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ABSTRACT 

In this work, we propose a data-driven health monitoring 

method for wind power generators, which learns an empirical 

model from the time-series sensor data and detects 

irregularities or faults in the turbines and blades. Our main 

objective is to predict any symptoms of faults as early as 

possible before the generators fall into malfunction. The data 

obtained from the wind power generators are strongly 

correlated multidimensional time-series with multiple states. 

In this study, we take such features into account and develop 

the probabilistic model for them, namely, hidden Markov and 

probabilistic principal component analysis. Once the model 

is learned with the data that contain no faulty events, it can 

be used to detect faults in new data by comparing the original 

sensor values and reconstructed ones. In this research, we 

apply this method to synthetic data and real-world wind 

turbine data and show the results of experiments to confirm 

the availability of the proposed method. 

1. INTRODUCTION

In operation of large-scale engineering systems like power 

plants and grids, it is important to detect irregularities or 

faults before the systems get into malfunction. Since such 

systems are composed of many equipment and sensors that 

are intricately correlated, searching for the irregularities by 

inspecting system’s status manually is often prohibitive. To 

overcome the limitation of the manual inspection, data-driven 

methods based on machine learning techniques are attracting 

attention for the health monitoring of engineering systems. 

Although such method is versatile and can be utilized for 

various systems, one must consider characteristics of the data 

in hand carefully and adapt the method to them appropriately. 

In this work, we propose a data-driven health monitoring 

method especially for wind power generators. We focus on 

the following three characteristics of the data obtained from 

wind power generators. Firstly, those data comprise time-

series that are non-stationary due to state transitions such as 

switching from ceasing to working. Secondly, they comprise 

many types of variables (sensor readings) with strong 

correlations among them. Thirdly, most faulty behaviors 

cannot be known precisely beforehand because of the 

changes of the environmental properties. Considering the 

abovementioned three points, we propose a probabilistic 

model to model “normal” data of the generators, and apply it 

to data of turbine blades of a wind power generator. 

The remainder of this paper is organized as follows. After 

reviewing the background in Section 2, we introduce the 

proposed method in Section 3. The experimental settings and 

results are shown in Section 4, and this paper ends with 

conclusions in Section 5. 

2. BACKGROUND

While there have been proposed various types of algorithms 

for fault detection (see, e.g., Chandola et al., 2009), we adopt 

an “unsupervised” approach based on probabilistic 

generative models for modeling the data without any faulty 

events because we have little information on the faulty 

behaviors beforehand. In this approach, we learn the 

parameters of the models in a training phase and search for 

deviants from the learned model in a test (detection) phase. 

According to the characteristics of the data of wind power 

generators, we focus on the following two popular 

probabilistic models: the mixtures of probabilistic principal 

component analysis (MPPCA) (Tipping & Bishop, 1999) and 
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the hidden Markov models (HMMs) (see e.g., Bishop, 2006). 

The former can model the correlations among multiple 

variables (sensors) of the data, as well as their cluster 

structures. The latter takes the temporal correlation of the 

data into account and estimates discrete hidden states, and 

thus it is suitable for the time-series wherein the state 

transitions are present. In this work, we combine these two 

probabilistic models; we model the latent variables that 

indicate assignments of the mixture components of MPPCA 

by a Markovian model. The detail of the proposed 

probabilistic model is described in the next section. 

3. PROPOSED METHOD

3.1. Overview 

In the proposed method, the sensor data that do not contain 

faulty behaviors (training data) are preprocessed and 

modeled with the hidden Markov and probabilistic principal 

component analysis (HM-PPCA), which is a combination of 

MPPCA and HMM. After the “normal” model being 

estimated, we detect faults in another set of data that may 

contain faults (test data) by monitoring the reconstruction 

errors by the estimated model. The proposed method is 

schematically shown in Figure 1. In the subsequent sections, 

we introduce the method for estimating the parameters of 

HM-PPCA with the training data and the way to compute the 

reconstruction errors on the test data. 

Figure 1. Framework of the proposed method. 

3.2. Parameter Estimation of HM-PPCA 

The probabilistic model of HM-PPCA is as follows. 

𝑝(𝑢𝑡 = 𝑘2|𝑢𝑡−1 = 𝑘1) = 𝐴𝑘1,𝑘2
, (1) 

𝑝(𝑧𝑡,𝑘) = 𝒩(0, 𝐼), (2) 

𝑝(𝑥𝑡|𝑢𝑡 = 𝑘, 𝑧𝑡,𝑘) = 𝒩(𝑊𝑘𝑧𝑡,𝑘 + 𝜇𝑘, 𝜎𝑘
2𝐼). (3)

In the above equations, 𝑥𝑡 ∈ ℝ𝐷 represents the data vector at

the 𝑡 -th timestamp, 𝑧𝑡,𝑘 ∈ ℝ𝑑  is the (continuous) latent

variable of the 𝑘-th mixture component of MPPCA, and the 

(discrete) latent variable 𝑢𝑡 ∈ {1, … , 𝐾} indicates the mixture

component of MPPCA at the 𝑡-th timestamp and works as the 

hidden state of HMM. The matrix 𝐴 ∈ ℝ𝐾×𝐾  is the state 

transition matrix and 𝐴𝑘1,𝑘2
 denotes the (𝑘1, 𝑘2)-th element

of 𝐴.  Matrix 𝑊𝑘  is the factor loading matrix of the 𝑘 -th 

component of MPPCA, 𝜇𝑘  is the corresponding bias term, 

and 𝜎𝑘
2 is the noise variance.

We infer the latent variables and estimate the parameters of 

HM-PPCA, 𝜃 = (𝐴, 𝑊1:𝐾, 𝜇1:𝐾 , 𝜎1:𝐾
2 ) , by an EM algorithm

(known as Baum-Welch algorithm for HMM; see, e.g., 

Bishop, 2006), where inference of the latent variables (E-

step) and the maximization of the expectation of log 

likelihood (M-step) are conducted iteratively. In the M-step, 

the update of the parameters is conducted following the 

computation of the maximum likelihood estimator of 

MPPCA (Tipping & Bishop, 1999). 

3.3. Computation of Reconstruction Errors 

After estimating the parameters of HM-PPCA with the 

training data, we run the Viterbi algorithm (Forney, 1973) on 

the test data with the parameters being fixed to decide the 

assignment of the mixture components on each timestamp of 

test data. Once the mixture component is determined, the 

reconstruction error 𝑒𝑡 is defined as follows: 

𝑒𝑡 = 𝑥𝑡 − �̅�𝑡, (4) 

𝐸(𝑧𝑡|𝑥𝑡) = 𝑀−1𝑊T(𝑥𝑡 − 𝜇), (5) 

�̅�𝑡 = 𝑊(𝑊T𝑊)−1𝑀𝐸(𝑧𝑡|𝑥𝑡) + 𝜇, (6) 

𝑀 = 𝑊T𝑊 + 𝜎2𝐼, (7) 

where we dropped the subscript 𝑘 for simplicity. 

When the magnitude of 𝑒𝑡 is large, it means that the data at 

that time is not being described well by the learned 

probabilistic model. Hence, we investigate the magnitude of 

the reconstruction errors calculated as above to detect the 

faults of the system. 

3.4. Implementation 

The estimations shown above are implemented according to 

the following procedures. 

Algorithm 1. (Fault detection by HM-PPCA) 

1 Initialize parameters 𝐴, 𝑊, 𝜇, 𝜎 

2 Estimate parameters with Baum-Welch algorithm, i.e., 

iterate 2.1 and 2.2 until it converges. 

2.1 Compute ξ, γ  using current estimation of 

parameters 𝐴, 𝑊, 𝜇, 𝜎. 

2.2 Find parameters which maximize the likelihood, 

i.e, update 𝐴 using ξ, γ and update 𝑊, 𝜇, 𝜎 using

γ, 𝑑.
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3 Estimate the assignment of latent discrete variable δ 

using Viterbi algorithm with 𝜃. 

4 Reconstruct data in subspace and calculate errors, i.e., 

calculate �̅� using 𝑊, 𝜇, 𝜎. 

Note that we define ξ, γ and δ as follows. 

𝜉𝑡(𝑖, 𝑗) = 𝑝(𝑢𝑡 = 𝑘𝑖, 𝑢𝑡+1 = 𝑘𝑗|𝑥, 𝜃) (8) 

𝛾𝑡(𝑖) = 𝑝(𝑢𝑡 = 𝑘𝑖|𝑥, 𝜃) (9) 

𝛿𝑡 = max
𝑖

𝑝(𝑢1, … , 𝑢𝑡−1, 𝑢𝑡 = 𝑘𝑖 , 𝑥1, … , 𝑥𝑡|𝜃) (10)

4. EXPERIMENT

We conducted experiments of fault detection of a wind power 

generator with synthetic and real-world datasets. In the 

experiments introduced below, we set the number of mixture 

components by 𝐾 = 3, since there are three possible states of 

the wind power generator: running, stopped and transition. 

The transition state is considered for the transient phase 

between the running and stopped states, and thus it would be 

rare compared to the other two. 

4.1. Synthetic Data 

We conducted experiment on synthetic data that imitate the 

real-world data introduced in the next subsection. The 

synthetic data comprise 12 variables, each of four variables 

corresponds to one of three components of a wind turbine. 

These variables indicate zero when the state is stopped and 

15 when running. The transitions of these two states were 

smoothed to generate regions corresponding to transition 

state. Moreover, we added noise on those data, as shown in 

Figure 2. For simplicity, we assumed all of the 12 variables 

follow the same state changes, so that data are one dimension 

essentially. Hence, we defined the dimensionality of latent 

variable 𝑧  as 𝑑 = 1. To prepare the test data that contain 

“faulty” behaviors, we added the gradual increase of the 

values to simulate unexpected loads on one of the three 

components. In Figure 3, we show the example of such 

artificial faults. 

Figure 2. A part of synthetic data without any faulty events. 

 Figure 3. A part of synthetic data with a faulty event. 

We show the reconstruction errors on the test data by HM-

PPCA in Figure 4, wherein the errors of the 12 variables are 

shown in the three plots and each plot shows summed four 

variables in each component. When the artificial fault occurs 

in the last part of the test data, the reconstruction errors in the 

corresponding part of the data become obviously larger than 

the ones in the other parts. 

Figure 4. Reconstruction errors on synthetic data. 

4.2. Wind Turbine Data 

We conducted another experiment using real-world data 

obtained from strain sensors attached to turbine blades of a 

wind power generator. The wind power generator has three 
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turbine blades that have four strain sensors each, and thus we 

obtain 12 dimensional time-series data. The manner to attach 

the four sensors on each blade is similar among the three 

blades. We prepared both a set without any faulty events as 

training data and a set with a fault as test data. In the last part 

of the test data, a fault occurred on the turbine blade, and our 

task is to detect this fault from data. In this experiment, we 

defined the dimensionality of latent variable 𝑧 as 𝑑 = 6. 

We show the reconstruction errors in Figure 5, wherein the 

errors of the 12 variables are shown in the three plots and 

each plot shows summed four variables in each component. 

The fault in the test data is successfully detected as the large 

magnitude of the reconstruction errors. 

Figure 5. Reconstruction errors on a wind turbine system. 

Next, let us look at the values of state transition matrix 𝐴 

estimated with the real-world data. We show the schematic 

diagram of the transitions following 𝐴 in Figure 6, and the 

values of the elements are shown in Table 1. One can see that 

the transitions between the same states are overwhelming and 

the transition between running and stopped hardly occurs. 

Figure 6. A schematic diagram of state transitions. 

Table 1. Values of the state transition probability. 

Destination state 

stopped transition running 

Source 

state 

stopped A11=0.999 A12=0.001 A13=0.000 

transition A21=0.001 A22=0.988 A23=0.011 

running A31=0.000 A32=0.024 A33=0.976 

5. CONCLUSIONS

In this work, we proposed a data-driven health monitoring 

method for wind power generators, focusing on the 

characteristics of the data. The proposed method relies on the 

probabilistic model termed hidden Markov and probabilistic 

principal component analysis (HM-PPCA), which is a 

combination of HMM and MPPCA. The experimental results 

show the availability of the proposed method for fault 

detection. Online updates of parameters to deal with gradual 

degradation of the system would be one of the future 

researches, and applying the proposed method to the system 

with more sensors is also an important challenge. 
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