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ABSTRACT 

Having a robust health management and diagnostic strategy 

is an important part of a system’s operational life cycle as it 

can be used to detect anomalies, analyze faults/failures and 

predict the remaining useful life of components. By utilizing 

condition data and on-site feedback, data models can be 

trained using machine learning and statistical concepts. Once 

trained, the logic for data processing can be embedded on on-

board controllers whilst enabling real-time health assessment 

and analysis. More recently, deep learning has gained 

increasing attention due to its potential advantages with data 

classification and feature extraction problems. It is an 

evolving research area and hence its use for aerospace 

maintenance applications must be researched if it can be used 

to increase overall system resilience or potential cost benefits 

for maintenance, repair, and overhaul activities. This paper 

focuses on investigating the application of deep learning for 

system health management, therefore incorporating reliable 

redundancy at the adequate point in the system. Deep 

learning is discussed, some recent developments are 

reviewed to clarify potential applications, after which some 

research issues relating to their realization are highlighted. 

1. INTRODUCTION

Health management can be described as the process of 

diagnosing and preventing system failures, whilst predicting 

the reliability and remaining useful lifetime (RUL) of its 

components (Sin and Jun 2015). The past few decades have 

experienced a proliferation of system health management 

research to help with all kinds of faults occurring at 

component level and up to the systems level (Huynh et al 

2015). However, even though these concepts have been 

studied extensively (see Zhang and Jiang 2008, Patton 2013), 

most methods often require triggering mechanisms that are 

intelligent enough to collect enough data about the failing 

component, the nature of the fault, and its severity on the 

overall system performance. Whilst these technologies are 

typically focused on fault detection and isolation within 

individual subsystems, the growing maintenance costs facing 

today’s engineering industry has prompted further research 

for novel architectures to reduce maintenance, repair and 

overhaul of complex high value assets. As a consequence, 

efforts are being concentrated on the integration of anomaly, 

diagnostic and prognostic technologies across systems and 

related platforms. Such capability to predict and isolate 

impending faults and failures can help maintain system 

performance in a cost-effective manner, whilst identifying 

ongoing issues to mitigate potential risks; and hence data 

exchange within diagnostic technologies has become a high 

priority research topic.  

As the aerospace industry continuously strives to improve its 

performance, by delivering more reliable assets, with a higher 

availability; operational pressures reduce the time available 

for diagnostic investigations. Here, there is value of having 

many data collection sources that can be used to provide rich 

information (e.g. operating variables, environmental 

conditions, etc.) if a disruption occurs during operation 

(Russell and Benner 2010). However, most often data sources 

are disparate. With the ever-increasing size of data produced 

by modern systems, coupled with the complexities of 

contextual components (for correlating information); it can 

create barriers that were not anticipated by design engineers 

during the design phase of the system life cycle. This can also 

result in speculative replacements and higher levels of 

uncertainty during the diagnosis process (Khan et al, 2014). 

Due to the higher levels of interdependencies between assets, 

it becomes difficult (if not impossible) to assess as to why the 

failures appeared. Yet, the underlying engineering 

environment is expected to support the technological 

platforms as well as system availability requirements. In this 

context, novel approaches are required which can recognize 

and configure anomalies during operations; as well as 

mechanisms for making better decisions at the system-level. 

In the nominal environment, such problems require advanced 

capabilities to monitor in-service operations, record and share 

expert knowledge, and address critical aspects of on-board 

software. Generally, a system that can resolve issues 

autonomously can result in significant reduction of 

operational costs and increase in operational uptime, as the 
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asset will not be taken out for corrective maintenance (Eti et 

al 2006). These would rather become evidence-based 

scheduled maintenance tasks which will reduce inspection 

costs, the required number of skilled labors, system down 

time, life-cycle cost of the system and emergency 

unscheduled maintenance. But effective identification of 

system faults (including the ones that have already occurred 

and that which are approaching) can still present a challenge. 

This can be due to various factors such as having a single 

diagnostic procedure for identification and isolation of any 

type of fault, insensitivity to operating conditions and unable 

to achieve reliable fault detection in time-varying conditions 

(Patton et al 2013). Of course, these factors are not inclusive, 

but they do indicate the two benefits that can be achieved by 

addressing them. Firstly, there will be improvement in the 

safety aspects. If failures can be diagnosed and assessed 

quickly, the remaining life of safety critical components can 

be regulated before they can cause any serious damage during 

operational service. Secondly, ongoing maintenance costs 

could be reduced with an increase in system availability. 

These two driving forces inevitably influence operational 

performance and the amount of maintenance required; a 

consequence of the design and the problems encountered 

during service. A direct result of such factors has contributed 

to the development of new technologies and techniques – 

which tends to add additional layers of complexities. 

Practitioners can gain general knowledge on these topics 

from several resources e.g. training, books, etc., but because 

of the availability of so many different fault analysis 

algorithms and health monitoring solutions, it can become 

difficult to rationalize this information. This leaves a gap as 

the number of solutions available, that require making 

choices that engineers might not be equipped to make. This 

paper attempts to discuss this issue. 

Within the supervision of equipment, diagnostic systems 

based on conventional computing techniques are being 

replaced by Artificial Intelligence (AI) based ones which can 

increase efficiency of the monitoring technology.  AI-based 

approaches can be categorized into (1) knowledge-driven 

(knowledge-based) approaches including expert system and 

qualitative-reasoning, and (2) data-driven approaches 

including statistical process control (SPC), machine learning 

approach and neural networks – including deep learning 

(Hinton et al 2012). Some approaches, such as probabilistic 

reasoning (e.g., Bayesian networks), may belong to both 

categories, because reasoning and learning cannot be 

distinguished. Yet, many of them are dependent on obtaining 

accurate (and sometimes complete) data on system models. 

Figure 1 illustrates some of the common AI approaches.  

In general, the statistical characteristics of a system does not 

change until there is a fault; hence AI can effectively be used 

1  Here, the use of the term AI incorporates various 

techniques such as expert systems, neural networks, 

support vector machine, fuzzy logic, and fuzzy-neural 

to carry out fault analysis and to make system level decisions 

based on information collected from a combination of 

sources1. Some of the more notable advancements have been 

captured in Table 1. 

Figure 1: Categorization of AI based methods 

Table 1: The use of various learning methods utilized in 

health management applications.  

Technique References 

Parametric 

statistical modelling 

Guttormsson et al. (1999), Keogh 

et al. (2006) 

Nonparametric 

statistical modelling 

Beyca et al. (2016), Desforges et 

al. (1998) 

Neural networks Purarjomandlangrudi et al. 

(2014), Bishop (1994), Campbell 

and Bennett (2001), Diaz and 

Hollmen (2002), Harries (1993), 

Jakubek and Strasser (2002), Li et 

al. (2002) 

Spectral Shui et al (2015), Fujimaki et al 

(2005) 

Rule-based systems Wang et al. (2015), Yairi et al 

(2001,2005,2006) 

Deep learning Jia et al (2016), dean et al (2016), 

Lv et al (2016) 

The ever-increasing interest in using AI is a consequence of 

improved hardware performance and its reducing costs 

(Meziane 2009). Hence, applications on expert systems, 

fuzzy systems and Neural Networks (NN) have progressively 

developed over the past three decades. During this period, the 

discipline of software engineering had been promoted to 

accommodate the development of interacting systems. From 

a health management point-of-view, this means that systems 

networks, that can be used autonomously or into each 

other to improve their efficiency and effectiveness. 
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have become more intricate and complicated, and any 

diagnostic analysis or prediction may require an even more 

rigorous procedure to elicit reliable and dependable system 

models. Yet, these methods still hold many benefits as 

compared to the conventional diagnostic approaches. One 

seemingly important development within AI community in 

the past few years, that has gained a lot of attention in the 

community, is deep learning. To the best of the authors’ 

knowledge, deep learning methods have limited published 

material within the maintenance engineering community, let 

alone on health management, and hence is the motivation for 

this publication. Deep learning can be used for processing 

and analyzing large amounts of data. Depending on the 

application, various parameters such as vibration profiles, 

acoustic estimations, temperature, stress, oil analysis, etc. can 

be used to develop a history of the system on which 

qualitative and quantitative methods can possibly be applied 

for health management. Therefore, the authors hope to review 

and summarize some of the research potential for 

maintenance, reliability, and operations (MRO) applications, 

that maintenance practitioners might find useful. 

2. TYPICAL LEARNING VS DEEP LEARNING

Neural networks have extensively been researched and 

applied to real world systems (as seen in Table 1). It is a 

network of interconnected nodes which are typically 

organized in layers – as input output and hidden layers where 

the processing is done via a system of weighted connections. 

Most neural networks contain some form of a learning rule 

that can change these weights according to the input that it is 

presented with2. In theory, a neural network replicates the 

human brain structure and consist of simple arithmetic 

functions that form an interconnected (and complex) 

architecture. They can represent highly nonlinear functions to 

carry out multi-input multi-output mapping by exposing the 

network to a predefined set of examples, observing the 

network, and adapting the values to reduce any differences. 

For this purpose, many methods can be applied to essentially 

train these values (or network behavior) that including a 

range of gradient based and optimization techniques. Neural 

networks can be organized in layers of non-linear 

transformations. When the number of layers becomes 

comparatively large, such an architecture can be called as 

deep neural network. In theory, a neural network with more 

than two layers i.e. input and output, can be classified as a 

deep architecture, however it is not just about the number of 

layers, but rather the idea of automated construction of more 

complex features on every step. This means that stacking 

other algorithms (such as a random forest) several times, use 

probabilities instead of class labels, and this can be 

considered as deep learning too. Back-propagation (which 

has existed for decades) theoretically allows to train a 

2 The backward propagation of errors or 

backpropagation, is a common method of training thee 

network with many layers. But before the advent of deep 

learning, researchers did not have widespread success 

training neural networks with more than 2 layers. This was 

largely because of the problem of vanishing and/or exploding 

gradients (Bengio et al, 1994). Prior to deep learning, the 

network was typically initialized using random numbers, and 

used the gradient of the network's weights with respect to the 

network's error. This helped to adjust the weights to better 

values in each training iteration. But with back propagation, 

evaluating the gradient involves using the chain rule and the 

need to multiply each layer's weight and gradients together 

across all the layers. This resulted in a lot of multiplications, 

especially for networks with more than 2 layers. If most of 

the weights across (many) layers are less than 1 and they are 

multiplied many times, then eventually the gradient just 

vanishes into a machine-zero and training stops. On the other 

hand, if most of the weights across many layers are greater 

than 1 and they are multiplied many times, then eventually 

the gradient explodes into a huge number and the training 

process becomes intractable. 

Figure 2: Adjusting the weights for each layer 

Deep learning proposed a new initialization strategy: use a 

series of single layer networks - which do not suffer from 

vanishing/exploding gradients; to find the initial parameters. 

Figure 2 attempts to illustrate this process. 

1. A single layer is used to find initial parameters for the

first hidden layer. The approach uses the input

data/vector to predict itself. By doing this, the layer

learns something intrinsic about the data without the help

of an output or label vector – that is often created by the

human operator. The learned information is stored as the

weights of the network for that layer.

2. The next layer uses the output from the first hidden layer

to find initial weights for the second layer.

3. The process is repeated for the rest of the layers.

weights in a network and is often used in conjunction 

with an optimization method such as gradient descent. 
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4. Finally, a softmax classifier3 (logistic regression) is used

to find initial parameters for the output layer.

Now that all the layers have been initialized through this pre-

training process to values that are more suitable for the data, 

the network can now be trained using gradient descent 

techniques without the problem of vanishing/exploding 

gradients. Of course, the field has moved forward since this 

initial breakthrough, and many practitioners now argue that 

pre-training is not always necessary4. But even without pre-

training, reliably training a deep network requires some 

additional sophistication, either in the initialization or 

training process beyond the older training approaches of 

random initialization followed by standard gradient descent. 

How many layers? Deep learning works because of the 

architecture of the network, but more importantly, the 

optimization routine applied to that architecture. As can be 

noted in Figure 2, each hidden layer is connected to many 

other hidden layers within the overall network. When an 

optimization routine is applied to the network, each hidden 

layer can become an optimally weighted, non-linear 

combination of the layers below it. As the size of each 

sequential hidden layer keeps decreasing, each hidden layer 

becomes a lower dimensional projection of the previous one. 

So, the information from each layer is being summarized in 

each subsequent layer of the deep network by a non-linear, 

optimally weighted, and lower dimensional projection. None-

the-less, the training process can be a challenging and lengthy 

task when the network has many layers and multiple 

connections between layers and neurons; but nowadays many 

researchers are implementing this training phase in Graphical 

Processing Units (GPUs) to leverage the power of parallel 

processing and reduce training time. However, once trained, 

classifying information becomes straightforward and fast to 

complete. Several existing algorithms have been extended for 

deep learning. These include supervised ones like logistic 

regression, multilayer perceptron, and deep convolutional 

networks. To be reliable, these methods would require 

information – labelled data – of all probable anomalies and 

the nominal states. Collecting such data for a dynamic 

system, such as an aircraft engine, may be difficult to realize, 

as intermittent faults are rare and heavily depend on the 

environmental conditions (Khan et al, 2014). In contrast, 

unsupervised learning algorithms aim to learn from unlabeled 

data and generate a model. A summary of all these algorithms 

has been summarized in Figure 3. 

3 Softmax is a generalization of logistic regression that 

can be used for multi-class. In contrast, the standard 

logistic regression can be used for binary classification 

tasks. 
4  Pre-training helps to achieve two goals: further 

optimize layers and reduce overfitting. But if the 

Figure 3: Techniques to be considered for deep learning 

It should be noted that different learning algorithms for deep 

architectures will have different characteristics. E.g. Stacked 

Auto-Encoders (SAE) and Deep Belief Networks (DBNs) are 

unsupervised learning algorithms and hence they learn a 

model of the input distribution from which one can generate 

samples. They can also can be seen as unsupervised feature 

learning algorithms and hence be used to pre-train (from 

labelled or unlabeled data) features. These features can then 

be used as initialization for a supervised neural network. 

There are many of other unsupervised representation learning 

algorithms and yet there has been only few quantitative 

comparisons between them. It seems that DBNs and SAEs 

behave very similarly in terms of quality of the features 

learned (Litjens et al 2017).  

3. APPLICATION FOR SYSTEM HEALTH MANAGEMENT

Enabling health management requires three constituents: 

fault detection, fault classification and fault prediction. Also, 

different types of faults (such as intermittent, incipient, 

degradation, etc.) will need to be classified in to various 

categories. This can be achieved by considering this as a 

binary classification problem, where either there is a fault or 

no. Once a fault has been detected, it can be further analyzed 

for other features. In the past, McDuff et al (1989) had used 

neural networks on F16 flight line data for diagnostics 

initialization of weights is done correctly, pre-training 

is not always needed. This is because pretraining will 

require many training samples and a lengthy training 

window (the first few layer will change slowly). This 

reduces the usefulness of the approach. 
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purposes. The authors acknowledged its capabilities to carry 

out multiple fault diagnosis, predictions and reconfigurations, 

and the ability to work with inaccurate or incomplete rules. 

Adaptive resonant theory was used to train the data due to its 

ability to learn faster than other methods. Since different fault 

scenarios can be used to verify the efficacy of an approach, 

researchers found interest in integrating different diagnostic 

methods and developing a hybrid approach for this purpose. 

Volponi et al (2003) had used Kalman filters and neural 

networks methodologies to find the malfunction and 

deviations from the normal engine behavior. Another 

possible combination is the integration of neural networks is 

with the genetic algorithm (GA) method. In Kobayashi and 

Simon (2005), a neural network part of the scheme is used for 

engine components fault diagnostic and the GA is applied for 

sensor bias detection and estimation. By integration the two 

methods one can take benefit from each method’s advantage. 

Neural networks enable nonlinear estimation and GA 

methods bring more robustness. The results helped in terms 

of improved fault detection and reduced false alarms. 

More recently, deep learning methods were introduced to 

looked at a fault diagnosis and learn the deep architectures of 

fault data (Lv et al 2016). The research makes use of stacked 

autoencoders to improve the network’s learning capability 

and demonstrates the potential of deep learning. The authors 

appreciated that, unlike image data, fault characteristics can 

vary over time making it difficult to classify and to develop a 

deep learning architecture. Clearly, after the diffusion of NN 

within AI applications, practitioners started adopting using 

them to carry out diagnosis to make system health 

management decisions where the classical “if–then and do” 

commands can be utilized to carry out most complex actions5. 

The major advantage is of retrieving and processing signals; 

and the knowledge-base which contains all the possible 

architectures corresponding to the considered fault modes. 

This knowledge-base can be used as an account for various 

attributes required for learning, and hence can compute and 

store tables or curves of diagnostic indexes for different 

faults, whilst working in different operating conditions. This 

can also archive heuristic rules and expert knowledge 6 

coming from on field experience in order to overcome some 

of the limits of incomplete system models. These functions 

have been applied extensively for condition monitoring and 

fault diagnosis (Nelles, 2013). For health management 

activities, in particular, neural networks are often employed 

as statistical modelling and prediction algorithms. This can 

be treated as either a density estimation and prediction 

5 such as programs execution, file management, etc. 
6 The symptom to fault map can be stored to identify the 

healthy state of a system 
7 Keras and Lasagne provide high-level functionality to 

enable deep learning algorithms e.g. pooling, 

problem or as a classification and regression problems 

(Sutharssan et al, 2015).  

Furthermore, Lee et al (2016) have investigated the use of 

convolutional neural networks for analyzing acoustic signals 

in the midst of noise. The authors were motivated by the fact 

that most existing signal analysis methods are largely 

dependent on the physical behavior/characteristics of the 

system being analyzed, which warrants regular re-tuning of 

algorithms for new acoustic profiles. Although, training for a 

deep learning system can be slow; but in testing (running) 

time these systems are usually quite fast when run on GPUs. 

Traditional methods can be much slower than deep learning 

methods during test time. It should also be noted only very 

recently organizations have been focusing on optimizing 

neural based computations, and in the near future are 

expected to see silicon chips that are designed especially for 

these systems. Another strategy to reducing training time is 

to precondition the input data to extract features that are not 

required.  

But regardless of which technique is used, its real-time 

implementation and related theoretical formulations must be 

transformed into an algorithm. There are predominately three 

issues in this respect and they occur in various forms: these 

are data sampling considerations, the size of data and the 

implementation architecture. In practice, these issues are not 

solely associated with AI implementation, but for real-time 

system in general. None-the-less they are linked and 

therefore, it is important to understand the nature of the 

problem. Firstly, many health management design engineers 

lack the knowledge on develop deep learning architectures. 

This issue seems to be more prevalent in academia as 

compared to industry. Libraries and packages found in 

popular mathematical software’s, such Matlab and R for 

model development and analysis, seem to be outdated for 

deep learning purposes as the ease of implementing some 

functionalities (such as Rectified Linear Unit (ReLU) 

activation, optimizers such as rmsprop, adagrad, and batch 

normalization), makes it difficult to learn and realise effective 

deep nets. Matlab has excellent support for traditional time 

series modelling e.g., in its signal processing packages, but 

for working with deep recurrent neural networks such as 

Long Short-Term Memory (LSTM) or Gated Recurrent unit 

(GRU), tensorflow is the much better option (Abadi et al, 

2016). In addition, other packages like keras or lasagne7 can 

be used to build upon tensorflow to allow for even simpler, 

optimizing and designing of network structures, e.g., ones 

involving novel networks that have embedding, feed forward, 

recurrent all together.  

backpropagation and optimization routines. Theano 

provides the back-end capabilities for computation 

(Barranco et al, 2016). 
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Another major issue is associated with the cost of such 

systems. The development of a complete health management 

system that is integrated in to the entire system architecture 

can be expensive, especially as more data will be required to 

train a network for varying fault characteristics. Using 

artificial fault data to train is not ideal and can result in 

incorrect performance attributes of real world applications. 

For example, in an aircraft engine it is vital to detect the 

system deviations from its nominal behavior as early as 

possible (Khan et al, 2014). Anomalous operation of the 

engine can affect undesirably both the engine function and 

the aircraft mission management. Perhaps, if the 

mathematical model of the system in addition to different 

fault models and their progression are available, model-based 

approaches are more accurate and effective. However, that is 

a research field in its own right as it can be difficult to find 

the explicit mathematical models due to system complexity 

and uncertainties. As a result, the accuracy of the results will 

decrease. Most of the recent success of deep learning have 

been in applications of supervised learning in computer 

vision and natural language processing with deep 

(convolutional, recurrent) neural networks. But deep learning 

techniques have been proposed for anomaly/novelty 

detection in time series data. These also include both 

recurrent neural networks and standard networks (Şeker et al, 

2003). These models have been used for anomaly detection 

in engines, power demand, network (failures/intrusions), and 

novelty detection in music, etc. Deep learning has also been 

applied to time series modelling (Busseti et al, 2012). 

However, it should be mentioned that the benefit of using 

deep nets is still subjective to its application and discipline, 

e.g., it may return limited benefits when used for time series

prediction as compared to its application in pattern

recognition. Perhaps a greater CPU energy consumption does

not justify its use.

Of course, the problem of complexity associated with its 

implementation is still an issue. There is a need to place some 

limits on it and perhaps aim to achieve a reasonable system 

performance. Here, the long-term goal is to appreciate the 

limitations that real-time AI would bring and then attempt to 

simplify the problem. Understanding these trade-offs is an 

on-going motivation of this work. Complexity limitations for 

real time systems could be categorized in terms of limitations 

in the structure of the computation, selecting criterions for 

acceptable solutions, the cost of reasoning and task 

predictability: 

1. Structure of the computation: To limit complexity, a

limit needs to be imposed on how many layers are

required for the deep learning architecture. This will

dictate the number of computations involved.

2. Selecting criterions for acceptable solutions: The

assumption here is to satisfy a requirement rather than to

find an optimal solution. Theses ‘satisfying’ solutions

often take the form of using heuristic problem solving

technique and is only useful if non-optimal solutions 

exist for a problem.  

3. The cost of reasoning: A good way to describe this to

consider the cost of control against the cost of safety.

Within safety critical applications, this assumption will

be difficult to justify unless the cost of control is

predictable, e.g., do the computations result in feedback

delays which can affect system stability?

4. Task predictability: Like all learning algorithms, deep

architectures needs to make accurate predictions to help

avoid excessive runtime costs.

4. DISCUSSIONS

The following fault tolerance problem is currently being 

investigated for using deep learning in health management. 

In this case, the solution needs to warrant a controlled system 

performance under varying conditions – indicating a 

deterministic system response. Any loss of information can 

be critical to the stability of the system; on the other hand, 

any delay in processing information can result in an 

inaccurate control response. Figure 4 depicts a control 

scheme consisting of a system, two controllers and a neural 

network based fault analyzer. A number of sensors (in this 

case x0, x1, x2) are used for feedback. The notion is to observe 

the sensor outputs (in the midst of noise) and reach a 

conclusion with regards to faults. This is done by verifying if 

the system output data is within the specified tolerances and 

would require collecting data and training the net off-line. 

During the analysis, the net needs to distinguish if the fault is 

from failed sensors, the system response, or a result of system 

degradation – the authors expect that this is where the deep 

architecture will be able to provide the granularity required 

to make the distinction. This can be built to allow 

compensating the control response online during operation. 

This can also aid in substituting sensor output estimates in 

case of sensor failures (or partially destroyed/missing 

readings). In case of a sensor failure, data from other sensors 

can still help with a good estimation to replace the failed 

sensor and virtually provide an input until a maintenance 

action is carried out. However, this problem would become 

more complex as there are stability and phase lag 

requirements that should be met during implementation.  

Figure 4: The closed loop setup 

4.1. The gap between industry and academia 

Current research work on deep learning is being led by 

industry, whereas academia has been slow to adopt it. Despite 

the fact there was already a lot of research work on deep 
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networks in the past – it seems that the field of application 

hindered it. The following are some academic challenges and 

subjective views which have been stated by researchers and 

practitioners alike, with regards to today’s disparity in deep 

learning research activities between industry and academia:  

1. Funding calls may influence current academic research

directions and having to spend time write grants, sit on

committees, etc. Currently funding bodies are paying

scant attention to deep learning techniques for

maintenance applications, which currently warrants

some fundamental work – perhaps even below

technology readiness level 4.

2. A universal issue is only having access to publicly

available datasets which is may not be suitable for the

application under study. Deep learning is often cited to

require large data sets, which is not necessarily available

to academia.

3. Not having as large engineering teams to develop large-

scale systems, and other computational resource

limitations (as compared to industry).

4. Machine learning techniques often require a lot of

parameter and framework tuning, and it is not always

clear as to which architecture will work better. This can

be frustrating for engineering academics, who may be

beginners to deep learning concepts.

5. Industry has clear business goals, in contrast to scientific

ones.

But a clear assessment of the technology readiness level for 

deep learning in health management might be difficult assess. 

The influential factors include software/hardware 

demonstration, proven reliability of the implementation 

design and an assessment of potential impact on overall cost 

of research and development. An important indicator in this 

context can be an integration readiness levels proposed for 

evaluating the complexity of integrating these techniques into 

existing applications. 

5. CONCLUSIONS

Deep neural networks are known to overcome the vanishing 

gradient problem; which was severely limiting the depth of 

neural networks. It is as simple as that. Neural networks are 

trained using backpropagation gradient descent. That is, the 

weights are updated for each layer as a function of the 

derivative of the previous layer. The problem is that the 

update signal can get lost as the depth of the neural network 

increases. Therefore, practitioners would often only use 

neural networks with a single hidden-layer. But now, as there 

is the possibility to implement large neural networks, this has 

opened a door of opportunities to techniques such as auto-

encoders for unsupervised problems, convolutional neural 

networks to classify images, recurrent neural networks for 

time series, etc.  

This paper provides a brief description of deep learning 

methods and discusses its potential for health management 

applications. Although the effectiveness of the various 

approaches was not addresses, it presents some of the recent 

advances and problems of the engineering community. It is 

difficult to assess whether it will be at the academic frontier 

in upcoming years – as academic research now-a-days tends 

to have a short shelf-life and get replaced by new ideas and 

trendy topics. But due to recent industrial efforts, the machine 

learning field has moved quickly, and perhaps a few years 

from now may look nothing like what is call “deep learning”. 

That being said, there is an unprecedented interest from a 

number of technology organizations, other academic 

disciplines, and even the general public, on the topic. Despite 

the hype and how academics perceive it, deep learning seems 

quite valuable in the monetary sense. It has enabled an array 

of real-world commercial products and services that were not 

technologically feasible before and hence it could prove 

useful for the aerospace maintenance community. 
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