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ABSTRACT

Advances in computational speed have enabled the de-
velopment of many Bayesian probabilistic models due to
Markov-Chain-Monte-Carlo (MCMC) posterior sampling
methods. These models includes Bayesian hierarchical re-
gression methods, which use group level information to
inform individual asset predictions. Hierarchical models are
increasingly used for prognostics as they recognise that the
parameter estimates for an individual asset may be rationally
influenced by data from other similar assets. Larger and
high dimensional datasets require more efficient sampling
methods for calculations, than traditional MCMC techniques.
Hamiltonian Monte Carlo (HMC) has been used across many
fields to address high dimensional, sparse, or non-conjugate
data. Due to the need to find the posterior derivative and the
flexibility in the tuning parameters, HMC is often difficult
to hand code. We investigate a probabilistic programming
language, Stan, which allows the implementation of HMC
sampling, with particular focus on Bayesian hierarchical
models in prognostics. The benefits and limitations for HMC
using Stan are explored and compared to the widely used
Gibbs Sampler and Metropolis-Hastings (MH) algorithm.
Results are demonstrated using three case studies on lithium-
ion batteries. Stan reduced coding complexity and sampled
from posterior distributions more efficiently than parame-
ters sampled with the Metropolis-Hastings algorithm. HMC
sampling became less efficient with increasing data-size and
hierarchical complexity, due to high curvature in the poste-
rior distribution. Stan was shown to be a robust language
which allows for easier inference to be made in the Bayesian
paradigm.

1. INTRODUCTION

Bayesian inference has been widely utilised in prognostics,
with methods including, particle filters (Orchard, Kacprzyn-
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ski, Goebel, Saha, & Vachtsevanos, 2008), regression mod-
els (Coble & Hines, 2011), and hierarchical models (Zaidan,
Harrison, Mills, & Fleming, 2015). A good overview of
prognostic methods in a bayesian framework is presented in
Saha, Goebel, Poll, and Christophersen (2009). The Bayesian
paradigm performs inference about the parameters of interest
by examining the posterior distribution, p(f|y). This is for-
mulated by taking information from both the prior distribu-
tion, p(#), and the likelihood of the observed data p(y|6).
A comprehensive instruction on Bayesian statistics can be
found in Gelman, Carlin, Stern, and Rubin (2014).

Until the mainstream arrival of numerical methods such
as Markov-chain-Monte-Carlo (MCMC) in the early 90s,
the state-of-the-art for Bayesian inference saw analytically
tractable combinations of priors and likelihoods used to cal-
culate the posterior distribution. This limited the range of
uses of Bayesian statistics to situations where the posterior
could be analytically derived. This is often not possible for
models that describe realistically complex data, rather than
simplified or idealistic data. With numerical method develop-
ment, potential applications in the Bayesian paradigm, as well
as the flexibility of Bayesian models has increased (Gilks,
Richardson, & Spiegelhalter, 1995). However, many MCMC
techniques can be complicated and confusing to the new prac-
titioner, which hence makes Bayesian inference unapproach-
able.

Details of MCMC sampling schemes vary, however they are
all similar in the sense that they generate samples from the
posterior. This results in a finite number of autocorrelated
samples which may be used for inference (Brooks, Gelman,
Jones, & Meng, 2011). Due to the autocorrelation between
the samples, many iterations may be required to draw enough
samples to be representative of the posterior. MCMC algo-
rithms are judged on how long they take to generate a single
sample, but how correlated the samples are from iteration to
iteration (Brooks & Roberts, 1998).

Due to the complexities of MCMC sampling, hand coding
samplers runs the risk of hidden coding errors, model mis-
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specification and run-time inefficiencies. A series of soft-
ware platforms known as the BUGS family (WinBUGS,
OpenBUGS, BUGS, and JAGS), allows practitioners to use
Bayesian inference, without having to concern themselves of
the intricacies of MCMC sampling (Lunn, Thomas, Best, &
Spiegelhalter, 2000). The BUGS family primarily generates
samples via Gibbs sampling and the Metropolis-Hastings al-
gorithm, both members of the MCMC family described fur-
ther in sections 3.1 and 3.2. Both of these methods rely on
random-walk behaviour to explore the posterior. This can
lead to sampling inefficiencies in highly correlated or high
dimensional data. As such, with increasing model size and
complexity, the implementation of many models using BUGS
leads to a prohibitively long run-time for sampling.

A new family of MCMC algorithms called Hamiltonian
Monte Carlo (HMC) (Neal et al., 2011) has promise to in-
crease the sampling efficiency over the algorithms used by
BUGS. But it has been slow to be adopted. This may be
attributed to two reasons. The first is the implementation
difficulty of the sampler. HMC must be tuned in three dif-
ferent locations, which for complex models requires an ex-
perienced user to program. The second is that HMC re-
quires precise gradients. However, analytical formulas are
rare and numerical techniques are imprecise, especially in
high dimensions. These hurdles have been overcome with
the No-U-Tuns-Sampler (NUTS) and automatic differentia-
tion. These advances have been packaged into a number
of open source, generic and flexible probabilistic program-
ming languages such as Stan (Carpenter et al., 2016), pyMC3
(Salvatier, Wiecki, & Fonnesbeck, 2016) and Edward (Tran
et al., 2016).

Newer probabilistic programming languages aim to super-
sede both the need for hand coding of MCMC samplers, and
the existing BUGS platform, by offering more flexible and
faster samplers. Two popular frameworks at present are Stan
and pyMC3. Stan uses a custom modelling language, and
can be called from a variety of other modelling languages, in-
cluding R and Python. PyMC3 builds a representation of the
model in Python!.

We explore the principles that underlie both traditional
MCMC and HMC sampling, and implement three case stud-
ies in the Stan language, all of which use Bayesian hierar-
chical modelling. Two of these case studies have been pre-
viously published in prognostics literature. Bayesian hierar-
chical modelling has been widely utilised in many scientific
fields, and more recently in prognostics, as seen in Zaidan
et al. (2015) and Xu, Li, and Chen (2016). Hierarchical
modelling utilises information available at multiple levels of
an observation, and is particularly powerful in the Bayesian
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paradigm (its frequentist cousin is known as empirical hierar-
chical modelling).

We explore how HMC performance scales with the size and
complexity of the model, and its suitability for hierarchical
models in prognostics. Our goal is to explore the benefits
of probabilistic programming with Stan, and to provide guid-
ance for practitioners looking for methods that lead to faster
and more robust bayesian inference.

The remainder of this paper is organised as follows; sec-
tion 2 presents a short overview of Bayesian modelling,
section 3 discusses MCMC sampling techniques, section
4 reports on probabilistic programming techniques, sec-
tion 5 explains the data and models that we looks at,
section 6 shows the statistical models and results of the
model implementations, and sections 7 and 8 present a
discussion and concluding remarks, respectively.  The
supporting documentation for this paper can be found at
http://uwa.engineering/papers—and-
presentations/.

2. BAYESIAN MODELLING

Bayesian statistics views probability as a degree of belief, and
not as a relative frequency over time, as frequentist statistics
does. Bayesian statistics allows for a rich class of models
to be used for a wide range of applications. It combines in-
formation in the prior knowledge p(6) and the model likeli-
hood p(y|#) to inform a belief about the posterior distribution
p(f]y). Bayes’ theorem states that

p(0ly) o< p(yld) x p(0).

Note that in Bayesian statistics, our interest is in the uncer-
tainty of the values of the parameters ¢, and not in the un-
certainty in the data y. Bayesian statistics derives the most
credible parameter values 6, for a chosen descriptive model.
Bayesian methods allow for uncertainty to be propagated
through all stages of modelling, presenting a comprehensive
description of possible parameter values.

2.1. Bayesian hierarchical modelling

A strength of Bayesian modelling is the ease with which hi-
erarchical models can be expressed and fit. These models
make intuitive use of the multiple levels of information that
are often available for an observation. For instance, consider
a longitudinal measurement of an asset y; ; for a population
of J assets at time ¢. Each asset is dependent on a set of oper-
ational conditions 6;. It is often a reasonable assumption that
the operational conditions within a site share some character-
istics and therefore come from a common distribution of site
averages u and site variance Y. This is a hierarchical model.
This example can be described by the three stages below.
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Yr.g ~ P(Ye4l0;)

The measurement y; ; for the jth asset at time ¢ is mod-
elled as directly dependent on its operating conditions.
The dependence of y; ; on the parameters higher up in
the hierarchy, ;1 and %, is absorbed in its dependency on
0;.

0 ~ p(0;lp, %)

Operating conditions of the jth asset can be modelled as
being drawn from a common distribution of site averages
wand 2.

e~ p(p), X~ p(X)
Site averages and variances are given a distribution from
which values may be drawn.

Taking this even further, another level can be added to the
hierarchy: each site may be modelled as coming from a com-
mon distribution of sites. This chain of dependencies exem-
plifies a hierarchical model.

A consequence of hierarchical modelling is shrinkage.
Shrinkage is the tendency of parameter estimation towards
the overall central mean. It is a advantage of hierarchical
modelling as it can both mitigate false alarms and erroneous
parameter classification until significant data is presented,
and can lend information to new data points with limited
data by sharing data across the distribution. For example
take the model described above. Should a new asset J + 1
come on-line at site ¢ and we wish to estimate its failure
time y741,;. Without seeing any data on it’s operating condi-
tions we may infer a range of possibilities from the average
operating conditions of the site ¢;.

To find the distribution of any quantity of interest we
marginalise the joint distribution by integrating over all other
variables. For example, should we be interested in the aver-
age operating conditions, M, across all sites, we may find its
posterior distribution as

p(M\Y)Z///p(elzJ,¢1:1,M,E|Y) dx d¢ do

With increasing computational power, and increasing vol-
umes of sensor and failure data being monitored, modelling
data according to a hierarchy is becoming more popular in
prognostics research. Zaidan et al. (2015), Xu et al. (2016),
and Cripps and Pecht (2017) all use a hierarchical framework
to model degradation data.

3. MARKOV CHAIN MONTE CARLO SAMPLING

Markov chain Monte Carlo (MCMC) development can be at-
tributed to Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953), and was used amongst the physics commu-
nity. Despite its inception in 1953, it was not until the 1990s
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that MCMC methods were widely used by the Bayesian com-
munity when computational advances made it more accessi-
ble. MCMC algorithms generate a series of dependant and
autocorrelated samples from the posterior distribution which
is used for inference. MCMC methods are well suited to
Bayesian hierarchical models as the conditional distributions
at the different levels of the hierarchy are generally well be-
haved, however often analytically intractable.

The two most generic and widely used realised methods
of MCMC sampling is the Metropolis-Hastings (MH) algo-
rithm (Hastings, 1970) and the Gibbs sampler (Geman & Ge-
man, 1984). The majority of MCMC development builds
upon these two sampling methods, for example reversible
jump MCMC (Green, 1995) and adaptive MCMC (Andrieu &
Thoms, 2008). Hamiltonian Monte Carlo (HMC) simulation
(Neal et al., 2011) is a recent sampling development, and has
been successfully implemented to address high dimensional,
sparse, or non-conjugate data. Each MCMC method uses a
unique jumping distribution to sample the next sample from
the most recent sample. Important to all MCMC methods is
that the generation of each subsequent sample is Markovian,
which means that each sample only depends on the sample
immediately before it.

Due to the autocorrelation in the samples the practitioner
has to be confident that the MCMC sampler has effectively
explored the posterior distribution, regardless of how many
MCMC samples have been generated. This is known as mix-
ing. As both the MH algorithm and the Gibbs sampler rely on
random-walk behaviour, their algorithms struggle to propose
samples in regions of the posterior distant from their current
location. Due to this, multiple transitions are needed to move
between regions. This results in higher autocorrelation, and
slow mixing. Conversely, HMC relies on Hamiltonian dy-
namics to propose a sample. For certain models, this allows
well constructed HMC algorithms to propose values almost
anywhere in the posterior from any given location. Figure
1 shows the samples from a MH algorithm and HMC sam-
pling. As a result HMC can explore the posterior much more
efficiently than the MH algorithm (Neal et al., 2011).

We briefly explain the MH algorithm and the Gibbs sampler
below, followed by a more in depth explanation of HMC.

3.1. The Metropolis-Hastings algorithm

The Metropolis algorithm was developed in (Metropolis et
al., 1953). Hastings (1970) later generalised the Metropo-
lis algorithm to allow for non-symmetrical jumping distribu-
tions. It has since been referred to as the Metropolis-Hastings
algorithm. The MH algorithm utilises a random walk proce-
dure to explore the sample space. The jumping distribution
J(6*|#¢—1) proposes a new sample, given the location of
the current sample. The proposed sample is accepted accord-
ing to an accept/reject rule. The rate of acceptance of a new
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Random-walk Metropolis Hamiltonian Monte Carlo

Figure 1. MH samples and HMC sample for a 2-dimensional
Gaussian distribution with marginal standard deviations of
one and correlation 0.98. The ellipses are drawn one stan-
dard deviation away from the mean. Adapted from Neal et al.
(2011).

proposal is known as the acceptance rate. The algorithm for
these steps is shown in algorithm 1.

Appropriate selection of jumping distribution .J,(6*|6~1)
may in itself be difficult, and the performance of the MCMC
sampler relies on good selection (Brooks et al., 2011). A
commonly implemented jumping distribution is the multi-
variate normal distribution, with the mean centered on the
current sample location.

Algorithm 1: The Metropolis-Hastings Algorithm

Sample a starting point % ~ pg(6).
fors=1,2,....Sdo

Sample 6* ~ J (%05 1))
Calculate the ratio of densities r as:

)/ (6716
P(0CD]y) /7, (6 D]6")

o) — {

3.2. The Gibbs sampler

Set

9*
pls—1)

with probability min(r,1)
otherwise

The Gibbs sample was first described in (Geman & Geman,
1984). A Gibbs sampler proposal is generated from the dis-
tribution of either a single parameter, or a vector of parame-
ters, conditioned on all other components in the model. Con-
ditional distributions of this form are called full conditional
distributions. Full conditional distributions must be able to
be sampled from. Commonly this is achieved by selecting
conjugate prior distributions, where the family of the prior
distribution leads to a posterior distribution of the same fam-
ily. Whilst this reduces the families of distributions that may
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be selected to represent the model, it ensures that the sampler
has an acceptance rate of 100%.

Suppose we define a vector of all model parameters # which
consists of d components, § = (61, ...,0;). The Gibbs sam-
pler samples a new value for each component given the most
recent locations of all other components. It requires d steps
to sample a new value of §. The jumping distribution here
may be thought of as a d-step jump of the full conditional
distributions. The algorithm for the Gibbs sampler is seen in
algorithm 2.

The Gibbs sampler is one of the most commonly used sam-
pling technique used in Bayesian modelling. This is due to
the simplicity of sampling, as well as the high acceptance
rate. In Bayesian statistics the choice of a prior distribution
should accurately reflect ones prior belief of the system. As-
signing a prior distribution for computational ease and conve-
nience that does not reflect ones prior beliefs is not ideal.

Algorithm 2: The Gibbs sampler

Sample a starting point 6 ~ po(6).
fors=1,2,..Sdo
G(eglerate 6(s) (frO{I)l 9(5_11)) with ((i sull))—iterations:
08 ~ p(6,]05 1 05 by

08 ~ p(6516%°), 657 6D

0% ~ p(6416%,065,...,6%))

3.3. Hamiltonian Monte Carlo sampling

An inherent difficulty with the Gibbs sampler and the
Metropolis-Hastings algorithm is their random walk be-
haviour. Random walk behaviour can take a long time to
converge for high-dimensional, sparse, or highly correlated
target distributions. Further, the Gibbs sampler is only usable
with a limited set of priors. HMC does not have either of
these limitations.

HMC borrows the concept of Hamiltonian movement from
physics. Hamiltonian movement ensures that a dynamic sys-
tem maintains constant energy. For example should a ball be
rolling around the inside of a frictionless bowl, it’s total en-
ergy will always remain constant. The potential energy of the
ball at any given point is related to the height or position of
the ball, and the kinetic energy of the ball is related to the
ball’s momentum. In HMC we consider the position of the
sampler to be the parameters 6 in the target space, with an
augmented momentum variable ¢;. It follows that the pos-
terior distribution p(f|y) is augmented with the distribution
p(¢). We specify the momenta p(¢) to be independent of
p(f]y), hence we may define the joint posterior distribution
as p(0, dly) = p(¢)p(fly). Note that we are only interested
in the simulations of # and samples of ¢ may be discarded.
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¢ is introduced as an auxiliary variable to allow for efficient
exploration of the sample space.

Standard practice sees ¢ specified as a multivariate normal
distribution, with the same dimensions as #, mean 0 and co-
variance set to a specified mass matrix M. To reduce com-
plexity, we commonly use a diagonal mass matrix, M. If so,
the components of ¢ are independent, with ¢; ~ N (0, M;;)
for each dimension j = 1,...,d. It can be useful for M to
roughly scale with the inverse covariance matrix of the pos-
terior distribution, (var(f|y))~!, but the algorithm works in
any case; better scaling of M will merely make HMC more
efficient.

In addition to the posterior density constant, HMC re-

quires the gradient of the log-posterior density. If
0@ has d dimensions, this gradient is dlo%ig(aly) =

dlog p(6]y) dlogp(0]y)
o, 00T dg

ically tractable, so paths are approximated with a numerical
method known as the leapfrog integrator. The leapfrog inte-
grator depends on the step-size € and the number of steps L.
Two main issues complicate the tuning of these parameters.
Firstly, if € is too big approximation errors may cause diver-
gence from the real distribution resulting in low acceptance
rates, however if it’s too small it increases computational
cost. Secondly, if the optimum trajectory €L is too short the
simulator is inefficient at exploring the distribution and if it
is too long the trajectory retraces its steps.

). Gradients are often not analyt-

HMC is tuned in three places; (1) the probability distribution
for the momentum variables ¢, (2) the scaling factor € of the
leapfrog steps, and (3) the number of leapfrog steps L per
iteration. It is clear that implementation of HMC sampling
is significantly more involved than more traditional MCMC
techniques. This may be overcome with use of an appropri-
ate probabilistic programming language, discussed further in
Section 4. The full algorithm for the HMC sampler is shown
in algorithm 3.

HMC sampling makes the jump from the current sampling
location to the next by simulating the ball at its current loca-
tion # with random momenta ¢, and for a finite time interval
proposing the position at the end of its path with probability
min(r, 1). r is the ratio of densities as defined in algorithm 3.
It may help to think of HMC sampling as MH sampling, with
a more advanced jumping distribution.

As mentioned, HMC sampling cannot sample from models
with discrete parameters. If possible, the discrete parameters
can be marginalised out analytically, however for some cases
this is not trivial and for others it is not possible at all. In
prognostics this is not as great a concern as for many other
statistical models as parameters generally exist continuously,
especially where longitudinal data is available. Whilst not
common, examples of the use of discrete parameters in prog-
nostics are; the representation of latent states (Wei, Huang,
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& Chen, 2009) and classification (Tobon-Mejia, Medjaher, &
Zerhouni, 2012).

Algorithm 3: Hamiltonian Monte Carlo sampling

Sample a starting point 8% ~ pg(6).

fors=1,2,..Sdo

Update ¢ ~ N (0, M)

for [=1,2,....L do

Use the gradient (the vector derivative) of the
log-posterior density of 6 to make a half-step of ¢:

1 dlogp(6ly)

H —
R T
Use the momentum vector ¢ to update the position
vector §:
0+ 0+eM 1o

Again use the gradient of 6 to half-update ¢:

1 dlogp(0ly)
oot s

Calculate the ratio of densities r as:

. PO"ly)p(o7)
p(OC=D]y)p(et==1)
o) — {

Set

0*
g(s—1)

with probability min(r,1)
otherwise

3.4. Combinations of sampling methods

HMC may be implemented in various combinations with the
Gibbs sampler or the MH algorithm, to sample from com-
plicated distributions. There are three main reasons why this
may be done. They are;

It may make sense to partition independent variables into
blocks to simplify the computation, or to speed conver-
gence.

Should discrete variables be present, HMC will not be
able to update them, due to its Hamiltonian dynamics. In
this case, the space may be partitioned into discrete and
continuous parameters. All continuous parameters may
then be updated using HMC, and the remaining discrete
parameters may be updated using either a Gibbs sampler
or MH.

Should a model contain a mix of conjugate and non-
conjugate distributions, then a Gibbs sampler may be
implemented where a applicable to maximise the accep-
tance ratio, and HMC may be used to sample from the
remaining distribution
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data {
vector [2] x;
}

parameters {
real mu;

model {
mu "~
< -

}

normal (0,

1);
normal (mu, 1);

Figure 2. Example of simple model written in Stan

4. PROBABILISTIC PROGRAMMING LANGUAGES

Probabilistic programming languages (PPLs) are a class of
programming languages designed to describe probabilistic
models, and to perform inference on them. When used in a
Bayesian context, what is typically described is the posterior
distribution of interest with inclusion of the observed data, the
parameters and their priors, and the model likelihood. What
is desired is inference about parameters of the posterior, for
instance their posterior expectations and standard deviations.
An example of a probabilistic program, written in the lan-
guage Stan, and demonstrating these components is shown in
Figure 2.

This describes the simple model of x1, zo ~ N(u, 1), where
x1 and x5 are observations, and the mean p is unknown with
aprior of N (0, 1). PPLs allow this model representation to be
used directly for inference on the parameter space, typically
by generating samples from the posterior via an MCMC algo-
rithm such as HMC or Gibbs sampling. These algorithms are
included as part of the language and require no further pro-
gramming on the behalf of the practitioner. In this respect,
the inference is ‘automatic’ once the model is correctly spec-
ified, precluding the possibility of programming errors in the
inference.

Historically, the most successful and well-known PPL for
Bayesian analysis has been the BUGS (Bayesian inference
Using Gibbs Sampling) project introduced in 1989 and its
subsequent family of tools, including WinBUGS, more re-
cently OpenBUGS, and JAGS (Just Another Gibbs Sampler),
all of which share the same underlying probabilistic language
(Lunn et al., 2000; Plummer, 2003). As their names suggest,
these tools share the property that they construct a sampler
for a model by updating each parameter one at a time via
Gibbs sampling. They may use a Metropolis-Hastings step,
but often exploit the conjugate structure of models in order to
use a full Gibbs step when possible. Thus, while these sam-
plers have been highly successful for many models, they have
trouble for highly correlated parameter spaces, as described
in Section 3.

Stan is a more recent probabilistic programming language
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that addresses this shortcoming by dispensing with Gibbs
sampling entirely, instead providing a highly optimised and
self-tuning implementation of a Hamiltonian Monte Carlo
sampler (Carpenter et al., 2016). The language used by
Stan is similar to that of the BUGS family. The variant of
HMC used by Stan is the No-U-Turn Sampler, which adap-
tively tunes parameters in order to create an efficient sam-
pler. In addition to posterior sampling via HMC, Stan has
the capacity to perform other types of inference on the pos-
terior distribution, including variational inference (Blei, Ku-
cukelbir, & McAuliffe, 2016), a form of approximate infer-
ence, and maximum a-posteriori inference, which finds the
mode of the posterior. One major shortcoming of Stan com-
pared to the BUGS family of tools is its inability to sample
from discrete parameter spaces, which arises due to its re-
liance on HMC as its only sampling method. This limits
its utility in implementing many appealing classes of mod-
els, such as change-point detection models. None-the-less,
many models can be implemented in continuous parameter
space, and Stan has become popular since its release. Its
website contains a partial list of papers that have used it at
http://mc-stan.org/citations/.

5. DATA

The aim of this paper is explore the implementation of HMC
sampling for Bayesian hierarchical regression models used
in prognostics. We present three case studies, two of which
have been previously published and use a Gibbs sampler with
MH step in the implementation. All case studies focus on
the modelling of lithium-ion battery degradation. Lithium-
ion battery degradation is selected for three reasons; (1) it is
popular within prognostics research, (2) many data-sets are
publicly available, and (3) it naturally lends itself to being
modelled with Bayesian hierarchical regression.

The first case study models the capacity fade inside of a
lithium ion battery as a simple high order polynomial ran-
dom effects model. We use this simple linear model to illus-
trate the implementation differences between Stan, and hand
coding a Gibbs sampler. The second case study models the
capacity fade inside of a lithium ion battery as a double-
exponential random effects model as presented in Cripps and
Pecht (2017). The last case study models the voltage drops
within each discharge cycle as a single knot spline as pre-
sented in Xu et al. (2016). These models are herein referred
to as Model 1, Model 2, and Model 3, respectively.

For each model the data, and the statistical model is described
in Section 6. Models 2 and 3 were originally implemented
with a Gibbs sampler, with a MH step where necessary. The
full conditional distributions of the original models is pre-
sented in the Appendix, as well as the full conditional distri-
butions required to implement Model 1 with a Gibbs sampler.
The same priors have been selected for HMC sampling as
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Figure 3. Li-ion battery normalised discharge capacity fade
data for healthy batteries, and the suspected anomalous bat-
teries, as presented in Cripps and Pecht (2017).

to not affect the posterior distributions between implemen-
tations. Further discussion on the appropriateness of prior
selection is available in Section 7.1.

Model 1 and Model 2 use data from The Centre of Advanced
Life-Cycle Engineering (CALCE). Model 3 uses data from
the NASA Ames Data Repository (Saha & Goebel, 2007).

Each model is sampled with 100000 iterations, with the first
50000 counted as the warm-up period and not used for sub-
sequent analysis. To compare the sampling efficiency of each
model, effective sample size is used. The effective sample
size takes into account the autocorrelation of the samples and
calculates what would be an equivalently sized sample of in-
dependent values. The closer in value the effective sample
size is to the number of iterations the better. For comparison
of implementation and sampling efficiency, the posterior dis-
tributions of Models 1 and 2 are found with both HMC sam-
pling and Gibbs/MH sampling. Model 3 is implemented in
Stan and is used as a proof that HMC can effectively sample
from complex, high dimensional distributions.

6. CASE STUDIES
6.1. Model 1 - Linear random effects model

Battery cells were tested to 250 charge-discharge cycles from
the manufacturer, with the aim of detecting anomalous be-
haviour between manufacturing batches (Cripps & Pecht,
2017). Data from a single manufacturing batch is shown in
Figure 3. The first case study simplifies the original analysis
to provide contrast between HMC sampling with Stan and the
more traditional Gibbs sampling.

We model the discharge capacity measurements, y;, of the
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jth battery as a 4th order polynomial with Gaussian error,
where y; is a vector of all measurements for battery j. This
is expressed as

yj ~ N(XBj,0°)
Bj ~ N(,LL, 2)
for j = 1,2,...,J batteries. §; is a vector of coefficients for

each battery, and X is a design matrix that holds exponents
of the cycles ¢t € {1 : T'} such that

14
24

13
23

12
22

1 1
1 2
X =
1 7 17 1 T4
For this data, X is the same for all batteries. The battery spe-
cific coefficients 3; are assumed to be drawn from a normal
distribution of overall means g and group level variance 3.

B;, 11, ¥ and o are all considered unknown. The joint poste-
rior distribution is found as

p(ﬂl:Ja 12 Ev UZ‘Y) X p(Y|Bl:J7 02) X p(ﬂl:J“La E)
x p(o?, p, ).

HMC and Gibbs sampling of this model is implemented in
Stan and from first principles in R, respectively. The code
for the Stan implementation is shown in Figures 4. Stan im-
plementation requires only the description of the statistical
model, conversely, hand coding a sampler in R requires in
depth knowledge of the MCMC sampling method. Differ-
ences in code complexity is seen between the two sets of
code, hence chances for hidden coding errors is a larger is-
sue in the first principles R implementation. The full code
for both implementations is available in the supporting docu-
mentation.

The HMC sampler had an effective sample size approxi-
mately ranging from 10000 to 26000 (the ideal effective sam-
ple size is 50000). Similarly, the Gibbs sampler had an effec-
tive sample size approximately ranging from 23000 to 50000.
Both sampling methods have similar run-times, and the Gibbs
sampler had higher effective sample sizes which is to be ex-
pected in more simplistic linear models with low covariance
between parameters.

As both implementations are sampling the same model, it is
expected that the posterior distributions for each parameter
be the same. This can be seen by the two sampled posterior
distributions for the noise parameter o, shown in Figure 5.
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data {

int<lower=1> J;
int<lower=1> N;

int<lower=1> K;

int<lower=1, upper=J> jj[N];
matrix [N,K] x_melt;
vector [N] y_melt;

}

parameters {
corr_matrix [K] Omega;
vector<lower=0>[K] tau;
vector [K] mu;

matrix [J,K] beta;

real <lower=0> sigma;

}

transformed parameters {
matrix [K,K] Sigma_beta;

Sigma_beta = quad_form_diag(Omega,tau);
}
model {
for (j in 1:7) {
beta[j] ~ multi_normal (mu, Sigma_beta);
}
for (n in 1:N) {
y-melt[n] ~ normal(
dot_product(beta[jj[n]], x_long[n]), sigma);
}
}

Figure 4. Stan code for Model 1 implementation with HMC
sampling

The minor difference in the centre of the distribution can be
attributed the stochastic variance between the two samplers.

6.2. Model 2 - Non-linear random effects model

We extend Model 1 to replicate the non-linear random effects
models shown in Cripps and Pecht (2017). The same data is
modelled, as seen in Figure 3.

Let y; ;. be the discharge capacity measurements, where y; ;
is the individual measurement of the jth battery at time f.
The non-linear random effects model, with Gaussian error, is
modelled as

Yjt ~ N(f(ta aj)a 02)7

[t 05) = ay je®9" + ag et

aq 5 M1 7'12 02 0 0

o Qg j ~ 125) 0 To 0 0
&= 0[3’]' N U3 ’ 0 0 7'32 0
a4,j M4 0 0 0 TE

for j = 1,2,...,J batteries and ¢ = 1,2,...,T charge-
discharge cycles. Note here that the parameters contained
within «; are individual to the jth battery discharge profile,
and are assumed to be themselves drawn from a distribution
of the overall means p, and across group variance 7.
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Figure 5. Sampled densities of the noise parameter o.

aj, p, 7 and o2 are all considered unknown. The joint poste-
rior distribution is found as

p(al:.fv Hy 7—27 02|Y) X p(Y|C¥1;J, 02) X p(a11-7|/~L7 T)
x p(o?, pu, 7).

The code for this model has been omitted for the sake of
brevity. Both the Stan and R implementations are available
in the supporting documentation.

The effective sample size of the Stan implementation ranged
between 34382 and 50000 samples. Conversely the effec-
tive sample size of the R implementation ranged between 214
and 26548. Whilst, the parameters that were sampled with
a Gibbs sampler had high effective sample sizes, the o pa-
rameters that were sampled with the MH algorithm had much
lower effective sizes, ranging from 214 to 520 samples. The
lowest effective sample size amongst the o parameters sam-
pled by the HMC sampler was 48646. Further, the MH step
had a high rejection rate of 62%, aiding autocorrelation in the
samples. Again, run-times for both implementations is simi-
lar and the coding of the Stan model is much more simplistic.
As expected, the parameter samples from both implementa-
tions converged on the same distributions.

6.3. Model 3 - Volatage discharge

Xu et al. (2016) model lithium-ion battery degradation of the
publicly available data-set from the NASA Data Repository
(Saha & Goebel, 2007). An important difference to note be-
tween this model and the previous two is that each voltage
discharge trajectory is modelled as an individual group inside
of a hierarchical model, rather than each battery. Each tra-
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Figure 6. Li-ion battery voltage discharge profile for 168
charge-discharge cycles

jectory is roughly normalised as to be independent of charge-
discharge cycle. The discharge profiles for each of the 168
cycles is shown in Figure 6.

Let U; ; be the output voltage measurements at time ¢ for the
ith discharging cycle, where ¢ € {1, ...,168}. U; , is specified
as

Ui,t ~ N(f(t, 92), (72).

f(t; ;) is a non-linear function with parameters 6; dependent
on each cycle 7 and is modelled by the single knot spline

f(t;9)—{

where 7 is the location of the knot in the spline model and is
itself considered to be a continuous parameter of interest. To
ensure the smoothness of f(¢; ), its imposed that it is second
order continuous for each point ¢t. Therefore, the parameters
must satisfy

ag + a1t + ast? + a3t3, t<T
bo+b1(t—7’) +b2(t—7’)2 +b3(t—7’)3, t> T’

bo = ag + a17 + ax7? + a3

bl =ai + 2&27’ + 3a37'2

by = as + 3asT

The parameters 8 = [ag, a1, as, a3, bs] and 8 = [, 7] are de-
fined as freely changing parameters. It is clear that # depends
on the cycle index. To account for this, 6; can be represented
by the linear Gaussian model
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where C; is a design matrix dependant on the cycle index i,
v is the parameter vector independent of the cycle and ¥ is
the variance-covariance matrix. Derivations of C; and ~ is
omitted. The reader may refer to Xu et al. (2016) for further
information.

In each cycle, m; output voltages U, ;, ; were measured at
times ¢; ;, j = 1,2,...,m;. Let U; denote the observations
of the ¢th discharging profile. The model can be expressed
as a pseudo linear model U; ~ N(X;(7:)Bi,0%1m,), i =
1,..., 168, where

[ Ui(tiq1) |
Ui(tik)
U‘: K3 2, ,
! Ui(ti k+1)
L Ui(ti,m,) |
1t i3, 2y 0
i ti‘,k t,zk t?.,k: 0

Utk 2 B — (G =7 ik —7)* |

1 ti,ml tzzym,L t?,m, - (tiﬂm - Ti)g (ti,m, - Ti)3
and t; ;;, < 7; < ¢; k1. As in the previous models, all of the
unknowns can be expressed as random variables. The joint

posterior is found as

p(elzna v 27 02|U1:n) X p(U11n|91:n7 02)
X p(elznh/ﬂ E) X p(oja’% 2)
Code for this model implementation in Stan is available in the

supporting documentation. The effective independent sample
size ranged between 251 and 875 samples.

7. DISCUSSION

The following sections discuss the advantages fo HMC mod-
elling.

7.1. Prior Selection

As mentioned in Section 2, Bayesian inference requires a
prior distribution over each parameter. It is important that
this accurately represents the modeller’s prior belief of the
parameter distribution. In the absence of any belief of the
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value of the parameters, non-informative priors are set such
that they are diffuse enough to capture a wide array of pos-
sibilities. The rational for using non-informative priors is to
let the data drive all of the analysis, so that inference is unaf-
fected by information external to the current data (Gelman et
al., 2014).

By using Gibbs sampling as the primary MCMC sampling
method, the distributions that may be set as priors are lim-
ited, as Gibbs sampling relies on being able to sample from
the full conditional distribution. An example, and perhaps the
biggest instance of this, arises in the specification of priors for
variance terms. Perhaps the most common selection of prior
for variance terms is the inverse-gamma distribution for uni-
variate data and the inverse-Wishart distribution for multivari-
ate data. Issues arise, however, when these distributions are
constructed to be non-informative. Consider for example the
inverse-gammal(e, €) distribution. As e — 0, as to make the
distribution non-informative, it yields an improper posterior
density, and thus must be set to a reasonable value (Gelman
et al., 2006). For datasets in which low values of variance is
possible, inference becomes sensitive to €. Carpenter et al.
(2016) recommends the use of Half Cauchy distribution to
model variance parameters.

Implementation of the models in Stan did not require the ex-
plicit specification of conjugate priors. Non-informative non-
conjugate priors can be selected. Although sampling effi-
ciency may be increased with certain prior selection, HMC
may still sample from any combination of likelihood and
prior, provided both are continuous. This allows the practi-
tioner to select the most appropriate model, rather than some-
thing convenient for modelling.

A pertinent application of this for prognostics research comes
from the modelling of lithium-ion battery capacity degrada-
tion. As an example, past research has seen battery degrada-
tion modelled with Gaussian noise, despite clearly positively
skewed data due to the self healing nature of lithium-ion bat-
teries. This can be seen in (He, Williard, Osterman, & Pecht,
2011).

7.2. Sampling autocorrelation

The autocorrelation of the MCMC samples generated scaled
with the dimensionality of the statistical models. For the
low dimensional hierarchical models shown by Case Stud-
ies 1 and 2, the HMC sampler was able to efficiently gener-
ate near independent samples from the posterior distribution.
For Case Study 3, where there was an increase in sampling
dimensions, there was a marked increase in autocorrelation
between samples. The traceplots for a single parameter from
each study is shown in Figure 7.

For the linear random effects model shown in Case Study 1
the Gibbs sampler outperformed the HMC sampler in terms
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Figure 7. Traceplots for parameters in the HMC implementa-
tion of Models 1, 2 and 3 with highest autocorrelation. The
top image shows the samples of the noise parameter o from
Model 1. The middle image shows the hyper-variance param-
eter 72 from Model 2. The bottom image shows the sample
from the hyper-mean parameter ;¢ from Model 3.

of effective sample size. This is due to the small covariance
amongst the parameters, meaning that the Gibbs sampler was
able to efficiently move through the sample space at each it-
eration. Conversely, in the non-linear random effects model
shown in Case Study 2 the HMC sampler generated near per-
fect samples whereas the Gibbs/MH sampling scheme had
high amounts of autocorrelation. This is seen in the trace-
plots for the o1 ; parameter shown in Figure 8. The top image
shows the samples of 1,1 generated by HMC sampling, and
the bottom image shows the samples of «v; ; generated via a
MH sampling scheme.

7.3. Programming implementation

By implementing models in Stan, practitioners can focus on
the statistical model, rather than spend time coding the sam-
plers. This has three main advantages, (1) Bayesian models
are more accessible as the modeller does not have to under-
stand the code for complex MCMC dynamics, (2) the poten-
tial for coding errors in the model is reduced, and (3) time
is saved on implementation. Note these advantages are not
unique to Stan, and are shared by many other probabilistic
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Figure 8. Traceplots for the o1,; parameter from Model 2.
The top image is sampled with the HMC sampler, the bottom
is sampled with a MH algorithm

programming languages such as BUGS or pyMC3. Whilst
the implementation may be simplified, analysis of the gen-
erated MCMC samples is still required to assess whether it
is representative of the posterior distribution. Stan does not
identify sampling issues such a lack of convergence, or poorly
mixed samples. This is still the responsibility of the practi-
tioner.

7.4. Disadvantages of HMC

HMC has some clear disadvantages. As mentioned in Section
3.3 HMC is sensitive to parameter tuning, and even though
Stan provides a significant step toward automation of the sam-
pler, tuning may still require thought. Stan uses the initial
warm-up stage to tune the parameters to provide the desired
acceptance rate (this defaults to 80%). Further, Stan imple-
ments the No-U-Turns Sampler (NUTS) to efficiently explore
the sample space. More information on this is available in
Hoffman and Gelman (2014).

A further crucial disadvantage is that, due to it’s reliance on
continuous gradients, it cannot sample from models with dis-
crete parameters. Hence, models with categorical variables,
population numbers or latent variables may not be able to be
directly implemented in Stan. Should these parameters be
able to be marginalised out analytically, the model may still
be able to run in Stan, however for some cases this is not triv-
ial and for others it is not possible at all. A practitioner imple-
menting the sampler directly would have many options, most
prominently block sampling. The discrete states may be sam-
pled with Metropolis Hastings or Gibbs, while the continuous
section of the model is sampled with HMC. Stan presently
does not allow for this to be implemented, and direct coding
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of inferential algorithms is time consuming and error prone.
The BUGS family of samplers do allow discrete parameters,
but contain other limitations as described in Section 4, in par-
ticular that they do not allow the use of HMC. Other proba-
bilistic programming languages, such as PyMC3 or Edward
(both built on top of Python), allow the full block sampling
scheme to be described and used without requiring direct cod-
ing, but in the authors’ opinion they are not yet as mature as
Stan (Salvatier et al., 2016; Tran et al., 2016). We are hopeful
that there will be improvement in this space over the next few
years.

Whilst HMC proposes a new and efficient way of MCMC
sampling, it is clear that certain pathologies exist, and the
practitioner should be aware of them. We implemented a
HMC sampling scheme on three hierarchical models with dif-
fering degrees of complexity. As HMC sampling uses gra-
dient approximation to sample from the posterior distribu-
tion, high curvature posteriors can lead to divergence from
the target distribution. In hierarchical models this is ap-
parent with small values in the hyper-variance parameters.
Papaspiliopoulos, Roberts, and Skold (2007) proposes that
this may be overcome by re-parametrising the random ef-
fect term in the hierarchical model. Briefly, the centred form,
which has been used in this research, models the random ef-
fects directly. Using the univariate nomenclature from Model
2, this is represented as & ~ N (yu,72). The non-centred re-
parametrisation models the random effects indirectly by let-
ting « = pu+7Z where Z ~ N (0, 1). This re-parametrisation
smooths the posterior of the centred model, leading to less
divergences and a more efficient sampler. Non-centred re-
parametrisation is currently being explored and hopes to alle-
viate some pathologies that occur with sampling hierarchical
models with HMC (Betancourt & Girolami, 2015; Monna-
han, Thorson, & Branch, 2016).

8. CONCLUSION

Large, complex and high dimensional data-sets are increas-
ingly becoming an issue for data analysis and prognostics.
However, when processed with appropriately powered soft-
ware tools they can lead to insight and analysis that was previ-
ously infeasible. We demonstrate that HMC sampling, using
Stan is a simpler and more effective way to generate MCMC
samples in Bayesian analysis. We advocate for Stan to be
increasingly used amongst the prognostics community to ad-
dress large and complex Bayesian models, as it has the poten-
tial to extend the boundaries of feasible models for applied
problems, and lead to better analysis and prediction in prog-
nostics.
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APPENDIX A
8.1. Model 1 - Full conditional distributions

Conjugate priors are selected for u, X, o2, where
p o~ N(uo,Ao), ¥ ~ IW(ny,Sy"), and o2 ~
IG(vp/2,v902/2). The full conditional distributions are

Bj ~ N(1ig, $p)

o~ N(ﬂnv An)

Y~ IW (o +n, (So + Se) ™)
o ~ IG([vo + Y _ny1/2, [nog + SSR]/2)

where

Sp= (27 + X'X/o%)7?
fis = Lp(E 7 p+ X'y, /o)
A, = (At 4+~ H
= An(AG o + TS B)
J

So =) (B —m)(B; — )’
i=1
J nj
SSR=Y " (yi; — Bjwi;)
j=1i=1
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8.2. Model 2 - Full conditional distributions

The full conditional distributions, as originally presented,
are listed below. Uninformative priors are set, where p; ~
U(=1,1) fori = 1,2,3,4, 72 ~ U(0,1) fori = 1,2,3,4,
and 02 ~ U(0,1). U(a,b) denotes a uniform distribution
over the interval (a, b).

J
Y, a ~ IG (’QT g S 1) s m) 1{o? < 1}

j=1

2
piloa.gi, 78 ~ N (6@, T—l) H{-1<p<1}

J
J
Za” wi)? | 172 < 1}.

M\k
w\H

2|, i ~ IG (

The conditional distribution p(a;|Y, 02, 1, 7) is unknown,
and MH sampling is performed with a symmetrical Gaussian
random walk proposal distribution, where

—T/2 1
ploylY, 0%, p, 7) o (2m0?) / exp {—*202 (v — f) (yj — fi)}
1
ns e {4 (o~ ) 0y )}

8.3. Model 3 - Full conditional distributions

Conjugate priors are chosen for 7, ¥ and o2, where 7 ~
N(u,A), ¥ ~ IW(v,n) and 02 ~ IG(a,w). The full con-
jugate distributions of these parameters is

’Y|Z7 al:n ~ N(ﬂaA)
Eh/a O1:n ~ IW(I?J?)

062|91:n7 Ul:n ~ IG(d7 (IJ)

where
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n —1
A= (Z oo+ A1>

=1
f=A <Z Ccixle; + A‘1u>
=1

D=v+ > (0; — Ci7) (0 — Ciy)

i=1

~ S mz

05—014*;7

A 1 n m; 2

C=wtg [Uiltig) = f(tiz:05)]
i=1 j=1

As the parameters 0;,7 = 1, 2, ..., n are considered condition-

ally statistically independent, they are sampled separately. 6;

is decomposed into it’s two parts 3; and 7;. The full condi-

tional distribution of §; is B;|7i,v, 2,02, U; ~ N(fg, 25),

where

- XX o)
6o (M)
I

. & (XiU; _
fis =Yg ( poabs Z[jlp’ﬁ> :

€

The full conditional distribution of 7; cannot be expressed in
analytic form, and is sampled using a MH algorithm. Its pos-

terior is proportional to

p(7ilBi, 7, B) o p(7i|Bi, v, B) x p(Us|a?, 6;)
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