquired from rotating machines in the 

field, while a sufficient number of fault data can be 

generated using the CAE models. Then, a domain adaption 

model is trained using synthetic data (i.e., normal and fault 

data) from the CAE models and real data (i.e., normal data 

only) from rotating machines. To evaluate the validity of the 

proposed method, a small-scale testbed is regarded as the 

target system that does not have any fault data. This study 

contributes to resolve the dearth of fault data from most 

safety-related engineering assets such as power plant steam 

turbines, wind turbines, and urban air mobility. 

1. INTRODUCTION 

The fourth industrial revolution is pushing for automated 

and intelligent mechanical facilities, which has led to a 

focus on developing fault diagnostics. Deep learning 

techniques, empowered by advancements in artificial 

intelligence and sensor technologies, have gained popularity 

for their ability to autonomously acquire knowledge about 

faults and outperform traditional methods. Deep learning 

has shown impressive results, but its success depends on 

two crucial factors: the availability of sufficient labeled data 

for generalized performance and the similarity between the 

trends observed in the training and test data as has been 

shown (Liu & Gryllias, 2022). However, in diagnosing 

mechanical systems, both of these circumstances are 

typically not met. It is difficult to obtain labeled data under 

various operating conditions. Moreover, the distribution of 

training data is often different from that of test data. As a 

result, there is a need for research on deep learning fault 

diagnostics that can address the lack of data and inconsistent 

distribution of the data in this context. Several studies 

addressed the lack of data and distribution mismatch in 

diagnosing mechanical systems by combining physical 

modeling with domain adaptation techniques. Wang et al. 

(2023) attempted to diagnose triplex pump using a domain 

adaptive network, DANN, and a physical model. Feng et al. 

(2023) used MMD and a physical model to detect 

degradation of the gear surface. However, these approaches 

can be implemented to another equipment with complex 

working conditions and external noise. The generalization 

ability of deep learning is still negatively impacted when the 

data distribution changes to a different system, which poses 

a challenge for practical applications. 

The paper proposes a knowledge transfer scheme from CAE 

models to CNN models for fault diagnostics of mechanical 

systems. This scheme incorporates a new adversarial 

domain adaptation approach to address the distribution 

mismatch between simulated and actual systems, which will 

be presented in following sections. 

2. PROPOSED SCHEME 

This section starts with CAE modeling. Then, the 

adversarial learning strategy is described for fault 

diagnostics by combining synthetic data from CAE models 

with real data from actual machines. The outline of the 

proposed scheme is shown in Fig. 2. 

2.1. CAE Model Description 

In this study, a multibody dynamics (MBD) simulation 

model is developed to replicate a lab-scale testbed. A 
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simulation database is created through model calibration and 

verification. The test bed components, including the motor, 

gearbox, coupling, bearing, rotating shaft, and disk, are 

depicted in Fig. 1. The assumption of rigid body is used to 

model the motor and gearbox as they are only used to 

transmit rotational force. The green jig supports the rotating 

body system, the 6205 bearing, and the rotating disk, all of 

which are modeled to the same dimension as the testbed. 

 

Fig. 1 Multibody dynamics model 

 

A multibody dynamics model is built using fixed boundary 

conditions for jig-ground, inner ring-rotation shaft, and 

outer ring-jig to simulate the testbed. Contact conditions are 

used for ball-inner ring/outer ring and ball-cage contact 

parts. The rotation speed of the testbed is set to 900 rpm, 

and the acceleration sensor's sampling rate is 25,600 Hz. 

The model does not include spring and damping effects. 

Therefore, they are added as boundary conditions to the 

rotor system. To simulate a fault condition, an outer ring 

fault is seeded to bearing B. A groove is created at the 

location of the red box on the outer ring of the 6205 bearing. 

2.2. Domain Adaptation for Fault Diagnosis 

This section presents a 1D CNN-based adversarial domain 

adaptation model that consist of a feature extractor F(∙), 

label classifier LC(∙), domain classifier DC(∙), and decoder 

D(∙), as illustrated in Figure 7. 

The input data is prepared by transforming the raw time-

series vibration signal using the absolute value of Hilbert 

transform. A single batch of training data X = {XS, XT} is 

created by connecting the source and target data after 

applying the Hilbert transform. 

The feature extractor includes four feature extraction 

modules and one convolution (Conv) layer. Each feature 

extraction module comprises a Conv layer, the ReLU 

activation function, Mixstyle layer, and maxpooling layer. 

The goal is to transform high-dimensional vibration signals 

from source and target domains into lower-dimensional 

vibration features. The Mixstyle layer combines feature 

vectors from both domains to learn a generic expression that 

is not limited to a specific domain as has been shown Zhou, 

Yang, Qiao, and Xiang (2021).  

 

Fig. 2 Overview of the proposed scheme 

 

The Mixstyle layer blends the feature statistics of the source 

and target domains using a following formula: 
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where fi
S is the source domain feature vector of ith Conv 

layer; fi
T is the target domain feature vector of ith Conv 

layer; and   are instance-wise weights sampled from the 

Beta distribution. The ith feature vectors of the source and 

target domains are each style-normalized into blended 

features: 
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The label classifier, LC, is responsible for diagnosing the 

state of the system by receiving the low-dimensional feature 

vector f5 from the feature extractor F. It consists of two fully 

connected layers (FC) and outputs a class probability vector 

p = {pS, pT}, which indicates the probability of the input 

data belonging to each of the possible classes. This vector is 

computed using the following equation: 

 5( )p LC f=  (5) 

The deep learning model uses the loss function LC to 

diagnose the source domain with high accuracy: 
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where N is the number of the data; yi is the encoded 

probability of the ground truth label of ith data; and pi is the 

estimated probability of the ith data. 

The study utilizes CDAN to learn feature vectors that are 

invariant to domain shift as has been shown Long, Cao, 

Wang, and Jordan (2018). The domain classifier DC 

comprises one gradient reversal layer (GRL) and two fully 

connected (FC) layers to achieve this. 

 1
log
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where N is the number of the data; C is the number of 

classes; and pc is the probability of prediction a sample to 

class c. The entropy weight w(p) quantifies the level of 

uncertainty in the predictions of the label classifier LC.  

The decoder D uses the compressed feature vector f5 

obtained from the encoding process to reconstruct the input 

data X, improving its representation. It consists of four 

upsampling modules and one convolutional layer that are 

connected sequentially. Each upsampling module includes a 

transposed convolution layer and a convolutional layer. Skip 

connections are used to reconstruct both local and global 

information in the signal, connecting the Conv layer of the 

upsampling module with the feature vector obtained from 

the feature extractor F intermediate layer and the output 

vector of the corresponding upsampling module. The loss 

function is used to determine the difference between the 

reconstructed signal X' and the input signal X. 

 
1

N
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where N is the number of the data.  

The proposed domain adaptation model consists of three 

losses: the classification loss LC, an adversarial domain loss 

LD, and a reconstruction loss LR. 

 1 2C D RL L L L = + +  (10) 

where 1  is the weight constant that controls the strength of 

domain loss and 2  is the weight constant that controls the 

strength of reconstruction loss. 

3. DATASET 

The bearing failure dataset from Smart Diagnosis and 

Design Optimization (SDDO) was employed as testbed 

data. As shown in Fig. 3, the SDDO dataset was collected 

from a rotating body testbed apparatus consisting of a 

motor, gearbox, disk, and a 6205 bearing. Bearing B in Fig. 

1 had an outer ring defect of 1.0 mm, and an accelerometer 

was used to evaluate the y-axis acceleration of bearing B. 

The accelerometer sampled data at a rate of 25.6 kHz. Data 

were collected under 900 RPM operating settings to ensure 

data diversity. 

 

 

Fig. 3 SDDO testbed 

 

The simulation model generated acceleration data that 

produced BPFO characteristic frequency components when 

analyzed in the frequency domain.  

 
Fig. 4 Simulation and testbed frequency spectrum after 

model calibration 

 

To verify the model, real 1.0 mm outer ring defect data 

obtained from a rotational speed test bed was used. The 

density of the spring, damper, and rotor system was chosen 

as a calibration variable, and model calibration was 

performed using the 1x BPFO characteristic component. 

The calibration result showed an error of 0.20% for the 1x 

BPFO component, as shown in Fig. 4. 

4. RESULT AND DISCUSSION 

The proposed method includes both normal and fault data 

by incorporating simulation data into the source domain, 

and domain adaptation is achieved by considering only 

normal data from the test bed as the target domain. The 

diagnostic performance of various models, including DNN, 

Motor Gearbox

Bearing A Bearing B

Disk
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CNN, DANN, CDAN, and the proposed method, was 

evaluated using defect and normal data from the test bed as 

shown in Fig. 5. While DNNs and CNNs showed limited 

ability to classify normal and outer race defects, DANN and 

CDAN exhibited slightly improved diagnostic performance. 

In contrast, the proposed method achieved a significantly 

improved accuracy of 94.5%, despite not being trained on 

the test bed defects. Therefore, the proposed model can 

potentially diagnose defective components in the test bed by 

learning from a combination of the defective components 

from the simulation and the normal components from the 

test bed. 

 

Fig. 5 Transfer result between simulation and testbed 

5. CONCLUSION 

This paper proposed a expert knowledge transfer scheme for 

bearing fault diagnosis. A simulation model is built to 

emulate the healthy and faulty behavior of the rotating 

machine. A sufficient number of faulty data can be obtained. 

Then, the domain adaptation model is trained using 

synthetic data from the simulation model and real normal 

state data collected from rotating machines. The proposed 

scheme addresses the distribution mismatch between 

simulated and actual machine and can diagnose the target 

machine even without access to its defect data. The 

performance of the domain adaption method was compared 

with existing methods using test bed equipment and a CAE 

model to demonstrate the effectiveness of the proposed 

method. The results show that the proposed scheme can be 

implemented to practical applications. 
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