

A Self-Organization Strategy for Unmanned Autonomous Systems

Benjamin Lee1, Sehwan Oh2, Michael Balchanos3, George Vachtsevanos4

1,2,3,4Georgia Institute of Technology, Atlanta, GA, 30024, United States of America

blee78@gatech.edu

soh48@gatech.edu

michael.balchanos@ asdl.gatech.edu

gjv@ece.gatech.edu

ABSTRACT

Complex systems are constructed from multiple subsystems

and components with each serving incremental tasks, where

the “emergent” system behavior cannot be deduced from the

behaviors of the individual parts. The key requirement of

complex systems is the ability to compensate for unforeseen

and extreme disturbances, so it is important to design a

control method that ensures acceptable level of system

resilience throughout its operation. Therefore, detailed and

accurate knowledge of system behaviors is paramount for the

design of complex system control strategies. This paper

presents a self-organizing control strategy that incorporates

both situational awareness and failure impact compensation

for a resilient unmanned autonomous system.

1. INTRODUCTION

Complex systems are “systems of systems” comprised of

hierarchical sets of subsystems or components, where the

combined simultaneous operation of many components can

lead to unforeseen “emergent” behaviors. Vinerbi et al.

(2010) suggest that even though good knowledge of system

behaviors is significant, “full” knowledge of complex system

behavior may not be achievable. Also, complex systems are

vulnerable to multiple failures at once, while the effect of

individual failures may not be evident. Complexity Theory

has shown to improve understanding of system behavioral

modes and provide a viable means for modeling of such

complex systems. This paper postpones discussion of

Complexity Theory attributes to a future document and

focuses on the resilient design via self-organization.

Unexpected change in complex system behavior occurs in

case of extreme disturbances, such as a complete failure of a

subsystem. The most commonly used robust control

technique for disturbance rejection is PID (feedback) control.

A major limitation of traditional control systems using PID is

the lack of online adjustments to changing system properties.

Manual computation and adjustment to new system

behaviors are impractical for complex system applications

such as unmanned autonomous systems (UAS).

A self-organizational method could be an alternative to the

traditional robust control avoiding a heavy computational

burden. A system is considered organized if it has certain

structure and functionality, and self-organization implies that

the organization of the system occurs internally, without any

external or centralized control unit (Prehofer and Bettstetter,

2005). In the simplest case, a self-organization strategy

consists of two components: response and adaptation,

responding to the system’s functionality. Therefore, systems

with the same structure may require a different adaptation

strategy depending on the system’s operational objectives.

Along with a reduced computational burden due to the

targeted operation, a self-organization method provides the

benefit of random noise adaptation, since the process is

spontaneous with intrinsic update rules (Heylighen, 1999).

In this paper, a novel self-organizational method is

introduced as a compensatory measure to maintain system

functionality under the presence of failure modes. It is noted

that resilience requirements refer to severe disturbances, i.e.

failure modes compared to usual disturbances compensated

by conventional technologies such as robust or PID control.

A typical unmanned autonomous ground vehicle – the

hexapod – is employed as the testbed for the development and

validation of the self-organizing strategy. Methods to

understand system behavior include data acquisition, system

modeling, and proper construction of performance metrics;

the strategy includes a policy to address the changing system

conditions and success criteria to evaluate the optimal action.

The physical, functional, nonlinear dynamic, and graph

theoretic models will be considered to examine system

behaviors under both normal and faulty conditions. Then, the

self-organization strategy will be introduced in the form of a

Markov Decision Process (MDP) with dynamic

programming for optimal performance. Finally, the success

criteria for the control method will be constructed with

Lyapunov stability conditions so that the self-organization

strategy can be modified throughout the system operation for

system resilience regarding stability and resource limitations.

Simulation results will be presented at the end to demonstrate

the efficacy of the approach.

309

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

Figure 1. Overall self-organization methodology.

2. TECHNICAL APPROACH

2.1. The Methodology: An Overview

Figure 1 depicts a schematic of the framework for self-

organization of a complex system subjected to severe

disturbances, namely failure modes. Initially, a system-level

mission profile is suggested, where the system is commanded

to travel a prescribed path in 2D or 3D spaces. For traditional

disturbance rejection, the system will operate under a control

law, which employs local controllers for feedback

compensation. In the presence of a failure mode, the mission

is unachievable, and the proposed self-organizational method

takes over as the higher-level control architecture.

The self-organization strategy begins with two types of

modeling techniques aimed to describe the system behaviors

in data format; a graph theoretic model to examine the current

state of the system, and a dynamic/kinematic model to predict

the optimal next step. Along with the data obtained from the

models, monitoring processes such as situation awareness

and fault diagnosis/prognosis will examine the current health

state of the system, and the optimal action will be determined

based on a fully implemented MDP. The MDP output will be

the optimal action for the system to proceed to the next step

of the mission profile while maintaining an acceptable level

of stability and observing physical/functional constraints.

The system model and control law will be updated based on

the evaluation of the outcome of the process through

appropriate success criteria.

2.2. Self-Organization Strategy

2.2.1. Spectral Graph Theory

A graph G is a set 𝐺(𝑉,𝐸) that consists of vertices and edges

(connections between vertices). In systems engineering, the

structure of a complex system can be represented as a graph

with the list of system nodes and their respective

interconnectivity.

Wilson (1996) lists several useful matrix representations in

graph theory. The adjacency matrix A is a 𝑛×𝑛 matrix where

the element 𝑎𝑖𝑗 indicates connectivity from node i to node j

with 1, and 0, otherwise. The degree matrix D is a 𝑛×𝑛

diagonal matrix, where the diagonal elements 𝑑𝑖 are the

degree (number of edges) of node i.

The Laplacian matrix L is defined as in Equation (1) and is

also called the system matrix.

𝐿 = 𝐷 − 𝐴 (1)

The second smallest eigenvalue (denoted by 𝜆2) of the

Laplacian matrix is called the algebraic connectivity of the

graph and represents how well the graph is connected. The

algebraic connectivity is also an important indication of a

network’s resilience, and the quantification of the importance

of a node or a link with the effect of node removal on the

algebraic connectivity is studied in the work of Liu et al.

(2009).

Another useful matrix in spectral graph theory is the

transition matrix T, in which the element 𝑝𝑖𝑗 is the probability

of transitioning from node i to node j. The aforementioned

adjacency and degree matrices can be combined as in

Equation (2) to determine the transition matrix within a

system graph (Butler, 2008):

𝑇 = 𝐷−1𝐴 (2)

The transition matrix is a versatile tool to represent

probabilistic processes. In addition to storing the probabilities

within nodes of a system, the transition matrix can also

represent state-transition probabilities.

310

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

2.2.2. Markov Decision Process

Proper definition of system states and the state transition

probabilities is the first step for constructing a Markov

Decision Process (MDP), formulated by Bellman (1957), and

applying the Markovian property to move from the current

state to the next optimal state based on a predefined policy.

MDP is a dynamic programming method, where the control

problem for a complex system is divided into simpler sub

problems in a memory based structure so that the solution for

the next occurring sub problem can be looked up immediately

instead of re-composing the solution, thereby reducing

significantly the computational burden compared to

traditional control methods.

MDP is a set of decision-making rules consisting of

{S,A,T,R}, where S is the finite set of achievable states, A is

the finite set of actions that connect a state to other states, T

is the transition matrix that stores the likelihoods of the state

transitions, and R is the reward matrix that indicates the

immediate effect of an action applied to a state. In other

words, the transition matrix can be used to describe the

system’s behavior, and the reward matrix can be used to

guide the control action towards mission completion.

Yukalov and Sornette (2014) suggest that any complex

system, under given conditions, is more inclined to occupy

the most stable state. From the work of Gabbai (2005), self-

organization is an evolving process towards a state of

equilibrium, commonly called an attractor. An attractor could

provide a lower dimensional representation of complex

system dynamics, and an example attractor could be a desired

path for the system to follow. Therefore, the transition and

reward matrices should be constructed with higher

probability and reward assigned for approaching the desired

path.

2.2.3. Dynamic Programming

The main goal of MDP is to construct a “policy” 𝜋(𝑠) that

provides the optimal available action for each state. The

algorithm to obtain the policy is represented by Equation (3),

known as the Bellman equation. Value functions, V(s), are

defined for each state to accumulate the immediate reward

from an action at each time step, until the overall reward

converges to steady values.

𝑉(𝑠) = max(𝑅(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′) (3)

The discount factor 𝛾 ∈ [0,1] is used to suppress future

rewards and ensure convergence of the overall reward. Based

on the solution of the Bellman equation, the policy will return

the optimal action for a state with the maximum overall

reward.

The policy obtained as the output of the MDP is constantly

updated through success criteria for desirable system

performance, while the system is supporting a self-

organization control method that spontaneously and

internally compensates for severe disturbances.

2.3. Self-Organization Method for a Hexapod

To illustrate the proposed self-organization method, a

hexapod robot is selected as the test system. The mission

profile is set for the hexapod to travel from a current point A

to a goal point B in a straight-line path. Cully et al. (2015)

suggest an improved trial and error method to determine the

optimal action for a walking hexapod with a broken leg, but

the large original search space and minutes of lengthy

adaptation time to the next step hamper their development.

Instead, a self-organization method that spontaneously

generates the optimal action can provide an alternative to

decrease significantly the computational burden.

2.3.1. Hexapod Dynamic/Kinematic Model

The hexapod used in this case study is composed of a body

and six legs. Each leg is a three DOF (degrees of freedom)

subsystem with three servo joints. From the work of Sorin et

al. (2011), the names and functions of each joint and link are

shown in Figure 2.

Figure 2. Hexapod leg structure

It can be seen that the Coxa joint rotates horizontally, and the

other joints rotate vertically. The hexapod leg’s kinematic

movement is governed by the joint motor rotations, and the

position of the end point of a leg contacting the ground with

respect to the hexapod body can be obtained by applying

consecutive coordinate transformation matrices, assuming

the origin as the center of the body, as shown in Equations

(4,5,6,7) (Barai et al. 2013). In the equations, 𝑇𝑗
𝑖 is the

transformation matrix from joint i to joint j, 𝑠𝑖 and 𝑐𝑖 are the

sine and cosine functions of ith joint angle, 𝐿𝑖 is the link

length, and 𝑃𝑓 is the end position of the leg.

311

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

All hexapod joints have a range of reachable angles (∈
[𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥]), and the combination of the horizontal rotation

of the Coxa joint and the vertical rotations of the Femur and

Tibia joints create a set of reachable workspaces for the legs.

The hexapod locomotion to move to the goal position will be

assumed a conventional tripod gait. At each time step, three

legs are swinging in space, and the other three are supporting

the robot on the ground. The duty factor of the gait between

the left and right side of the hexapod is 0.5, implying an equal

duration in alternating sides, where the swinging legs at each

step are the middle leg on one side and the front and rear legs

on the other side. The walking direction of the hexapod can

be determined by combining the direction vectors of the three

swinging legs at each step. Assuming normal condition with

no disturbance, the legs will swing forward in the direction

of the desired path, and the three direction vectors from the

swinging legs can be combined, as shown in Figure 3, where

the arcs indicate the reachable workspaces of the swinging

legs.

Figure 3. Upper view of the walking direction of the

hexapod from the swinging motion

2.3.2. Failure Mode (Locked Joint Failure)

The three joints on each leg can be combined for the hexapod

to have 18 DOF. Such high degree of manipulation allows

versatile motion for the hexapod, but the complexity also

induces vulnerability to severe failure modes. An example of

a possible failure mode in a hexapod is the locked joint

failure, where a joint angle is fixed at a certain state and

cannot be controlled. In the work of Yang (2003), locked

joint failures of different joints are shown to result in different

effects on the leg workspace. Since the Coxa joint is in charge

of the horizontal swinging movement of the leg, locked joint

failure at the Coxa joint completely disables the leg’s

swinging motion and the leg can only lift and plant itself

vertically. On the other hand, locked joint failure at the

vertically operating Femur and Tibia joints will have no

effect on the swinging motion, but will diminish the leg’s

stretchable length, so the upper view of the leg’s workspace

will have the same arc shape but with reduced size. The

impact of locked joint failures on the leg’s workspace will

cause the hexapod to derail from its original path in an

unexpected manner.

2.3.3. Hexapod Graph Model

Figure 4 shows a graph representation of a hexapod with each

node numbered appropriately.

Figure 4. Graph representation of a hexapod with node

numbers

The impact of a locked joint failure in a hexapod can be

represented simply by a node removal. More specifically, a

failed node loses controllability and converts into an edge, so

the adjacency and degree of the corresponding node become

zero. The aforementioned algebraic connectivity can be used

to indicate the presence or severity of locked joint failure(s).

Demonstration of the effect of locked joint failure on

algebraic connectivity is shown in Table 1, where the

algebraic connectivity of the hexapod system graph is

evaluated in normal condition first followed by the failure

mode at node 8, and finally another failure mode at node 15.

312

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

Table 1. Effect of failure mode on algebraic connectivity.

of failure mode Algebraic connectivity

0 0.3384

1 0.04874

2 -3.0199e-16 ≈ 0

It is shown that the incremental addition of failure modes

decreases the algebraic connectivity, and when there are two

failure modes present, the algebraic connectivity becomes

zero, meaning the graph is disconnected.

2.3.4. Hexapod MDP

The MDP formulation is applied, as the self-organization

strategy, to the hexapod under a locked joint failure. As

suggested by Cuaya-Simbro and Munoz-Melendez (2008),

the state space S can be defined as the valid positions of the

legs, and the action space A as the transitions that enable the

robot to move from one valid state to another. The finite

deterministic case of the MDP algorithm is used for this

problem, and the state space is represented by three available

leg positions at each step (front, aligned, and rear with respect

to the leg’s connection to the body, as shown in Figure 5).

Figure 5. Example valid state space of a hexapod leg

Since three legs (two from one side and one from the other)

either swing or support the system identically in a tripod gait,

there are 9 total available states. Assuming the states can

move to any other valid state, the action space A will have

the same dimension as the state space.

The MDP solution in this problem will be a policy that maps

the optimal action for each state for the hexapod to move

along the desired path. Chades et al. (2014) provide a Markov

Decision Process Toolbox for MATLAB to compute the

MDP solution. By initializing the S×S×A transition and

reward matrices, where S is the number of states, and A is the

number of actions, the finite horizon solution of the MDP is

concluded in N number of steps. In addition to the policy, the

toolbox also outputs the used CPU time to solve the problem,

which can be used to compare the computational burden to

that of traditional robust control methods.

2.3.5. Success Criteria (Lyapunov Stability)

The hexapod’s moving path following the MPD policy

solution is evaluated via Lyapunov stability conditions to

verify the stability and effectiveness of the self-organization

method. Path-based Lyapunov stability analysis of a hexapod

is detailed in the work of Jeong et al. (2013), where the

positional error vector, e, is defined as in Equation (8) so that

the Lyapunov function V and the Lyapunov equation are

stated in Equation (9).

𝑒 = (
𝑥𝑒

𝑦𝑒
) = (

𝑥𝑑 − 𝑥𝑐

𝑦𝑑 − 𝑦𝑐
) (8)

{
𝑉 = 𝑒𝑇𝐾𝑒

𝐴𝑇𝐾𝐴 − 𝐾 + 𝑄 = 0
(9)

xd denotes the desired position, xc denotes the current

position, A is the state transition matrix where 𝑥𝑡+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = 𝐴𝑥𝑡⃑⃑ ⃑,
and the matrices K and Q are symmetric positive definite

matrices.

3. RESULTS

Using the MDP Toolbox, the 9×9×9 transition and reward

matrices can be defined following the hexapod structure and

tripod gait behavior. Assuming 10 steps between current and

goal points, the finite horizon MDP problem can be solved to

give the value functions for each state, policy of optimal

action for the states at each time step, and the used CPU time

to compute the policy. The value functions of the first five

states (S1 ~ S5) are shown in Figure 6, where the value

(immediate reward) converges to zero over the time steps for

each state so the overall reward converges to a certain value.

Figure 6. Value function computed over 10 time steps

313

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

The policy is generated as a 9×10 matrix where each row

corresponds to a state and the columns store the optimal

action for the state at each time step. A graph representation

of the policy (first five states, for simplicity) is shown in

Figure 7.

Figure 7. Policy generated from MDP Toolbox

The notable part of the MDP Toolbox demonstration is the

CPU time, which results in 0.0156s for mission completion.

System parameters need to be adjusted in case of a failure

mode, as the change in dynamics can cause unexpected

system behaviors. Since commonly used robust control

methods with PID controllers are designed for systems with

predefined dynamics and properties, spontaneous and

reliable adjustment to new system dynamics with PID

controllers is impractical in real life.

Considering the hexapod for example, the lengthy settling

time required for the PID controllers to reach steady state will

cause the hexapod to take several seconds to adjust to a

different configuration while tuning the gains for all 18 joint

motors. Even assuming perfectly synchronous joint rotations,

using PID control for a real-time hexapod gait is impractical.

Moreover, compared to the minutes of computation needed

for the trial and error method mentioned in Section 2.3, the

proposed self-organization method offers a holistic guide of
system behavior for disturbance accommodation with

dramatically less computational burden.

Assuming the hexapod starts at the origin, a diagonal path in

the XY plane can be assumed to be the desired path for the

hexapod to travel. A locked joint failure is added to the left-

middle leg of the hexapod to test the self-organization

behavior. For both conditions (with or without failure mode),

the hexapod behavior is governed by the MDP policy. The

resulting paths are shown in Figure 8 where the hexapod

travels along the desired diagonal path. With a failure mode

present, the hexapod abruptly moves to the left due to the

failure mode and then gradually converges back to the desired

path.

Figure 8. Hexapod walking path in nominal condition and

with locked joint failure

To verify that the hexapod with locked joint failure returns to

a stable mode, the distance from the desired path (=

difference between x and y coordinates) can be used as the

error value and apply the Lyapunov stability conditions. The

stability condition is constructed as in Equation (10),

assuming K = 1 or the identity matrix (for dimensions larger

than 2).

{
𝑒𝑡 = |𝑦𝑡 − 𝑥𝑡|

Q = 1 − 𝐴2 = 1 − (
𝑒𝑡+1

𝑒𝑡
)
2
> 0

(10)

In other words, the positional error of the vehicle must

decrease in magnitude at each time step for the process to be

stable. The resulting Q value evaluation is shown in Figure 9.

Figure 9. Q value of the hexapod with locked joint failure

314

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

It can be seen from Figure 9 that the process becomes

unstable when the failure mode is initiated, then returns to a

stable state between the second and third time steps. Upon

detection of noticeable digression from the desired path, the

predetermined MDP policy guides the hexapod to return to

traveling in the direction of the desired path, which shows in

the stability evaluation as the Q value drops to negative upon

occurrence of a failure mode then turns positive as self-

organization process is activated.

4. CONCLUSION

The self-organization method proposed in this paper

combines the Markov Decision Process with Lyapunov

stability conditions for a complex system to maintain stability

under a severe failure mode. The proposed method

demonstrated its usefulness with highly reduced

computational burden in the test case applied to a hexapod

under locked joint failure compared to traditional disturbance

rejection methods, while the system maintains stability

conditions. Future work will be toward improving the self-

organization method through deeper analysis in resilience,

focusing on the vulnerability and recoverability of systems

under failure modes.

REFERENCES

Vinerbi L., Bondavalli A. & Lollini P. (2010). Emergence: A

new Source of Failures in Complex Systems. IEEE Third

International Conference on Dependability (133-138),

July 18-25, DOI: 10.1109/DEPEND.2010.28

Prehofer C. & Bettstetter C. (2005), Self-organization in

communication networks: principles and design

paradigms, IEEE Communications Magazine, July 25,

DOI: 10.1109/MCOM.2005.1470824

Heylighen F. (1999), The Science of Self-Organization and

Adaptivity, The Encyclopedia of Life Support Systems,

Vol. 5 (No. 3), 253-280

Wilson R. (1996). Introduction to Graph Theory. Edinburgh

Gate, Harlow, Essex CM20 2JE, England: Longman.

Liu W., Sirisena H., Pawlikowski K. & McInnes A. (2009),

Utility of algebraic connectivity metric in topology

design of survivable networks, Design of Reliable

Communication Networks, 2009. DRCN 2009. 7th

International Workshop, 25-28 Oct. 2009, DOI:

10.1109/DRCN.2009.5340016

Butler S. K., (2008). Eigenvalues and Structures of Graphs.

Doctoral dissertation. University of California, San

Diego,

http://orion.math.iastate.edu/butler/PDF/dissertation.pdf

Bellman R. (1957), A Markovian Decision Process, Indiana

University Mathematics Journal, Vol. 6 (No. 4), 679-684

Yukalov V.I. & Sornette D. (2014), Self-organization in

complex systems as decision making, Adv. Complex

Syst., 17 (2014) 1450016

Gabbai J., (2005). Complexity and the Aerospace Industry:

Understanding Emergence by Relating Structure to

Performance using Multi-Agent Systems. Doctoral

dissertation. University of Manchester,

http://gabbai.com/files/J%20M%20E%20Gabbai%20E

ngD%20Thesis.pdf

Cully A., Clune J., Tarapore D. & Mouret J. (2015), Robots

that can adapt like animals, Nature, Vol. 521 (No. 7553),

503-507, doi:10.1038/nature14422

Sorin M., Mircea N. & Viorel S. (2011), Hexapod robot:

Mathematical support for modeling and control, System

Theory, Control, and Computing (ICSTCC), 2011 15th

International Conference, Oct 14-16

Barai R., Saha P. & Mandal A. (2013), SMART-HexBot: a

Simulation, Modeling, Analysis and Research Tool for

Hexapod Robot in Virtual Reality and Simulink, AIR '13

Proceedings of Conference on Advances In Robotics,

doi>10.1145/2506095.2506126

Yang J. (2003), Fault-tolerant gait generation for locked joint

failures, Systems, Man and Cybernetics, 2003. IEEE

International Conference, Oct. 8, DOI:

10.1109/ICSMC.2003.1244216

Cuaya-Simbro G. & Munoz-Melendez A. (2008), Adaptive

Locomotion for a Hexagonal Hexapod Robot Based on

a Hierarchical Markov Decision Process, WSPC –

Proceedings, Vol. 0 (No. 12), June 2008

Chades I., Chapron G., Cros MJ., Garcia F., Sabbadin R.

(2014). MDPtoolbox: a multi-platform toolbox to solve

stochastic dynamic programming problems. Ecography

37:916-920.

Jeong W., Kim H., Kim S. & Jun B. (2013), Path Tracking

Controller Design of Hexapod Robot for Omni-

directional Gaits, Control Conference (ASCC), 2013 9th

Asian, 23-26 June 2013, DOI:

10.1109/ASCC.2013.6606206

BIOGRAPHIES

Benjamin Lee is an Electrical Engineering graduate student

at the Georgia Institute of Technology since 2013. He

obtained his Bachelor’s degree in Electrical Engineering

from the Georgia Institute of Technology in 2013. He has

participated in researches of structural health monitoring

using acoustic waves, developing and testing of user

interfaces for situation awareness in life support systems, and

developing tracking control system for a unicycle mobile

robot. His main research areas include resilient system design

methodology and self-organizational control methods.

Sehwan Oh is a Ph.D. candidate in the ASDL at the Georgia

Institute of Technology since 2010. He has participated in

graduate researches of a turbine engine model regression

analysis, Navy transformable ship design, risk analysis of the

integration of unmanned aerial vehicle systems into the

national airspace system, and smart and sustainable campus

design and analysis. His main research areas include

resilience system design methodology and control

reconfiguration.

315

http://orion.math.iastate.edu/butler/PDF/dissertation.pdf
http://gabbai.com/files/J%20M%20E%20Gabbai%20EngD%20Thesis.pdf
http://gabbai.com/files/J%20M%20E%20Gabbai%20EngD%20Thesis.pdf

ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

Michael Balchanos is a research faculty with the School of

Aerospace Engineering, where he serves as the Resilient

Systems Branch lead at the Aerospace Systems Design

Laboratory. His areas of expertise include research work in

dynamic systems modeling and simulation methods, as well

as SoS-level integration techniques for enabling decision

support in complex systems design, involving several

applications such as smart energy infrastructures, electric

reconfigurable naval ships and unmanned aerial vehicles. He

is also leading ASDL's Automotive Systems Research

Initiative with applications in electric vehicle energy-based

sizing and optimization (EVs) as well as the development of

SoS-level frameworks for the connected autonomous

mobility ecosystem of the future. He obtained his Diploma in

Physics from the Aristotle University of Thessaloniki, Greece

and his M.Sc. and Ph.D. degrees in Aerospace Engineering

from Georgia Tech.

George Vachtsevanos is a Professor Emeritus of Electrical

and Computer Engineering at the Georgia Institute of

Technology. He was awarded a B.E.E. degree from the City

College of New York in 1962, a M.E.E. degree from New

York University in 1963 and the Ph.D. degree in Electrical

Engineering from the City University of New York in 1970.

He directs the Intelligent Control Systems laboratory at

Georgia Tech where faculty and students are conducting

research in intelligent control, fault diagnosis and prognosis

of large-scale dynamical systems, and control technologies

for Unmanned Aerial Vehicles. His work is funded by

government agencies and industry. He has published over

240 technical papers and is a senior member of IEEE. He was

awarded the IEEE Control Systems Magazine Outstanding

Paper Award for the years 2002-2003 (with L. Wills and B.

Heck). He was also awarded the 2002-2003 Georgia Tech

School of Electrical and Computer Engineering

Distinguished Professor Award and the 2003-2004 Georgia

Institute of Technology Outstanding Interdisciplinary

Activities Award.

316

