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ABSTRACT 

The successful application of Prognostics and Health 

Management (PHM) systems is increasing steadily 

worldwide. One reason for this is the increasing number of 

smart products entering the market. Mirroring smart 

products, PHM systems are now developed and applied in a 

variety of engineering disciplines, all using different models 

and methods. Model, method, and product type diversity all 

lead to highly complex systems. To handle the complexity in 

an efficient way, this paper introduces a common base for 

PHM systems, in the form of a framework – the goal being a 

generic model with clear formalization of both notation and 

semantics. Accordingly, the PHM System is separated into 

both a RUL-Health model and a context model. Both are 

described and connected through a roles and relation model 

of their modules. Diagnosis and prognosis modules – 

estimating the components’ health using lifetime models – 

are RUL-Health based. For a holistic description, the general 

lifetime model (GLM) is introduced. This allows different 

measures of component health to be represented in a single 

model and reduces the complexity to two metrics – remaining 

useful life (RUL) and health index (HI). These metrics – 

combined with internal/external requirements & targets – are 

the input for the context modules’ optimization and decision 

making.  

1. INTRODUCTION

Due to an increase in smart products, the successful 

application of Prognostics and Health Management (PHM) 

systems is steadily increasing. The obvious benefits are 

increased safety and reliability, complemented by reductions 

in damage, cost and servicing. To sum up, PHM is gaining 

ground as a technical domain and provides huge benefits. 

Despite this, a meta-level structure for the arrangement, 

comparison, definition, and distinction of PHM from 

reliability engineering and other disciplines remains absent 

(Celaya Galván 2014). For this purpose, a uniform 

description of PHM with a generic framework and a clear 

formalization is presented in this paper. 

The Term “Prognostics and Health Management” itself is 

defined by several authors in several ways. For example, 

Celaya Galván (2014) defines PHM in terms of the main 

target as the “estimation of remaining useful life of a 

component”. Coble (2012) focuses more on the elements of 

PHM – “full PHM Systems typically include […] data 

collection, fault diagnostics, system prognostics, and 

planning“. Fries (2014) adds the condition that PHM is 

applied to the current life-cycle. 

This paper sees the in-situ use of PHM during the 

components life cycle as a crucial point in the distinction of 

PHM from other disciplines. It is also distinguished by its 

nature of concerning component health management and 

decisions in addition to observation. The following provides 

a universal description: 

Prognostics and Health Management assesses remaining 

useful life in situ to manage component 

health and derive decisions. 

At this point, the definition of remaining useful life (RUL) is 

adopted from the work of Celaya Galván (2014), which cites 

it as “the amount of lifetime a component can be expected to 

continue operating within the stated specifications given”. In 

contrast with Celaya Galván (2014), the more general term of 

lifetime is used in place of time. Henceforth, the RUL 

definition 𝑡𝑅𝑈𝐿 will be distinguished from time to failure 𝑡𝑇𝑇𝐹
by the start and end point, presented in figure 1.  

Figure 1. Remaining useful life and time to failure. 
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The second characteristic value is component health, as 

expressed by the health index (HI). This metric describes the 

general decrease in health of the component over its lifetime, 

illustrated in figure 2 (healing effects → HI increase). Wang 

(2012) distinguishes between a physics health index (PHI) 

and a synthesized health index (SHI). The PHI is applicable 

if one signal correlates with physics of failure (PoF) metrics. 

If there is no dominant PoF observed, the SHI overcomes the 

difficulty by deriving a one dimensional health index from a 

multi-dimensional signal. 

Figure 2. Health index and damage. 

Figure 2 also demonstrates the negative correlation between 

health and damage. Attention is brought to this, as many 

lifetime models are based on degradation – defined as the 

component’s damage path (Hines 2008). Irrespective of 

whether one tracks health or degradation, the end of 

specification is reached when the first failure criterion 𝛧 is 

crossed. All points will be discussed in detail in chapter 2.1.1. 

2. PHM SYSTEM

The superordinate PHM System is modeled with its main 

elements and their interactions in figure 3.  

Figure 3. PHM System. 

The System is divided into both the RUL-Health model 

(component based) and the context model. Light grey 

elements are modules representing mathematical methods. 

Within the RUL-Health model, the general lifetime model 

and the diagnosis and prognosis modules assess in-situ RUL 

and HI. The context model is based on internal/external 

requirements & targets. An optimization is applied between 

the models and forms the base for decision making. It is 

important to note that the models presented confer a holistic 

and generic perspective. Individual PHM Systems are not 

mandatory considering every model element. 

2.1. RUL-Health Model 

The RUL-Health model is separated into both the general 

lifetime model (GLM) and the diagnosis and prognosis 

modules. Generally, a PHM system is regarded as a 

combination of several lifetime models (Fries 2014). Where 

there are 𝑛  different lifetime models describing the 

components’ health, there are 𝑛 RUL-Health models as well. 

These single RUL-Health models can be combined under the 

V-Model (figure 4), which takes unequal prognosis results

and uncertainties into account.

Figure 4. V-Model based on VDI (2004). 

2.1.1. General Lifetime Model (GLM) 

The general lifetime model is introduced to describe the HI 

over lifetime in a holistic form (figure 5). It enables the 

representation of degradation and failure probabilistic in a 

single model. As discussed in chapter 1, degradation 

correlates with the component health index 𝐻 and the EOS is 

reached by crossing the first failure criterion 𝛧. Each metric 

is connected to an inherent probability 𝑃 , represented in 

GLM through the density function 𝑓. Beside the lifetime 𝑡 ∈
𝑇, the following notation is also used (Eq. 1 – 4).  

𝐻(𝑇, 𝑃𝐻),  ℎ ∈ 𝐻 (1) 

𝛧(𝑇, 𝐻, 𝑃𝛧),  𝜁 ∈ 𝛧 (2) 

𝑓(𝑇, 𝐻, 𝛼𝑓) (3) 

𝑃(𝑇, 𝐻) = ∫∫𝑓(𝑇, 𝐻) 𝑑𝑇𝑑𝐻 (4) 

Note that the density function is also connected to a 

significance level 𝛼 (Bertsche 2008). At this point, figure 5 

is reduced to only one failure criterion 𝑍  and two density 

visualizations, one over lifetime and one over 𝐻. 

A major difference between degradation and failure 

probabilistics is that random failures cannot be traced by 

degradation (Meeker 1998, Bertsche 2008). Conversely, in 

classical failure probabilistics, knowledge concerning the 

Present 
ℎ

Decreasing health index ℎ End of specification 
ℎ

Present Increasing damage End of specification 

Lifetime 

Model

Diagnosis

Prognosis

RUL, HI

RUL-Health model Context model

Requirements 

& Targets

Decision 

making

Optimization

Single RUL-Health Model

Requirements
RUL-Health 

Model

Modeling and model analysis

Model  
Model  

Model 𝑛

Assurance of 

properties

681



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

trace of the components health is absent. This generally leads 

to higher uncertainty.  

Figure 5. General lifetime model. 

Usual lifetime models are covered in the GLM by reducing 

an axis, or by keeping one parameter constant. For example, 

the Weibull failure probability can be expressed by the 

integral over the density function at the crossing point of the 

health and failure criterion f(t, ℎ = 𝜁 , 𝛼𝑓) . Classic

degradation models are reduced to the axes health index and 

lifetime. A comprehensive overview of lifetime estimation 

approaches is provided by Ahmadzadeh (2013), who 

distinguishes between physics based, empirical based, data 

driven and hybrid approaches. These classifications – 

combined with the scope of component characteristic and 

variation (uncertainties) knowledge – define the PHM 

system’s area of application. 

2.1.2. Modules 

The diagnosis and prognosis modules are the interface 

between component and GLM. Similar to common 

understanding, time is divided into past (diagnosis 𝑡𝑖− ),

present ( 𝑡𝑖 = 𝑡𝑝 ) and future (diagnosis 𝑡𝑖+ ). Bachleitner

(2016) defines the present as a model of reality, the past as 

the remembered present, and the future as the forward 

projected past. This philosophical perspective already 

demonstrates the inherence of uncertainties.  

The role of diagnosis is to interpolate the component 

measurements 𝜑 ∈ 𝜙  in the general lifetime model. By 

comparison, the role of prognosis is to extrapolate the data 

from diagnosis. To ensure accurate extrapolations, it is 

necessary to know anticipated future operating conditions. 

These conditions are defined by the context as requirements 

& targets primarily of the component (internal 𝜃𝐼 ∈ Θ𝐼), and

secondarily of the network the component is embedded in 

(external 𝜃𝐸 ∈ Θ𝐸). To exemplify this, Celaya Galván (2014)

lists the current health status (RUL, HI) and anticipated future 

operating conditions as input commands, environments, and 

loads. The roles and interactions of diagnosis and prognosis 

between each other and the GLM is shown in figure 6. 

Figure 6. Roles and relation model – RUL-Health modules. 

Each module will be executed for at least one loop 𝑗 every 

lifetime step  . Note that prognosis and optimization results 

base on requirements and targets from the previous loop 

𝑗 −  . Beside the inputs and outputs already mentioned, there 

is additional meta data 𝜃𝑀 ∈ Θ𝑀  which addresses training

and validation especially.  

2.2. Context 

A core aim of PHM systems is to manage component health, 

and to derive decisions. This is addressed in the context 

model. In chapter 2.1.2, internal/external requirements and 

targets are introduced as context inputs. The modules are 

optimization and decision making, whose roles and relations 

are shown in figure 7. Note that for combinatorial 

optimization a decision problem is corresponding.  

Figure 7. Roles and relation model – context modules. 

In order to find the optimum RUL and HI, whilst taking the 

context into account, a multi-criteria optimization problem 

must be solved. In the process of decision making, an action 

(𝜃𝐴 ∈ Θ𝐴), is performed, something not necessarily required

in each loop. Each decision requires the associated risk and 

model uncertainty to be taken into account (Saxena 2010). 
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2.3. Uncertainty Propagation Map 

Hines (2008) states that “since the lifetime cannot be 

precisely predicted, a probability distribution results”. 

Beforehand, uncertainty was addressed in the GLM by the 

density function over health and lifetime. Both the meaning 

and sources of uncertainties are explored in this chapter. 

Sources of uncertainty are defined as modeling uncertainties 

(epistemic), input data uncertainties (aleatoric), measurement 

uncertainties (prejudicial) and operating environment 

uncertainties (combination) (Saxena 2010). 

To ascertain the uncertainty of a chain of variances, the 

variance sum law can be applied (JCGM 2008). For 

independent variances, equation 5 can be used. For dependent 

variances, the covariance (equation 6) must also be taken into 

account. 

𝑉𝑎 (∑ 𝑎𝑖𝑋𝑖

𝑁

𝑖= 
) = ∑ 𝑎𝑖

2𝑉𝑎 (𝑋𝑖)
𝑁

𝑖= 
(5) 

+2∑ 𝑎𝑖𝑎 𝐶 𝑣(𝑋𝑖 , 𝑋 )
 ≤𝑖< ≤𝑁

 (6) 

In diagnosis, uncertainties lie in component measurement, 

GLM modeling and diagnosis modeling. In prognosis, 

uncertainties lie in diagnosis, GLM modeling and prognosis 

modeling. Decision uncertainties include both diagnosis and 

prognosis input uncertainties, as well as modeling 

uncertainties of optimization and decision. According to the 

variance sum law, 𝑡𝑅𝑈𝐿  can be described by equations 7–8

under the condition of independent variances. 

 (𝑡𝑅𝑈𝐿) =  (𝑡𝐸 𝑆) −  (𝑡𝑝) (7) 

𝑉𝑎 (𝑡𝑅𝑈𝐿) = 𝑉𝑎 (𝑡𝐸 𝑆) , 𝑉𝑎 (𝑡𝑝) = 0 (8) 

ℎ𝑅𝑈𝐿  may be determined in the same way (equations 9–10).

 (ℎ𝑅𝑈𝐿) =  (𝜁𝐸 𝑆) −  (ℎ𝑝) (9) 

𝑉𝑎 (ℎ𝑅𝑈𝐿) = 𝑉𝑎 (ℎ𝑝) , 𝑉𝑎 (𝜁𝐸 𝑆) = 0 (10) 

By comparison, 𝑉𝑎 (𝑡𝑅𝑈𝐿)  depends on the prognosis

variance and 𝑉𝑎 (ℎ𝑅𝑈𝐿) on the diagnosis variance. Due to

the inherence of diagnosis variance in prognoses, this follows 

𝑉𝑎 (ℎ𝑅𝑈𝐿) ≤ 𝑉𝑎 (𝑡𝑅𝑈𝐿).

3. CONCLUSION

Uncertainties are directly connected with both risk and 

reward, and the extent of uncertainty defines the extent to 

which PHM systems may reasonably be applied. 

Furthermore, this paper demonstrates that PHM is distinct 

from other disciplines by shifting the designer influence into 

the life-cycle usage phase. This is specifically achieved 

through in-situ optimization and decision making, based on 

the RUL, HI, and all-important context. A clear separation 

between the lifetime model and modules (mathematical 

methods), as well as between the RUL-Health and context 

models enable a holistic and universal definition of PHM. 

This provides a basis to pursue further findings concerning 

PHM systems. 

NOMENCLATURE 

f Density function 

H, h Health index 

i index 

j loop 

P Probability 

T, t Lifetime 

𝛼 Significance level 

 , 𝜁 Failure criterion 

Θ𝐴, 𝜃𝐴 Action data 

Θ𝐸, 𝜃𝐸 External requirements and targets 

Θ𝐼 , 𝜃𝐼 Internal requirements and targets 

Θ𝑀, 𝜃𝑀 Meta data 

Θ , 𝜃 Optimization data 

𝜙, 𝜑 Component measurements 
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