
 

Bearing Fault Diagnosis using Singular Spectrum Analysis-Based 

Envelope Detection 

Guicai Zhang, Yun Li, and Changle Li 

United Technologies Research Center (China), Shanghai 201204, P. R. China 

ZhangG@utrc.utc.com 

LiY2@utrc.utc.com 

LiCL@utrc.utc.com  

ABSTRACT 

Rolling element bearings are critical components in rotating 

machinery and it is important to monitor their health and 

detect their faults in early stage during their operations. The 

vibration energy generated by the faults in rolling element 

bearings is usually small comparing to that of other rotating 

components such as rotors/shafts and gears in mechanical 

systems. Envelope analysis is a widely used method in 

bearing fault diagnosis. The major challenge in envelope 

analysis is the identification of resonance frequency band 

for narrow-band filtering before applying envelope 

operation. In this paper, a method combining singular 

spectrum analysis (SSA) and envelope analysis is proposed 

for diagnosing the rolling element bearing faults. The SSA 

is utilized to decompose the bearing vibration signal into a 

set of eigentriples (principle components), and then a subset 

of the eigentriples that encompass the dominant variation in 

the original signal is selected for signal reconstruction. 

Envelope analysis is then applied to the reconstructed signal 

to extract the modulation information that caused by the 

bearing faults. The proposed SSA-based envelope analysis 

is applied to the data sets of the bearing data center at Case 

Western Reserve University (CWRU), and the results are 

compared with that of the widely used Kurtogram-based 

envelope analysis. The results show that the SSA-based 

envelope analysis is more effective than the Kurtogram-

based envelope analysis in bearing fault diagnosis.  

1. INTRODUCTION

Rolling element bearings are the most widely used 

components in rotating machinery. Condition monitoring 

and fault diagnosis of rolling element bearings are important 

in the practice of equipment maintenance in industries. The 

vibration energy generated by the faults in rolling element 

bearings is usually small comparing to that of other rotating 

components such as rotors/shafts and gears in mechanical 

systems, especially for the faults in early stage. Envelope 

analysis is a powerful technique to detect faults in rolling 

element bearings. The resonance frequency band 

identification is the key for narrow-band filtering before 

applying envelope operation (Randall, 2011). In the past 

over twenty years, researchers put forwarded some methods 

for identifying the resonance frequency band, such as 

Kurtogram (Antoni & Randall, 2006), wavelet transform 

(Shi, Wang & Qu, 2004), etc. These methods are mainly 

based on spectral kurtosis evaluation of the frequency 

bands, i.e., using kurtosis as the criteria to determine the 

resonance frequency band. In some of the cases, the 

variance of the identified frequency band could be too small 

and the results of the envelope become meaningless and 

ineffective.  

Singular spectrum analysis (SSA) is a non-parametric time 

series modeling technique and it is a relatively new 

technique for time series analysis (Broomhead & King, 

1986). The main idea of SSA is to perform singular value 

decomposition (SVD) of the trajectory matrix obtained from 

the original time series with a subsequent reconstruction of 

the series. The advantage of SSA over Fourier analysis is 

that SSA components are not necessarily harmonic 

functions, being data adaptive and can capture highly 

nonharmonic oscillatory shapes. These advantages make 

SSA suitable for the analysis of nonlinear and non-

stationary time series. SSA provides estimates of the 

statistical dimension and it also describes the main physical 

phenomena reflected by the data. It gives adaptive spectral 

filters associated with the dominant oscillations of the 

system and clarifies the noise characteristics of the data 

(Vautard & Ghil, 1989). SSA can decompose the original 

time series into the sum of a small number of independent 

and interpretable components such as slowly varying trend, 

oscillatory components and structureless noise (Hassani, 

2010). It is a powerful tool for change detection, signal and 

noise separation, trend extraction, etc. In recent years, SSA 

has found applications including time series forecasting 

(Golyandina & Korobeynikov, 2014), signal and noise 

separation (Khelifa, Kahlouche, & Belbachir, 2012), 
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biomedical signal processing (Sanei & Hassani, 2016), 

manufacturing process monitoring (Salgado & Alonso, 

2006; Kilundu, Dehombreux & Chiementin, 2011). It is also 

applied to structural health monitoring and mechanical fault 

diagnosis in very recent years. Zhao and Ye used SSA to 

diagnose headstock fault (2011). Liu, Chen and Dong used 

SSA and Hidden Markov Model for bearing fault diagnosis 

(2013). Muruganatham, Sanjith, Krishnakumar and Murty 

used SSA to extract bearing fault features and then used 

ANN for fault classification (2013). Chao and Loh used 

SSA for structural health monitoring in bridges (2014).  

In this paper, a SSA-based envelope analysis is proposed for 

fault diagnosis of rolling element bearings. The SSA is 

utilized to decompose the bearing vibration signal into a set 

of eigentriples, and then a subset of the eigentriples that 

dominate variation in the original signal is selected to 

reconstruct a denoised signal. Envelope analysis is then 

applied to the reconstructed signal to diagnose the bearing 

faults. The proposed SSA-based envelope analysis is 

applied to CWRU bearing data sets to demonstrate the 

effectiveness.  

2. METHOD: SSA-BASED ENVELOPE ANALYSIS

2.1. Singular Spectrum Analysis 

SSA decomposes a time series into a sum of components, 

each having a meaningful interpretation. The name "singular 

spectrum analysis" relates to the spectrum of eigenvalues in 

singular value decomposition (SVD) of a covariance matrix, 

and not directly to frequency domain decomposition. The 

basic SSA algorithm is briefly described as following 

(Golyandina , N., & Zhigljavsky, 2013): 

1. Embedding

To perform the embedding the original time series is 

mapped into a sequence of lagged vectors of size L by 

forming (𝐾 = 𝑁 − 𝐿 + 1) lagged vectors: 

𝑋𝑖 = (𝑥𝑖 , … , 𝑥𝑖+𝐿−1)
𝑇    (1 ≤ 𝑖 ≤ 𝐾)

of size L. Thus the trajectory matrix of the series X is 

𝑿 = [𝑋𝑖: … : 𝑋𝐾] = (𝑥𝑖𝑗)𝑖,𝑗=1
𝐿,𝐾

     =

(

𝑥1  𝑥2  𝑥3   …   𝑥𝐾
𝑥2  𝑥3  𝑥4   …  𝑥𝐾+1
𝑥3  𝑥4  𝑥5   …  𝑥𝐾+2
⋮  ⋮  ⋮  ⋱     ⋮ 
𝑥𝐿     𝑥𝐿+1   𝑥𝐿+2  …   𝑥𝑁     )

(1) 

The lagged vectors 𝑋𝑖  are the columns of the trajectory

matrix X.  

The (𝑖, 𝑗)th element of the matrix X is 𝑥𝑖𝑗 = 𝑥𝑖+𝑗−1  which

yields that X has equal elements on the ‘anti-diagonals’ 

𝑖 + 𝑗 = 𝑐𝑜𝑛𝑠𝑡 . (Hence the trajectory matrix is a Hankel 

matrix.) Equation (1) defines a one-to-one correspondence 

between the trajectory matrix of size 𝐿 × 𝐾  and the time 

series. 

2. Singular value decomposition

In this step, the singular value decomposition (SVD) of the 

trajectory matrix X is performed. It decomposes matrix X 

in form 

𝐗𝒊 = ∑ √𝜆𝑖𝑈𝑖𝑉𝑖
𝑇𝒅

𝒊=𝟏    (2) 

where 𝜆𝑖  (𝑖 = 1,… , 𝐿) are eigenvalues of the matrix S =

XX
T
 arranged in order of decrease, 𝑑 = rank 𝐗 =

max{𝑖, such that 𝜆1 > 0} , {𝑈1, … , 𝑈𝐿} is the corresponding

orthonormal system of the eigenvectors of the matrix 

S, and 𝑉𝑖 = 𝐗𝑇𝑈𝑖/√𝜆𝑖

3. Eigentriple grouping

The grouping is the procedure of arranging the matrix terms 

𝐗𝒊 in Equation (2). It partitions the set of indices {1,…,d}

into m disjoint subsets sets 𝐼1, … , 𝐼𝑚 . The procedure of

choosing the sets 𝐼1, … , 𝐼𝑚 is called eigentriple grouping. If

m = d and 𝐼𝑚  = {j}, j = 1 , … , d, then the corresponding

grouping is called elementary. 

4. Diagonal averaging

In this step, each matrix of the grouped decomposition is 

transformed into a new series of length N by applying a 

linear transformation known as diagonal averaging. Let Y 

be an L×K matrix with elements 𝑦𝒊𝒋, 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝐾.

Set 𝐿∗ = min (L, K) , 𝐾∗ = max(L, K)  and 𝑁 = 𝐿 + 𝐾 − 1 .

Let 𝑦𝑖𝑗
∗ = 𝑦𝑖𝑗  if 𝐿 < 𝐾  and 𝑦𝑖𝑗

∗ = 𝑦𝑗𝑖  otherwise. By making

the diagonal averaging the matrix Y is transferred into the 

series 𝑦1, … , 𝑦𝑁 using the formula

𝑦𝑘 =

{

1

𝑘
∑ 𝑦𝑚,𝑘−𝑚+1

∗   for 1 ≤ 𝑘 < 𝐿∗
𝑘

𝑚=1

1

𝐿∗
∑ 𝑦𝑚,𝑘−𝑚+1

∗   for 𝐿∗ ≤ 𝑘 ≤ 𝐾∗
𝐿∗

𝑚=1

1

𝑁 − 𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+1

∗   for 𝐾∗ < 𝑘 ≤ 𝑁

𝑁−𝐾∗+1

𝑚=𝑘−𝐾∗+1

(3) 

Through diagonal averaging, the original time series 

{𝑥1, … , 𝑥𝑁} is decomposed into a sum of 𝑚 reconstructed

series {�̃�1, … , �̃�𝑚}.

2.2. Envelope Spectrum based on SSA 

Firstly, the vibration data collected from bearing housing is 

decomposed using SSA. Then, the dominant eigentriples are 

reconstructed. Thirdly, envelope spectrum analysis is 

applied to the reconstructed signal to extract the impulse 

modulation caused by the local faults in bearing. Analysis of 

the envelope spectrum with the prior knowledge of the 
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bearing fault frequencies will help to make diagnostic 

decision. The diagram of the proposed approach is shown in 

Figure 1. 

Figure 1. Diagram of the SSA-based envelope analysis. 

3. EXPERIMENTAL DATA

In this work, the data sets from the Case Western Reserve 

University (CWRU) bearing data center are used to validate 

the effectiveness of the proposed method.  

The experimental setup is shown in Figure 2, the test stand 

consists of a 2 HP motor, a torque transducer/encoder, a 

dynamometer, and control electronics. The test bearings 

support the motor shaft. Single point faults were introduced 

to the test bearings using electro-discharge machining with 

fault diameters of 0.18 mm, 0.36 mm, 0.53 mm, 0.71 mm 

(i.e., 7 mils, 14 mils, 21 mils, 28 mils, and 40 mils) and a 

depth of 0.28 mm. Vibration data was collected using 

accelerometers from the housing. Digital data was collected 

at 12 kHz for the fan end bearing and 48 kHz for drive end 

bearing. In order to quantify this effect, experiments were 

conducted for both fan and drive end bearings with outer 

raceway faults located at 3 o’clock (directly in the load 

zone), at 6 o’clock (orthogonal to the load zone), and at 12 

o’clock. More details about the experiments and the data 

can be found at CWRU bearing data center website and the 

review paper by Wade and Randall (2015).  

In this work, the drive end bearing fault data sampled at 48 

kHz are used. The drive end bearing is SKF 6205-2RS JEM 

deep groove ball bearing and its specifications are listed in 

Table 1. The corresponding bearing fault frequencies are 

listed in Table 2 (ratios to the shaft frequency). 

Figure 2. CWRU bearing test rig. 

Table 1. Specification of the drive end bearing 

Parameter Dimension (mm) 

Inside diameter 25.001 

Outside diameter 51.999 

Thickness 15.001 

Ball diameter   7.940 

Pitch diameter 39.040 

Table 2. Bearing fault frequencies (drive end) 

Faulty component 
Ratio to shaft 

rotating frequency 

Inner race (BPFI) 5.415 

Outer race (BPFO) 3.585 

Cage train (FTF) 0.398 

Rolling element  (BFF) 4.714 

4. FAULT DIAGNOSIS USING SSA-BASED ENVELOPE 

ANALYSIS

4.1. Window Length for SSA 

The window length L is the main parameter of SSA. 

Adequate choice of L enables grouping activity leading to a 

good SSA decomposition. The variations in L may influence 

both weak and strong separability features of SSA. There 

are several general principles for the selection of the 

window length L that have certain theoretical and practical 

grounds. The common recommendation on choice of L is 

𝐿 ≅ 𝑁/2 for a time series with length of N to achieve the 

most detailed decomposition (Golyandina & Zhigljavsky, 

2013). However, it not necessary to use such a large value 

of the window length L for mechanical vibration signals. 

For most of the mechanical vibration signals, L = 20 is 

sufficient. Figure 3 (a) shows a singular spectrum 

decomposition of a vibration signal collected from a 

gearbox (PHM Challenge 2009 Data Sets). The first 9 

eigentriples retained more than 99% norm of the trajectory 
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matrix. Figure 3 (b) shows a singular spectrum 

decomposition of a vibration signal from the CRWU data 

sets, and the first 6 eigentriples retained more than 99% 

norm of the trajectory matrix.   

(a)                                            (b) 

Figure 3. Singular spectrum of mechanical signals 

4.2. Selection of eigentriples for Reconstruction 

In addition to the choice of the window length for SSA, 

another important thing is that how many eigentriples 

should be used for reconstruction for a real application.  In 

general, selection of eigentriples that retain more than 75% 

norm of the trajectory matrix is sufficient to reconstruct the 

signal (Kilundu, Chiementin, & Dehombreux, 2011). Zhao 

and Ye (2011) proposed an approach called difference 

spectrum for selection of effective eigentriples for SSA 

reconstruction and applied it to fault diagnosis of headstock. 

Sometimes the difference spectrum is not reliable for SSA 

reconstruction as it may only retain less than 50% of the 

norm of the trajectory matrix. In the singular spectrum 

shown in Figure 3 (b), the difference spectrum recommends 

to select the first two eigentriples which retain about 66% of 

the norm of the trajectory matrix. In this work we adopt the 

criteria of retaining 75% norm of the trajectory matrix.  

Figure 4 shows a singular spectrum decomposition of a 

vibration signal from the CRWU data sets (109.mat, inner 

race fault). Figure 5 shows the reconstruction using the first 

two eigentriples (66% norm retained), the comparison with 

the original signal, and the residual. Figure 6 shows the 

reconstruction using the first three eigentriples (82% norm 

retained), the comparison with the original signal, and the 

residual.  

Figure 7 shows a singular spectrum of another bearing 

vibration signal (135.mat, outer race fault at 6 o’clock 

location). The first two eigentriples account more than 95% 

norm of the trajectory matrix. Figure 8 shows the 

reconstruction using the first two eigentriples (95% norm 

retained), the comparison with the original signal, and the 

residual. It can be seen that the reconstruction with the first 

two eigentriples is almost coincided with the original signal.  

Figure 4. Singular spectrum of bearing data (109.mat) 

Figure 5. Reconstruction using the first two eigentriples 

(66% norm retained) and the residual (109.mat) 

Figure 6. Reconstruction using the first three eigentriples 

(82% norm retained) and the residual (109.mat) 
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Figure 7. Singular spectrum of bearing data (135.mat) 

Figure 8. Reconstruction using the first two eigentriples 

(95% norm retained) and the residual (135.mat) 

4.3. Bearing vibration data analysis 

In this section, the data sets from the Case Western Reserve 

University (CWRU) bearing data center are used to 

demonstrate the effectiveness of the proposed approach. The 

diagnostic results are compared with that of the well-

developed Kurtogram approach (Antoni & Randall, 2006). 

Usually, the dominant components in the envelope spectrum 

of rotating machinery are the shaft frequency and its 

harmonics. The modulation caused by the faulty bearing 

components is often masked by the strong shaft rotating 

related components. This can be seen from the envelope 

spectrum shown in Figure 11. If the modulation information 

is properly extracted, it should be seen from the envelope 

spectrum the fault frequencies, i.e., Ball Pass Frequency of 

Inner race (BPFI) for inner race fault, Ball Pass Frequency 

of Outer race (BPFI) for outer race fault, Fundamental Train 

Frequency (FTF) for cage fault and Ball Fault Frequency for 

rolling element fault, as shown in Table 2 .   

In order to quantitatively describe the effectiveness of the 

approaches, an index r is defined as the ratio between the 

magnitudes of the fault frequency 𝐴𝑓  and the shaft

frequency  𝐴𝑠:  𝑟 =  𝐴𝑓/𝐴𝑠 . Larger 𝑟  value means more

effective.  

4.3.1. Case 1: Inner Race Fault 

Figure 9 shows a time domain signal of bearing inner race 

fault (data file: 109.mat). The motor speed is 1797 rpm, thus 

the shaft frequency is  𝑓𝑟 = 1797/60 = 29.95  Hz. The

feature frequency for the inner race fault is 𝐵𝑃𝐹𝐼 =
5.415 × 29.95 = 162.1 Hz (refer to Table 2 for the BPFI 

ratio).  Figure 10 shows the band-pass filtered signal based 

on Kurtogram identified resonance band. It can be seen that 

it is very impulsive due to the modulation by the shaft 

frequency. This can be more clearly seen from the envelope 

spectrum shown in Figure 11. From the envelope spectrum 

it is seen that the dominant components are the shaft 

frequency (around 30 Hz) and its harmonics. The fault 

frequency BPFI (161.9 Hz) can also be seen but the 

magnitude is very small. In this case, the effectiveness ratio:  

𝑟 = 0.21.  

Figure 12 shows the reconstructed signal using the first 

three eigentriples (82% norm of the trajectory matrix 

retained, which is greater than 75%). Figure 13 shows the 

envelope spectrum of the reconstructed signal shown in 

Figure 12. It is seen that the magnitude of the fault 

frequency becomes much higher than that of the shaft 

frequency. Here the effectiveness ratio:  𝑟 = 21.98. 

Figure 9. Time signal of bearing inner race fault 

Figure 10. Band-pass filtered signal based on Kurtogram 

approach 
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Figure 14 shows the envelope spectrum of the reconstructed 

signal using the first six eigentriples (99% norm of the 

trajectory matrix retained). The envelope spectrum looks 

very similar with the envelope spectrum shown in Figure 

13, and the effectiveness ratio:  𝑟 = 36.25 which is larger 

than that of the envelope spectrum shown in Figure 13. 

However, it is quite obvious that reconstruction using the 

first three eigentriples which retaining more than 75% norm 

of the trajectory matrix is good enough for envelope 

detection.  

Figure 11. Envelope spectrum based on Kurtogram 

approach 

Figure 12. Reconstructed signal (RC 1~3, 82% norm 

retained) 

Figure 13. Envelope spectrum of SSA reconstruction (RC 

1~3, 82% norm retained) 

Figure 14. Envelope spectrum of SSA reconstruction (RC 

1~6, 99% norm retained) 

4.3.2. Case 2: Outer Race Fault 

Figure 15 shows the time domain signal of bearing outer 

race fault (data file: 135.mat). The motor speed is about 

1797 rpm, thus the shaft frequency is  𝑓𝑟 = 1797/60 =
29.95 Hz. The feature frequency for the inner race fault is 

𝐵𝑃𝐹𝑂 = 3.5848 × 29.95 = 107.4 Hz. Outer race is 

stationary and the fault on it is relatively easier to diagnose 

comparing the fault on inner race. Figure 16 shows the 

band-pass filtered signal based on Kurtogram identified 

resonance band. 

Figure 17 shows the envelope spectrum of the band-pass 

filter signal. In this case, the fault frequency (108 Hz) and 

its harmonics are quite clearly shown in the envelope 

spectrum.  The effectiveness ratio is: 𝑟 = 2.41. 

Figure 18 shows the SSA reconstructed signal using the first 

two eigentriples (95% norm of the trajectory matrix 

retained). Figure 19 shows the envelope spectrum 

corresponding to the reconstructed signal shown in Figure 

18. The effectiveness ratio is: 𝑟 = 6.45 , which is also

significantly larger than that of the envelope analysis based

on Kurtogram.

Figure 15. Time signal of bearing outer race fault signal 
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Figure 16. Band-pass filtered signal based on Kurtogram 

approach 

Figure 17. Envelope spectrum based on Kurtogram 

approach  

Figure 18. Reconstructed signal (RC 1~2, 95% norm 

retained) 

Figure 19. Envelope spectrum of SSA reconstruction 

5. CONCLUSION

In this paper, singular spectrum analysis is applied to 

decomposition and reconstruction of bearing vibration 

signals as a preprocessing approach. The envelope analysis 

is then applied to the reconstructed signal using the selected 

eigentriples (principle components) to extract the 

modulation information caused by faulty bearing 

components. The results of the SSA-based envelope 

analysis are compared with the widely used Kurtogram-

based envelope analysis. The results show that the proposed 

approach is more effective than the Kurtogram-based 

envelope analysis.  
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