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ABSTRACT 

The filtration of possible contaminant is an essential part of 

many engineering processes in industry. Clogging of the 

filtration medium is one of the primary failure modes in 

many application areas leading to reduced performance and 

efficiency. Imitation of real life clogging scenarios in 

laboratory conditions is not an easy task to perform, but is 

demonstrated here, with the profiles obtained being injected 

into a fuel system rig. This paper shows generic results from 

two benchmark rigs. One is a fuel system laboratory test-

bed representing an Unmanned Aerial Vehicle (UAV) fuel 

system and its associated electrical power supply, control 

system and sensing capabilities. It is specifically designed in 

order to replicate a number of component degradation faults 

with a high degree of accuracy and repeatability. The 

second is a purpose built filter clogging rig designed to give 

quality results to aid the development of prognostic 

algorithms. This paper’s contribution is to show results from 

the filter clogging rig and derive a transfer function, the 

relationship between filter clogging pressures and the fuel 

system valve openings, to enable the fuel system rig to 

operate as if the clogging filter were part of the system. The 

results show that the local pressure drop obtained from the 

fuel rig can be made to closely match the pressure drop 

levels from the filter clogging rig. This opens up 

examination of the effects of filter clogging on the full fuel 

rig system, providing data for future system prognostic 

work. 

1. INTRODUCTION

Integrated Vehicle Health Management (IVHM) provides an 

essential role in aircraft operation management, and 

continues to offer the potential for a paradigm shift in the 

way that aircraft organisations conduct business operations 

(Jennions, 2011). Benedettini et al. (2009) postulate that 

IVHM is also potentially applicable to non-vehicle systems 

such as industrial process plants and power generation 

plants. While IVHM enables many disciplines with an 

integrated framework, the one current technology that 

promises the greatest gain is prognostics; it is fundamental 

to a number of service offerings, including Condition Based 

Maintenance (CBM). While prognostics has been 

successfully applied at the component level (Eker et al, 

2016), application at the systems level is required and a step 

towards this is made in this paper. 

Prognostics requires identification of the current health level 

and extrapolation to a predefined failure threshold, resulting 

in the estimation of remaining useful life (RUL). The output 

of prognostics (i.e. RUL) is the duration between the current 

time and the time at which the forecasted health level 

reaches a predefined threshold. The benefit of prognostics 

enables researchers and industry to reduce costs, and 

increase safety and availability, via better maintenance 

planning. In contrast with traditional maintenance 

philosophies, the IVHM approach enables modelling and 

tracking of individual equipment deterioration leading to a 

maintenance action only when it is necessary rather than 

performing scheduled maintenance. This all pre-supposes 

that data, of the right quality and quantity, is available. As 

this is sometimes lacking, an approach utilising benchtop 

experimentation is implemented here. 

The failure mechanism of system components is often a 

gradual degradation process. Therefore, system component 

degradation data can provide information for assessing the 

reliability and estimating the RUL of system components. In 

some cases, actual degradation can be observed with time. 

An example of this would be a crack growing with time. As 

the crack grows to a critical length the component will fail. 

On the other hand, some actual degradation processes are 

slow or cannot readily be observed. In these cases it may be 

possible to detect the deteriorating performance of the 

component or system. In addition, the lack of historical run-

to-failure datasets available and insufficient instrumentation 

for measuring degradation are other reasons for doing 
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further benchmark tests, as presented here. It is also often 

useful to accelerate testing to increase the degradation rate 

to collect useful data in a reasonable time for prognosis. The 

implementation of accelerated degradation testing is an 

appropriate choice to overcome some of the obstacles in 

developing prognostics techniques in engineering, such as 

insufficient data, time and cost constraints.  

The filtration phenomenon is of interest to several 

engineering industries including automotive, chemical, 

reactor, and process engineering applications. Several 

industrial applications such as food, petroleum, 

pharmaceuticals, metal production, and minerals embrace 

filtration processes (Sparks, 2011). The aim of the filtration 

system is to keep the rest of the system running smoothly, as 

well as keeping the process operational. Modern 

commercial vehicles and automobiles have numerous types 

of filters for fluids including fuel, lubricant, and intake air 

(Sutherland, 2010). 

Fuel filters filtrate dirt and other contaminants in the fuel 

system such as sulphates, polymers, paint chips, dust, and 

rust particulates which are released from a fuel tank due to 

moisture or other numerous types of dirt that have been 

uplifted via a supply tanker (Wilfong et al., 2010, Jones, 

2008). Consequences like engine and pump performance 

degradation due to increased abrasion and inefficient 

burning in the engine are the main motivators for fuel 

filtration, leading to a purified fuel. However, filtering the 

fuel brings with it some complications (e.g. clogging of 

filters). System flow rate and engine performance decline 

once a fuel filter is clogged. Jones (2008) reports that filter 

clogging indication due to fuel contamination may result in 

an aircraft having to return to the ground or divert for 

further fuel filter inspection or replacement. In today’s 

maintenance planning, fuel filters are replaced or cleansed 

on a regular basis. Jones (2008) again reports that the 

Boeing 777 fuel filter inspections are performed every 2000 

flight hours. Monitoring and implementation of prognostics 

on filtration system have the potential to avoid costs and 

increase safety by continuously monitoring the filters and 

only indicate maintenance when needed. 

The clogging process of different types of filtration 

mechanisms has been studied in the literature. Roussel et al. 

(2007) presented a particle level filtration case study, stating 

that the general clogging process can be considered as a 

function of: ratio of particle to mesh pore size, solid 

fraction, and the number of grains arriving at each mesh 

hole during one test. Pontikakis et al. (2001) developed a 

mathematical model for dynamic behaviour of the filtering 

process for ceramic foam filters. The model is capable of 

estimation of the filtration efficiency, accumulation of 

particle mass in the filter, and the pressure drop throughout 

the filter. Roychoudhury et al. (2013) presented a diagnostic 

and prognostic solution for a water recycling system for 

next generation spacecraft. They simulated several failure 

scenarios including clogging of membranes and filters. 

Baraldi et al. (2013), and Baraldi et al. (2015) developed a 

similarity-based and Gaussian process regression prognostic 

approach to estimate the remaining useful life (RUL) of sea 

water filters. Saarela et al. (2014) presented a nuclear 

research reactor air filter pressure drop modelling scheme 

which utilised gamma processes. 

In this paper, the clogging filter phenomena will be 

simulated in the laboratory using two test rigs. The first rig 

is a fuel system rig, capable of emulating a number of 

degradation features in a highly controlled manner. The 

second rig (filter clogging rig), provides the degradation 

profile of the filter, created by running accelerated tests. 

This clogging profile is then injected into the fuel system rig 

to enable system prognostics to be explored. 

The paper proceeds by presenting a brief description of both 

the fuel system rig and the filter clogging rig. Then, data 

collection from the filter clogging rig and its insertion into 

the fuel rig, to give realistic clogging profiles, is described. 

Finally, some conclusions are drawn and future work 

suggested. 

2. FUEL SYSTEM TEST RIG

The fuel system test rig is a laboratory test-bed representing 

an Unmanned Aerial Vehicle (UAV) fuel system and its 

associated electrical power supply, control system and 

sensing capabilities (Niculita et al, 2014). It is specifically 

designed in order to replicate a number of component 

degradation faults with high accuracy and repeatability so 

that it can produce benchmark datasets to evaluate and 

assess algorithms. A schematic of the rig is shown in Figure 

1 and a photograph of the physical rig in Figure 2. 

Figure. 1. Schematic of the Fuel System Rig 

Fuel is replaced by water as the working fluid in the rig, and 

it is pumped by a gear pump around the circuit, which 
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contains a number of control valves. Referring to Figures 1 

and 2, fluid is taken from the main tank through a filter 

before entering the gear pump. A back flow loop is 

controlled by a relief valve, while the main line proceeds 

through a shut off valve and a nozzle followed by a three-

way valve. These, in combination, simulate flow being 

delivered to an engine; here the flow is simply put into the 

sump tank. The main loop concludes by the fluid passing 

through a non-return valve and returning to the main tank. 

Pressures and flow are measured at the points shown. 

The rig enables injection of 5 fault modes via Direct 

Proportional Valves (DPVs), shown by the red circles in 

Figure 2. These valves can be closed very accurately and 

provide an ideal way of injecting repeatable faults into the 

rig. The faults considered are: 

1. Clogging filter. The Filter is replaced by a DPV.

2. Degraded pump. The relief valve is replaced by a

DPV enabling the flow to the rest of the rig to be

controlled as if the pump was malfunctioning.

3. Stuck valve. The shut off valve is replaced by a

DPV.

4. Leaking pipe. A DPV is used in conjunction with

the 3 way valve to control leakage.

5. Clogged Nozzle. The nozzle is replaced by a DPV.

Figure. 2. Fuel system test rig 

In order to control and acquire data from the fuel system test 

rig, a system using National Instruments (NI) LabVIEW has 

been utilized. A CDAQ – 9172 device with six compact 

DAQ modules: NI 9485, NI 9205, NI 9472, NI 9401 and 

two NI 9263s is used. The NI 9485 is an 8-channel solid-

state relay sourcing or sinking digital output module for any 

CompactDAQ or CompactRIO chassis. One channel was 

used to provide access to a solid-state relay for switching the 

24V voltage applied to the shut-off valve in order to control 

the open/close position.  The NI 9205 module receives the 

analogue voltage output from the pressure transducers and 

flow-meters, converts this information using the pre-defined 

calibration curves into digitized information readable on the 

GUI. The NI 9472 module is an 8-channel 24V logic, 

sourcing digital output module which provides the signals to 

the pump inverter in order to implement the pump controls. 

The NI 9401 module counts the rotational speed by taking 

the laser sensor analogue output pulses and converting them 

into frequency. The NI 9263 module has 4-channels, 

working at 100 kS/s, simultaneously updating the analogue 

output module which enables the implementation of the 

DPV position control. Valve position is modified by varying 

the voltage applied to the solenoid.  

The main GUI is shown in Figure 3, where the controls are 

structured in three layers: 

 The top layer contains the Pump Control Unit and

the Valve Control Unit.

 The second layer enables control of the fault

injection mechanisms at the component level. This

is done via knobs that are setting the position of the

five DPVs.

 The third layer allows injection of sensor faults

(not discussed here).

Figure 3. Fuel system – GUI for controls 

The data presented to the user at the bottom of the GUI is: 

 Pressures at different points of the system, like

those shown in Figure 4.

 Volumetric flow rate in the main line.

In this work, we focus on the clogging filter failure mode, 

shown in Figure 4. The DPV is set to be initially fully open 

to capture the healthy scenario. By gradually closing the 
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DPV (progressing right to left), the clogging of the filter is 

replicated and the pressure responds accordingly. While this 

figure shows the response to closing the DPV, it is not 

representative of the progression of the real clogging 

process, input that will be taken from the filter clogging rig, 

discussed next. 

Figure 4. Physical behaviour – Clogged filter scenario 

3. FILTER CLOGGING RIG

An experimental rig was developed by Eker et al (2016) to 

investigate the physics of filter clogging and the ability of 

hybrid prognostic methods to predict it. A schematic of the 

rig is shown in Figure 5 and a photograph in Figure 6. The 

rig works by a pump moving a suspension of finely graded 

particles through a filter, on each side of which pressure is 

measured. The pressure drop over time, supplemented by 

camera images, characterise the clogging process. 

The major components in the system are: 

 Pump: there are different types of pump enabling a

liquid to flow through a complex system. Since the

system here involves contaminants in the fluid, a

peristaltic pump has been used as its mechanism

will not interfere with the particles in the liquid. A

Masterflex® SN-77921-70 peristaltic pump was

installed in the system to maintain the flow of the

prepared suspension. The pump is a positive

displacement source, providing a flow rate ranging

from 0.28 to 1700 ml/min.

 Dampener: rigid tubing is used in most of the rig to

prevent any unwanted tube expansion due to

pressure build up. A Masterflex® pulse dampener

is installed on the downstream side of pump to

eliminate any pressure pulsations in flow.

 Tank: one half-sphere-shaped main tank and two

subsidiary tanks (i.e. reservoir tank and clean water

tank) are installed in the system. The sphere shape

tank bowl enables the stirrer to work efficiently

leading to homogeneously distributed slurry in the 

tank. The clean water tank is used to fill-up the 

system components with clean water prior to each 

test, and eliminate bubbles. A Kern® 10000-1N 

type high precision weighing scale is placed under 

the reservoir tank to measure the slurry used. 

Figure 5. Schematic of filter clogging rig 

Figure 6. Filter clogging rig 

 Particles: the suspension is composed of

Polyetheretherketone (PEEK) particles and water.

PEEK particles have a density (1.3g/cm3) close to

that of room temperature water and have a low

water absorption level. The particles have a wide

size distribution as seen in Figure 7. For this

reason, narrowing the distribution by sieving is
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found to be necessary before conducting 

experiments. 

 Camera: A high quality macro lens camera is

positioned over the filter chamber, to take macro

pictures every two seconds. The mesh inside the

filter, and the retained particles, can be clearly

captured. Pressure and flow rate data are combined

with some of the image data to form a complete

data package for each particle size and flow rate

tested.

Figure 7. PEEK particle size distribution 

4. EXPERIMENT AND RESULTS 

This section presents the results from the accelerated filter 

clogging experiments. It then shows how these can be used 

to obtain a transfer function expressing the pressure drop in 

the filter clogging rig as a valve closing angle for the fuel 

system rig, for general use in the fuel system rig. 

4.1 Data collection from the filter clogging rig 

The PEEK particles, whose size distribution are shown in 

Figure 7, are procured in powder form. As there is a wide 

range of particle sizes, from 5 to 180 microns, wet sieving is 

employed to narrow the particle size range into 3 categories 

as shown in Table 1. The non-sieved particles are used as a 

fourth, reference, case. 

It is crucial to maintain the operational and environmental 

conditions consistent for the subset of data being considered 

and care is taken with the experiments to ensure this. For 

each particle size, four different flow rates were explored, 

giving different solid ratios, each of which was repeated a 

number of times to ensure accuracy. The entire dataset is 

comprised of 56 run-to-failure accelerated aging 

experiments.  

The fuel filters chosen for this experiment are the 125 

micron pore sized Baldwin® BF7725 type, shown below in 

Figure 8.  

Table 1. Operational profiles 

Profile 

No. 

Particle Size 

(μm) 

Solid Ratio 

(%) 
Sample Size 

1 

45-53

0.4 4 

2 0.425 4 

3 0.45 4 

4 0.475 4 

5 

53-63

0.4 4 

6 0.425 4 

7 0.45 4 

8 0.475 4 

9 

63-75

0.4 4 

10 0.425 4 

11 0.45 4 

12 0.475 4 

13 

Non-sieved 

0.4 2 

14 0.425 2 

15 0.45 2 

16 0.475 2 

Figure 8. Baldwin fuel filter 

Pressure and flow rate readings, the main indicators of 

clogging, have been collected continuously. Each clogging 

experiment has been run and monitored until the filter has 

clogged, which is judged to have happened when 15 psi is 

recorded across the filter. 

Data collection is conducted with an NI DAQ-9203 16 bit 

analogue current output module, which is connected to an 

NI cDAQ-9174 4-slot USB chassis. The sampling rate is 

adjusted to 100Hz within the LabVIEW environment, which 

is sufficient to capture the pulses generated by the pump. 

For visualisation purposes, data is low pass filtered and 

down-sampled to 1Hz as displayed in Figure 9. Each 

trajectory in the figure represents differential pressure 

profiles for each distinct run-to-failure experiment. As seen 
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from the figure the variation in the profiles is small, 

although discernible, at the beginning of the clogging 

phenomena. However, the spread in the dataset increases as 

the experiment nears to the end of life. Variation in the 

experimental results reflects the variation in the sixteen 

different operational profiles.  

Figure 9 shows the entire dataset for all 56 experimental 

runs. In the figure, the red scale trajectories represent the 

experiments under the first four operational profiles where 

particle size varies from 45 to 53 microns. Similarly, green 

and cyan coloured curves pertain to the 53-63 and 63-75 

micron band of the distribution. Finally, the blue line 

trajectories obtained with non-sieved (i.e. original) particles. 

The lighter colour scales, within each separate colour, 

correspond to lower solid ratios. As seen in the figure, the 

experiments conducted with lower solid ratios take longer to 

reach end of life compared to the higher solid ratio 

experiments.  

Figure 9. Summary of Filter Clogging Experimental Data 

4.2 Calibration of the fuel system rig 

As the degradation phenomena of the filter in the fuel 

system is emulated by closing the DPV, there is a need to 

obtain a transfer function that converts the pressure drop 

across the filter from the filter clogging rig into valve 

opening rate as a function of time. In the fuel system rig, the 

valve is completely opened when there is no clogging in the 

filter and completely closed when the filter is clogged.  

The conversion of pressure drop values into valve opening 

rate could be considered physically, but it was known that 

the DPV closure effect on the fuel rig was non-linear and 

hence the following 3 step process was used:  

Step 1. Assume that the DPV opening is directly 

proportional to the pressure drop by: 

𝑉𝑂𝑅𝑡 = 𝑉𝑂𝑅𝑚𝑎𝑥(1 − ∆𝑃𝑡 ∆𝑃𝑚𝑎𝑥⁄ ) (1) 

where: 

𝑉𝑂𝑅𝑡 : Valve opening at time ‘t’

𝑉𝑂𝑅𝑚𝑎𝑥  : Maximum valve opening (taken as 100%)

∆𝑃𝑡 : Pressure drop at time ‘t’

∆𝑃𝑚𝑎𝑥 : Pressure drop threshold (taken as 10psi because it 

is the maximum pressure drop which can be obtained from 

the fuel system rig) 

Taking Profile 4 from Table 1, computing the DPV 

positions from equation 1, and applying them to the fuel rig, 

gives the results shown in Figure 10. Clearly there is a 

mismatch in pressure drop that needs to be adjusted. 

Figure 10. Pressure drop data comparison 

The pressure drop across the filter from the filter clogging 

rig can be divided into three stages, as shown in Figure 10. 

In the first stage the pressure drop remains relatively 

constant (in the range 0<t<43). In the second stage, the 

pressure drop increases steadily (in the range 43<t<183). In 

the final stage (when t>183), the pressure drop enters an 

exponentially growing region. In contrast, the pressure drop 

across the valve from the fuel system rig shows two stages. 

During the first stage (in the range 0<t<217) the pressure 

drop remains relatively constant. In the second stage (when 

t>217), the pressure drop values are exponential.

By taking profiles 4, 8 and 12 from Table 1, computing the 

DPV positions from equation 1, and applying them to the 

fuel rig, the results shown in Figure 11 are obtained. The 

solid and dashed lines in Figure 11 represent the pressure 

drop across the filter from the filter clogging rig and the fuel 

system rig, respectively, at different operation condition. 

The blue line represents the pressure drop when the particle 

size varies from 45 to 53 micron. Similarly, the green line 

pertains to the 53-63 micron band of the distribution. 

Finally, the red line trajectory is obtained when the particle 

size varies between 63 and 75 micron.  
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Figure 11. Pressure drop data comparison at different 

operational profiles 

The root mean squared error (RMSE) is one of the most 

commonly used accuracy metrics for time series analysis, 

and is used here to assess the accuracy of the transfer 

function. RMSE values are calculated by:  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

𝑛
(2) 

Where: 

𝑦𝑖 : Filter clogging rig pressure drop at time point ‘𝑖’ 
𝑓𝑖 : Fuel system pressure drop at time point ‘𝑖’ 
𝑛 : Number of time intervals taken 

In this way, values of RMSE are calculated and given in the 

table below: 

Table 2. Accuracy measure for samples 

Particle Size 

(μm) 

RMSE 

45-53 0.958 

53-63 1.003 

63-75 1.189 

From Table 2 we can conclude that RMSE increases when 

the size of the particles increase. Also, the values of RMSE 

for 45-53 and 53-63 are very close, while the values of 

RMSE for the 63-75 particle size are relatively large. The 

smaller values of RMSE indicate a better match between the 

pressure drop across the filter from the filter clogging rig 

and the fuel system rig. Table 2 shows that the overall value 

of the RMSE is relatively high, which means the error is 

big, reflecting the discrepancy seen in Figure 11. In other 

words, large RMSE values reflect the assumption’s poor 

ability to accurately represent the relationship between the 

valve opening and pressure drop across the filter. 

Step 2. While the first assumption (equation 1) was to 

consider the valve opening proportional to the pressure 

drop, physically it seems that it may be better expressed as 

proportional to the Reynolds number: 

𝑅𝑒 =
inertial forces

viscous forces
=

ρuL

μ
 (3) 

where: 

ρ is the density of the fluid

u is the velocity of the fluid

L is a characteristic linear dimension

μ is the viscosity of the fluid

As the fluid properties are the same in both rigs this would 

indicate scaling on velocity, or the square root of pressure, 

as indicated by: 

𝑉𝑂𝑅𝑡 = 𝑉𝑂𝑅𝑚𝑎𝑥(1 − (∆𝑃𝑡 ∆𝑃𝑚𝑎𝑥⁄ )0.5) (4) 

For profile 12, with particles size variation between 63 and 

75 micron, both the original DPV settings and the modified 

valve openings are shown in Figure 12.  

Figure 12. Original and Modified Valve Openings 

The seeming discrepancy at time=0 can be explained as 

follows. There is a small pressure drop across the filter at 

the beginning of the filter clogging phenomena due to the 

resistance the filter gives to the flow. For a given value of 

this pressure drop, ∆𝑃𝑡 ∆𝑃𝑚𝑎𝑥⁄ , equation (1) will yield a

larger valve opening than equation (4) due to the presence 

of the square root in the latter formula.  

Step 3. Applying the new valve opening (equation 4) to 

Profiles 4, 8 and 12 from Table 1 gives Figure 13, showing 

good agreement between the pressure drop in the filter 

clogging rig and in the fuel system rig at different operation 

condition.  
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Figure 13. Pressure drop data comparison at different 

operational profiles 

In a similar manner to Table 2, Table 3 summaries the 

RMSE values resulting from the use of equation 4 as the 

transfer function. The values of RMSE for 45-53, 53-63 are 

again very close, while the values of RMSE for the 63-75 

particle size are now smaller, the overall trend from Table 2 

having reversed. Also, the values of RMSE are much 

smaller in Step 3 compared with the previous values in Step 

1. This result means that equation 4 represents a much more

accurate relationship between the valve opening and the

pressure drop across the filter in the fuel system rig.

Table 3. Accuracy measure for samples 

Particle Size 

(μm) 

RMSE 

45-53 0.3407 

53-63 0.3319 

63-75 0.2877 

5. CONCLUSION AND FUTURE WORK

In this work, the pressure drop associated with accelerated 

degradation of filter clogging are found from a stand-alone 

rig. These pressure profiles are then transferred into a fuel 

rig system so that filter clogging can be examined at the 

system level. The way in which the pressure drop is 

transferred is detailed and the transfer function described. 

The pressure drop across a filter in the filter clogging rig is 

emulated by controlling the opening rate of the DPV in the 

fuel rig system, as a function of time. The pressure drop 

results from both rigs, once the valve transfer function is 

established, are in good agreement. This is further 

emphasized by computing the RMSE index, which verifies 

the effectiveness of the proposed method for different 

operational profile.  

This work will continue to look at system level prognostics, 

both experimentally and theoretically, by considering 

degradation profiles of different fuel system components 

and predicting the lifetime of the system in which these 

components interact. 
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