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ABSTRACT 

Thermal management is one of the important function of the 

battery management system (BMS). The thermal 

management system monitors and equalizes the temperature 

distribution of the battery pack to prevent the different cell 

degradation rate and to keep the battery on its best 

performance. In this study, as a part of the thermal 

management system the in-situ temperature estimation 

method is developed based on the principal component 

analysis (PCA) reinforced with the measured temperatures. 

To begin with, the PCA is used for finding the basis vectors 

of the battery thermal system, which is the eigenvectors of 

the covariance matrix of the training data set. Then an 

arbitrary thermal map can be expressed as the linear 

combination of these basis vectors and their amplitudes. The 

amplitude for each basis vectors is estimated from the 

measured temperatures. The performance of the thermal map 

reconstruction depends on the accuracy of this amplitude 

estimation which again is related to the temperature 

measurement locations. The measured locations are 

determined considering two aspects: the prediction accuracy 

and the robustness of the sensor network. To find the sensor 

location satisfying both criteria, the sensor network 

optimization problem is accordingly formulated, and solved 

by the genetic algorithm. The proposed study is validated for 

various operating conditions including the distributed heat 

generation condition and different cooling conditions. 

1. BATTERY PACK MODELING

In this section, the battery pack thermal model is introduced, 

which will be later used to generate the training data for 

extraction of the principal components. 

1.1. Battery Pack Overview 

A thermal simulation model for a battery pack is developed 

using the lumped parameter. The battery pack is composed of 

50 numbers 18650 cylindrical cells (ICR18650B4, LG Chem.) 

with 2600mAh capacity, and 3.7V nominal voltage. They are 

arranged to have 5 by 10 configuration. To construct the finite 

element model, each cell is represented as a node and it is 

connected with the surrounding cells by thermal resistance. 

At each cell, heat is generated by electrochemical reactions. 

The heat is transferred to the surrounding cells by conduction 

and to the air by convection. The energy balance equation for 

the ith cell in the battery pack is given as (Forgez,, Do, 

Friedrich, Morcrette, & Delacourt, 2010): 
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where Ch is the heat capacity of the cell, Ti is the temperature 

at the ith cell, and Tj is the cell around the ith cell, Tamb,i is the 

ambient temperature, t is the time, Rt is the thermal resistance 

between cells, �̇� is the heat generation rate, and h is the heat 

transfer coefficient. To simulate the model, the parameters 

including the heat generation rate are identified by the 

characteristic tests, described in the following section. 

1.2. Heat Generation Model 

During charging and discharging, heat is generated inside the 

cell. There are several heat sources, but in this study, two 

dominant heat sources, irreversible ohmic heating and 

reversible entropic heating are considered (Forgez, et al., 

2010). The heat generation rate is given as 

2 OCVdV
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dT
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where I is the input current, R is the impedance of the cell, 

and VOCV is the open circuit voltage. The first term is the 

ohmic heating and the second term is the entropic heat. Since 

the impedance R is dependent on the state-of-charge (SOC), 

the hybrid pulse power characterization (HPPC) test is 

performed to obtain the SOC and impedance relationship 

(Onda, Kameyama, Hanamoto, Ito, 2003). Also, dVOCV/dT for 

entropic heat is obtained as a function of SOC according to 

Onda et al. (2003). Finally, for calculation of the SOC during 
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operation, the coulomb counting method given in Eq. (3) is 

used. 
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In the above equation, k is the time index, zk is the SOC at 

time index k, ηi is the Coulombic efficiency, Δt is the time 

difference between k+1 and k time indices, Cn is the nominal 

capacity of the cell, and Ik is the input current. With the 

impedance, dVOCV/dT, and SOC as a lookup table, the heat 

generation can be calculated. 

The model parameters of a single cell, the heat capacity and 

the heat transfer coefficient, are calibrated and validated with 

experimental results. First, for model calibration, the 

temperature under 1C discharging condition is obtained and 

used for target vector to optimize the model parameters. The 

optimized heat capacity and heat transfer coefficient are 

69.43 J/K, and 0.1555 W/m2K, respectively. The model is 

then validated with the urban dynamometer driving schedule 

(UDDS) current profile, which emulate the real driving 

schedule. The UDDS profile and 10% SOC discharging is 

performed alternately until the SOC is near zero, then the 

charging process follows. The measured and the simulated 

temperatures for this current profile are shown in Figure 1. 

The simulated temperature result shows good agreement with 

the measured temperature during the discharge. The 

temperature at charging deviates a bit from the measured one, 

because the impedance used is obtained from discharging 

pulse. For better results during charging, the impedance 

needs to be calculated using the charging impulse. 

2. SENSOR NETWORK DESIGN

2.1. Principal Component Analysis (PCA) and Signal 

Reconstruction 

The sole use of thermal model for estimating the temperature 

distribution of the battery pack becomes unreliable as time 

passes due to the error accumulation, which comes from the 

uncertainty of the model and the state change of the battery. 

Hence, the estimated thermal map needs to be corrected by 

the measured data, and this correction depends on the sensor 

locations or the sensor network design. The basic idea of the 

sensor network design is to locate sensors that maximize the 

total amount of information. In other words, the sensor 

locations should be selected to assure accurate reconstruction 

of the temperature distribution. To this end, the temperature 

reconstruction from the arbitrarily measured signal is first 

introduced, and the criteria to determine the sensor locations 

is explained next. 

The reconstruction of temperature distribution starts from the 

decomposition of the signal. The principal component 

analysis can be used to decompose the signal as (Kammer, 

1991) 

y Φq (4) 

where y is an arbitrary signal, Φ is the matrix whose columns 

are the principal components of the training data set, and q is 

the corresponding weight. The principal component is a 

vector that represents the principal axis of the covariance 

matrix and is obtained as the eigenvector of the covariance 

matrix. Since the eigenvectors are in common, it is the weight 

that determines the specific signal. For this reason, now the 

weight is estimated from the measured signal. According to 

the method of the best linear unbiased estimator  (Kammer, 

1991), the weight is estimated as  
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where ys is a p×1 vector, p is the number of sensors, Φs is the 

p×p principal component matrix, where its row is reduced 

according to the measured location, and �̂� is the estimated 

weight. Finally, the signal reconstruction is given as 

(Kammer, 1991) 

ˆˆ
ry Φ q (6) 

where Φr is n×p principal component matrix, n is the number 

of samples, and �̂� is the reconstructed signal.  

The signal reconstruction so far is discussed in terms of the 

arbitrarily measured signal. Now selecting ys (p×1) out of y 

(n×1), or measurement location is discussed. As seen in the 

above, the reconstruction of the signal depends on the 

estimation accuracy of the weight, which can be measured as 

the variance P of the estimation (Kammer, 1991). 
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From the equation, the variance between the target weight 

and the estimated weight is expressed in the quadratic form 

of the principal component matrix divided by the 

measurement noise variance σ2. The inverse of this quadratic 

equation is also known as the Fisher information matrix, Q0. 

Figure 1. UDDS test results: the measured and the 

simulated temperatures. 
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Therefore, the ys out of y should be selected to give the low 

variance of weight estimation, or equivalently high value of 

Fisher information matrix. To measure the Fisher information 

matrix, its determinant is used (Kammer, 1991). In the next 

section, the sensor network design with the Fisher 

information matrix as the objective function is discussed. 

2.2. Robust Optimal Sensor Network Design 

The object of selecting sensor locations is to maximize the 

determinant of the Fisher information matrix with the (p×p) 

matrix, Φs,which is the matrix that (n-p) rows and columns 

are eliminated out of the (n×n) principal component matrix, 

Φ. Therefore, the selections must be made for both rows and 

columns. The rows are the candidate locations of sensor 

placement and will be decided by the genetic algorithm later. 

The columns are the mode shape vectors, and will be selected 

as the principal components corresponding to the p highest 

eigenvalues of Φ. The choice of these principal components 

is adequate to represent the general behavior of the system. 

The choice of rows, or sensor locations, is considered in two 

aspects. First, the determinant of the Fisher information 

matrix needs to be high enough to reconstruct the whole 

thermal map out of the measured signal. Second, for the 

sensor network to be robust, the sensor network needs to keep 

its functionality under latent sensor failure. Then, the 

objective function and the constraints are formulated as 

shown in Eq. (8): 

where Φ[i1,…, ip; j1,…, jp] is the submatrix of Φ formed from 

the rows {i1,…, ip}and columns {j1,…, jp} such that il∈ ℕ, 

1≤il≤n, and il≠im. As mentioned before, the principal 

components are preselected as the first p eigenvectors of the 

covariance. The random variable for calculating the 

expectation in the objective function is ij, which is an element 

in {i1,…, ip}. Therefore, the objective function indicates the 

Fisher information matrix of the system when a sensor fails. 

The constraint is set to satisfy a certain performances. The 

constraint criterion is determined based on the sensor 

placement result without considering the failure. The iopt is 

the optimal sensor location when failure is not considered. 

The coefficient α determines the performance criterion. 

Since the sensor placement is the combinatorial problem that 

selects a given number p of sensors out of n candidate 

locations, the integer valued optimization method is required. 

Integer valued optimization is a non-convex problem that 

cannot be solved by gradient-based optimization. Thus, in 

this study, the genetic algorithm is adopted to find the sensor 

location, giving the best Fisher information matrix value of 

the system. The genetic algorithm is a sampling-based 

optimization algorithm inspired by biological evolution. It 

generates initial random samples (or population) and pass 

them to the next generation with modification (Vose, 1999). 

As the generation goes on, the optimal evolution is found as 

in natural selection. The sensor locations found by the genetic 

algorithm are shown with the sensor network design that does 

not consider the sensor failure as shown in Figure 2. 

3. CASE STUDY

The estimation accuracy with and without considering failure 

of sensors are compared using a test data set. The test case is 

designed to imitate a battery pack with a cooling system. The 

battery pack is cooled down by forced convection that comes 

from the left side of the battery pack by a set different heat 

transfer coefficient for each cell. The simulation results are 

shown in Figure 3. As expected, the cells near the air inlet 

and the circumference of the pack have a lower temperature 

than the cells at the center. 

The summary of the estimation error measured by the root 

mean square (RMS) error are shown in Table 1. The failed 

sensor number indicates the sensor indices shown in Figure 

2. Both optimal sensor placement (OSP), and the robust-OSP

(ROSP), which represent the sensor networks without and

with consideration of sensor malfunction gave accurate

estimation results in normal conditions; however, the

accuracy drops with a sensor malfunction. Also, the accuracy

drop for the ROSP results is less than the accuracy drop for

OSP.

(a) (b) 

Figure 2. The sensor locations: (a) Optimal sensor 

placement (OSP), and (b) the robust optimal sensor 

placement (ROSP). 
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Figure 3. The temperature distribution of a battery pack 

under forced convection at 83 min. 
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Table 1 The RMS error of OSP and ROSP methods 

Estimation error (RMS) 

Failed sensor No. OSP ROSP 

Normal 0.2658 0.3369 

1 3.0945 1.3521 

2 5.3976 1.5131 

3 20.213 8.2920 

4 1.9524 1.7199 

5 2.3377 2.0404 

6 5.5522 2.8814 

7 1.8372 1.5646 

8 2.1750 1.1891 

Mean error for 

failure 
5.32 2.57 

From the results, two advantages are observed. First, by 

combining the model and the measured data, the proposed 

method captures both the computational efficiency and the 

estimation accuracy. In practice, such as in the case of a 

battery management system (BMS) in an electric vehicle, 

computational efficiency is an important issue. Thus, a 

complicated model requiring heavy computation cannot be 

used in spite of its accuracy in estimation. In contrast, the 

simple model is free from the computational burden; however, 

it is less accurate. The proposed method requires only a small 

memory to save the principal component matrix and the 

capability to calculate the matrix product; inaccuracy is 

compensated by the measured data and thus, it is suitable for 

practical use. The use of sensors only to obtain the 

temperature distribution of the battery pack is not practical 

because of the cost and the potential for sensor 

malfunctioning.  

Another benefit of the proposed method lies in the 

sustainability of the sensor network under failure. The sensor 

network contributes to protect the system as a part of BMS; 

however, the sensor network itself is vulnerable to failure. 

Nevertheless, developing another protective system for the 

sensor network is not a good solution because it requires 

redundant cost. In this situation, the proposed sensor network 

design could be a solution because it does not require an extra 

system, while it does maintain a certain degree of 

performance under failure. Unlike the PHM, which tries to 

prevent failure, the proposed design allows the failure and 

gains time to take care of the failure. 

4. CONCLUSION

In this study, we proposed a robust sensor network design for 

online temperature estimation for the battery pack, based on 

the principal component analysis. We defined the objective 

function and the constraint for this purpose. The optimization 

problem was solved by the genetic algorithm. The selected 

sensor locations were used to reconstruct the temperature 

distribution of various cases. The estimation results were 

compared with the other sensor network design that focuses 

on accuracy. The results show that the proposed method has 

estimation capability that is comparable to the existing 

optimal sensor design and has higher reliability. 

In this study, the sensor locations were found through the 

optimization method, but it requires significant 

computational resources to find the optimal solution. Hence, 

to reduce the computational cost, an analytic solution is 

required. This will be addressed in future research. 
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