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ABSTRACT 

Complex systems are constructed from multiple subsystems 

and components with each serving incremental tasks, where 

the “emergent” system behavior cannot be deduced from the 

behaviors of the individual parts. The key requirement of 

complex systems is the ability to compensate for unforeseen 

and extreme disturbances, so it is important to design a 

control method that ensures acceptable level of system 

resilience throughout its operation. Therefore, detailed and 

accurate knowledge of system behaviors is paramount for the 

design of complex system control strategies. This paper 

presents a self-organizing control strategy that incorporates 

both situational awareness and failure impact compensation 

for a resilient unmanned autonomous system. 

1. INTRODUCTION

Complex systems are “systems of systems” comprised of 

hierarchical sets of subsystems or components, where the 

combined simultaneous operation of many components can 

lead to unforeseen “emergent” behaviors. Vinerbi et al. 

(2010) suggest that even though good knowledge of system 

behaviors is significant, “full” knowledge of complex system 

behavior may not be achievable. Also, complex systems are 

vulnerable to multiple failures at once, while the effect of 

individual failures may not be evident. Complexity Theory 

has shown to improve understanding of system behavioral 

modes and provide a viable means for modeling of such 

complex systems. This paper postpones discussion of 

Complexity Theory attributes to a future document and 

focuses on the resilient design via self-organization. 

Unexpected change in complex system behavior occurs in 

case of extreme disturbances, such as a complete failure of a 

subsystem. The most commonly used robust control 

technique for disturbance rejection is PID (feedback) control. 

A major limitation of traditional control systems using PID is 

the lack of online adjustments to changing system properties. 

Manual computation and adjustment to new system 

behaviors are impractical for complex system applications 

such as unmanned autonomous systems (UAS). 

A self-organizational method could be an alternative to the 

traditional robust control avoiding a heavy computational 

burden. A system is considered organized if it has certain 

structure and functionality, and self-organization implies that 

the organization of the system occurs internally, without any 

external or centralized control unit (Prehofer and Bettstetter, 

2005). In the simplest case, a self-organization strategy 

consists of two components: response and adaptation, 

responding to the system’s functionality. Therefore, systems 

with the same structure may require a different adaptation 

strategy depending on the system’s operational objectives. 

Along with a reduced computational burden due to the 

targeted operation, a self-organization method provides the 

benefit of random noise adaptation, since the process is 

spontaneous with intrinsic update rules (Heylighen, 1999). 

In this paper, a novel self-organizational method is 

introduced as a compensatory measure to maintain system 

functionality under the presence of failure modes. It is noted 

that resilience requirements refer to severe disturbances, i.e. 

failure modes compared to usual disturbances compensated 

by conventional technologies such as robust or PID control. 

A typical unmanned autonomous ground vehicle – the 

hexapod – is employed as the testbed for the development and 

validation of the self-organizing strategy. Methods to 

understand system behavior include data acquisition, system 

modeling, and proper construction of performance metrics; 

the strategy includes a policy to address the changing system 

conditions and success criteria to evaluate the optimal action. 

The physical, functional, nonlinear dynamic, and graph 

theoretic models will be considered to examine system 

behaviors under both normal and faulty conditions. Then, the 

self-organization strategy will be introduced in the form of a 

Markov Decision Process (MDP) with dynamic 

programming for optimal performance. Finally, the success 

criteria for the control method will be constructed with 

Lyapunov stability conditions so that the self-organization 

strategy can be modified throughout the system operation for 

system resilience regarding stability and resource limitations. 

Simulation results will be presented at the end to demonstrate 

the efficacy of the approach. 
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Figure 1. Overall self-organization methodology. 

2. TECHNICAL APPROACH

2.1. The Methodology: An Overview 

Figure 1 depicts a schematic of the framework for self-

organization of a complex system subjected to severe 

disturbances, namely failure modes. Initially, a system-level 

mission profile is suggested, where the system is commanded 

to travel a prescribed path in 2D or 3D spaces. For traditional 

disturbance rejection, the system will operate under a control 

law, which employs local controllers for feedback 

compensation. In the presence of a failure mode, the mission 

is unachievable, and the proposed self-organizational method 

takes over as the higher-level control architecture. 

The self-organization strategy begins with two types of 

modeling techniques aimed to describe the system behaviors 

in data format; a graph theoretic model to examine the current 

state of the system, and a dynamic/kinematic model to predict 

the optimal next step. Along with the data obtained from the 

models, monitoring processes such as situation awareness 

and fault diagnosis/prognosis will examine the current health 

state of the system, and the optimal action will be determined 

based on a fully implemented MDP. The MDP output will be 

the optimal action for the system to proceed to the next step 

of the mission profile while maintaining an acceptable level 

of stability and observing physical/functional constraints. 

The system model and control law will be updated based on 

the evaluation of the outcome of the process through 

appropriate success criteria. 

2.2. Self-Organization Strategy 

2.2.1. Spectral Graph Theory 

A graph G is a set 𝐺(𝑉,𝐸) that consists of vertices and edges 

(connections between vertices). In systems engineering, the 

structure of a complex system can be represented as a graph 

with the list of system nodes and their respective 

interconnectivity. 

Wilson (1996) lists several useful matrix representations in 

graph theory. The adjacency matrix A is a 𝑛×𝑛 matrix where 

the element 𝑎𝑖𝑗 indicates connectivity from node i to node j 

with 1, and 0, otherwise. The degree matrix D is a 𝑛×𝑛 

diagonal matrix, where the diagonal elements 𝑑𝑖  are the 

degree (number of edges) of node i. 

The Laplacian matrix L is defined as in Equation (1) and is 

also called the system matrix. 

𝐿 = 𝐷 − 𝐴    (1) 

The second smallest eigenvalue (denoted by 𝜆2 ) of the 

Laplacian matrix is called the algebraic connectivity of the 

graph and represents how well the graph is connected. The 

algebraic connectivity is also an important indication of a 

network’s resilience, and the quantification of the importance 

of a node or a link with the effect of node removal on the 

algebraic connectivity is studied in the work of Liu et al. 

(2009). 

Another useful matrix in spectral graph theory is the 

transition matrix T, in which the element 𝑝𝑖𝑗 is the probability 

of transitioning from node i to node j. The aforementioned 

adjacency and degree matrices can be combined as in 

Equation (2) to determine the transition matrix within a 

system graph (Butler, 2008): 

𝑇 = 𝐷−1𝐴 (2) 

The transition matrix is a versatile tool to represent 

probabilistic processes. In addition to storing the probabilities 

within nodes of a system, the transition matrix can also 

represent state-transition probabilities. 
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2.2.2. Markov Decision Process 

Proper definition of system states and the state transition 

probabilities is the first step for constructing a Markov 

Decision Process (MDP), formulated by Bellman (1957), and 

applying the Markovian property to move from the current 

state to the next optimal state based on a predefined policy. 

MDP is a dynamic programming method, where the control 

problem for a complex system is divided into simpler sub 

problems in a memory based structure so that the solution for 

the next occurring sub problem can be looked up immediately 

instead of re-composing the solution, thereby reducing 

significantly the computational burden compared to 

traditional control methods. 

MDP is a set of decision-making rules consisting of 

{S,A,T,R}, where S is the finite set of achievable states, A is 

the finite set of actions that connect a state to other states, T 

is the transition matrix that stores the likelihoods of the state 

transitions, and R is the reward matrix that indicates the 

immediate effect of an action applied to a state. In other 

words, the transition matrix can be used to describe the 

system’s behavior, and the reward matrix can be used to 

guide the control action towards mission completion. 

Yukalov and Sornette (2014) suggest that any complex 

system, under given conditions, is more inclined to occupy 

the most stable state. From the work of Gabbai (2005), self-

organization is an evolving process towards a state of 

equilibrium, commonly called an attractor. An attractor could 

provide a lower dimensional representation of complex 

system dynamics, and an example attractor could be a desired 

path for the system to follow. Therefore, the transition and 

reward matrices should be constructed with higher 

probability and reward assigned for approaching the desired 

path. 

2.2.3. Dynamic Programming 

The main goal of MDP is to construct a “policy” 𝜋(𝑠) that 

provides the optimal available action for each state. The 

algorithm to obtain the policy is represented by Equation (3), 

known as the Bellman equation. Value functions, V(s), are 

defined for each state to accumulate the immediate reward 

from an action at each time step, until the overall reward 

converges to steady values. 

𝑉(𝑠) = max(𝑅(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′ )       (3) 

The discount factor 𝛾 ∈ [0,1]  is used to suppress future 

rewards and ensure convergence of the overall reward. Based 

on the solution of the Bellman equation, the policy will return 

the optimal action for a state with the maximum overall 

reward. 

The policy obtained as the output of the MDP is constantly 

updated through success criteria for desirable system 

performance, while the system is supporting a self-

organization control method that spontaneously and 

internally compensates for severe disturbances. 

2.3. Self-Organization Method for a Hexapod 

To illustrate the proposed self-organization method, a 

hexapod robot is selected as the test system. The mission 

profile is set for the hexapod to travel from a current point A 

to a goal point B in a straight-line path. Cully et al. (2015) 

suggest an improved trial and error method to determine the 

optimal action for a walking hexapod with a broken leg, but 

the large original search space and minutes of lengthy 

adaptation time to the next step hamper their development. 

Instead, a self-organization method that spontaneously 

generates the optimal action can provide an alternative to 

decrease significantly the computational burden. 

2.3.1. Hexapod Dynamic/Kinematic Model 

The hexapod used in this case study is composed of a body 

and six legs. Each leg is a three DOF (degrees of freedom) 

subsystem with three servo joints. From the work of Sorin et 

al. (2011), the names and functions of each joint and link are 

shown in Figure 2. 

Figure 2. Hexapod leg structure 

It can be seen that the Coxa joint rotates horizontally, and the 

other joints rotate vertically. The hexapod leg’s kinematic 

movement is governed by the joint motor rotations, and the 

position of the end point of a leg contacting the ground with 

respect to the hexapod body can be obtained by applying 

consecutive coordinate transformation matrices, assuming 

the origin as the center of the body, as shown in Equations 

(4,5,6,7) (Barai et al. 2013). In the equations, 𝑇𝑗
𝑖  is the 

transformation matrix from joint i to joint j, 𝑠𝑖  and 𝑐𝑖  are the 

sine and cosine functions of ith joint angle, 𝐿𝑖  is the link

length, and 𝑃𝑓 is the end position of the leg. 
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All hexapod joints have a range of reachable angles ( ∈
[𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥]), and the combination of the horizontal rotation 

of the Coxa joint and the vertical rotations of the Femur and 

Tibia joints create a set of reachable workspaces for the legs. 

The hexapod locomotion to move to the goal position will be 

assumed a conventional tripod gait. At each time step, three 

legs are swinging in space, and the other three are supporting 

the robot on the ground. The duty factor of the gait between 

the left and right side of the hexapod is 0.5, implying an equal 

duration in alternating sides, where the swinging legs at each 

step are the middle leg on one side and the front and rear legs 

on the other side. The walking direction of the hexapod can 

be determined by combining the direction vectors of the three 

swinging legs at each step. Assuming normal condition with 

no disturbance, the legs will swing forward in the direction 

of the desired path, and the three direction vectors from the 

swinging legs can be combined, as shown in Figure 3, where 

the arcs indicate the reachable workspaces of the swinging 

legs. 

Figure 3. Upper view of the walking direction of the 

hexapod from the swinging motion 

2.3.2. Failure Mode (Locked Joint Failure) 

The three joints on each leg can be combined for the hexapod 

to have 18 DOF. Such high degree of manipulation allows 

versatile motion for the hexapod, but the complexity also 

induces vulnerability to severe failure modes. An example of 

a possible failure mode in a hexapod is the locked joint 

failure, where a joint angle is fixed at a certain state and 

cannot be controlled. In the work of Yang (2003), locked 

joint failures of different joints are shown to result in different 

effects on the leg workspace. Since the Coxa joint is in charge 

of the horizontal swinging movement of the leg, locked joint 

failure at the Coxa joint completely disables the leg’s 

swinging motion and the leg can only lift and plant itself 

vertically. On the other hand, locked joint failure at the 

vertically operating Femur and Tibia joints will have no 

effect on the swinging motion, but will diminish the leg’s 

stretchable length, so the upper view of the leg’s workspace 

will have the same arc shape but with reduced size. The 

impact of locked joint failures on the leg’s workspace will 

cause the hexapod to derail from its original path in an 

unexpected manner. 

2.3.3. Hexapod Graph Model 

Figure 4 shows a graph representation of a hexapod with each 

node numbered appropriately. 

Figure 4. Graph representation of a hexapod with node 

numbers 

The impact of a locked joint failure in a hexapod can be 

represented simply by a node removal. More specifically, a 

failed node loses controllability and converts into an edge, so 

the adjacency and degree of the corresponding node become 

zero. The aforementioned algebraic connectivity can be used 

to indicate the presence or severity of locked joint failure(s). 

Demonstration of the effect of locked joint failure on 

algebraic connectivity is shown in Table 1, where the 

algebraic connectivity of the hexapod system graph is 

evaluated in normal condition first followed by the failure 

mode at node 8, and finally another failure mode at node 15. 
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Table 1. Effect of failure mode on algebraic connectivity. 

# of failure mode Algebraic connectivity 

0 0.3384 

1 0.04874 

2 -3.0199e-16 ≈ 0

It is shown that the incremental addition of failure modes 

decreases the algebraic connectivity, and when there are two 

failure modes present, the algebraic connectivity becomes 

zero, meaning the graph is disconnected. 

2.3.4. Hexapod MDP 

The MDP formulation is applied, as the self-organization 

strategy, to the hexapod under a locked joint failure. As 

suggested by Cuaya-Simbro and Munoz-Melendez (2008), 

the state space S can be defined as the valid positions of the 

legs, and the action space A as the transitions that enable the 

robot to move from one valid state to another. The finite 

deterministic case of the MDP algorithm is used for this 

problem, and the state space is represented by three available 

leg positions at each step (front, aligned, and rear with respect 

to the leg’s connection to the body, as shown in Figure 5). 

Figure 5. Example valid state space of a hexapod leg 

Since three legs (two from one side and one from the other) 

either swing or support the system identically in a tripod gait, 

there are 9 total available states. Assuming the states can 

move to any other valid state, the action space A will have 

the same dimension as the state space. 

The MDP solution in this problem will be a policy that maps 

the optimal action for each state for the hexapod to move 

along the desired path. Chades et al. (2014) provide a Markov 

Decision Process Toolbox for MATLAB to compute the 

MDP solution. By initializing the S×S×A transition and 

reward matrices, where S is the number of states, and A is the 

number of actions, the finite horizon solution of the MDP is 

concluded in N number of steps. In addition to the policy, the 

toolbox also outputs the used CPU time to solve the problem, 

which can be used to compare the computational burden to 

that of traditional robust control methods. 

2.3.5. Success Criteria (Lyapunov Stability) 

The hexapod’s moving path following the MPD policy 

solution is evaluated via Lyapunov stability conditions to 

verify the stability and effectiveness of the self-organization 

method. Path-based Lyapunov stability analysis of a hexapod 

is detailed in the work of Jeong et al. (2013), where the 

positional error vector, e, is defined as in Equation (8) so that 

the Lyapunov function V and the Lyapunov equation are 

stated in Equation (9). 

𝑒 = (
𝑥𝑒

𝑦𝑒
) = (

𝑥𝑑 − 𝑥𝑐

𝑦𝑑 − 𝑦𝑐
) (8) 

{
𝑉 = 𝑒𝑇𝐾𝑒

𝐴𝑇𝐾𝐴 − 𝐾 + 𝑄 = 0
(9) 

xd denotes the desired position, xc denotes the current 

position, A is the state transition matrix where 𝑥𝑡+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = 𝐴𝑥𝑡⃑⃑  ⃑, 
and the matrices K and Q are symmetric positive definite 

matrices.  

3. RESULTS

Using the MDP Toolbox, the 9×9×9 transition and reward 

matrices can be defined following the hexapod structure and 

tripod gait behavior. Assuming 10 steps between current and 

goal points, the finite horizon MDP problem can be solved to 

give the value functions for each state, policy of optimal 

action for the states at each time step, and the used CPU time 

to compute the policy. The value functions of the first five 

states (S1 ~ S5) are shown in Figure 6, where the value 

(immediate reward) converges to zero over the time steps for 

each state so the overall reward converges to a certain value. 

Figure 6. Value function computed over 10 time steps 
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The policy is generated as a 9×10 matrix where each row 

corresponds to a state and the columns store the optimal 

action for the state at each time step. A graph representation 

of the policy (first five states, for simplicity) is shown in 

Figure 7. 

Figure 7. Policy generated from MDP Toolbox 

The notable part of the MDP Toolbox demonstration is the 

CPU time, which results in 0.0156s for mission completion. 

System parameters need to be adjusted in case of a failure 

mode, as the change in dynamics can cause unexpected 

system behaviors. Since commonly used robust control 

methods with PID controllers are designed for systems with 

predefined dynamics and properties, spontaneous and 

reliable adjustment to new system dynamics with PID 

controllers is impractical in real life. 

Considering the hexapod for example, the lengthy settling 

time required for the PID controllers to reach steady state will 

cause the hexapod to take several seconds to adjust to a 

different configuration while tuning the gains for all 18 joint 

motors. Even assuming perfectly synchronous joint rotations, 

using PID control for a real-time hexapod gait is impractical. 

Moreover, compared to the minutes of computation needed 

for the trial and error method mentioned in Section 2.3, the 

proposed self-organization method offers a holistic guide of 
system behavior for disturbance accommodation with 

dramatically less computational burden. 

Assuming the hexapod starts at the origin, a diagonal path in 

the XY plane can be assumed to be the desired path for the 

hexapod to travel. A locked joint failure is added to the left-

middle leg of the hexapod to test the self-organization 

behavior. For both conditions (with or without failure mode), 

the hexapod behavior is governed by the MDP policy. The 

resulting paths are shown in Figure 8 where the hexapod 

travels along the desired diagonal path. With a failure mode 

present, the hexapod abruptly moves to the left due to the 

failure mode and then gradually converges back to the desired 

path. 

Figure 8. Hexapod walking path in nominal condition and 

with locked joint failure 

To verify that the hexapod with locked joint failure returns to 

a stable mode, the distance from the desired path (= 

difference between x and y coordinates) can be used as the 

error value and apply the Lyapunov stability conditions. The 

stability condition is constructed as in Equation (10), 

assuming K = 1 or the identity matrix (for dimensions larger 

than 2). 

{
𝑒𝑡 = |𝑦𝑡 − 𝑥𝑡|

Q =  1 − 𝐴2  =  1 − (
𝑒𝑡+1

𝑒𝑡
)
2
> 0

(10) 

In other words, the positional error of the vehicle must 

decrease in magnitude at each time step for the process to be 

stable. The resulting Q value evaluation is shown in Figure 9. 

Figure 9. Q value of the hexapod with locked joint failure 

314



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

It can be seen from Figure 9 that the process becomes 

unstable when the failure mode is initiated, then returns to a 

stable state between the second and third time steps. Upon 

detection of noticeable digression from the desired path, the 

predetermined MDP policy guides the hexapod to return to 

traveling in the direction of the desired path, which shows in 

the stability evaluation as the Q value drops to negative upon 

occurrence of a failure mode then turns positive as self-

organization process is activated. 

4. CONCLUSION

The self-organization method proposed in this paper 

combines the Markov Decision Process with Lyapunov 

stability conditions for a complex system to maintain stability 

under a severe failure mode. The proposed method 

demonstrated its usefulness with highly reduced 

computational burden in the test case applied to a hexapod 

under locked joint failure compared to traditional disturbance 

rejection methods, while the system maintains stability 

conditions. Future work will be toward improving the self-

organization method through deeper analysis in resilience, 

focusing on the vulnerability and recoverability of systems 

under failure modes. 
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