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ABSTRACT 

Because a large time spread in most crack initiation tests 

makes it a daunting task to predict the initiation time of 

cracking, a probabilistic model, such as the Weibull 

distribution, has been usually employed to model it. In this 

case, although it might be anticipated to develop a more 

reliable cracking model under ideal cracking test conditions 

(e.g., large number of specimen, narrow censoring interval, 

etc.), it is not straightforward to quantitatively assess the 

effects of these experimental conditions on model estimation 

uncertainty. Therefore, we studied the effects of some key 

experimental conditions on estimation uncertainties of the 

Weibull parameters through the Monte Carlo simulations. 

Simulation results suggested that the estimated scale 

parameter would be more reliable than the estimated shape 

parameter from the tests. It was also shown that increasing 

the number of specimen would be more efficient to reduce 

the uncertainty of estimators than the more frequent 

censoring. 

1. INTRODUCTION

It is widely known that stress corrosion cracking (SCC) can 

result in loss-of-coolant accidents in nuclear reactors (Scott 

and Meunier 2007, Lunceford, DeWees et al. 2013, Kim and 

Do 2015). Thus, the prediction of the SCC initiation time is a 

very important task for several researchers in nuclear science. 

However, this is a difficult task due to the complex 

mechanism of SCC initiation, which is not clearly identified 

yet. Therefore, empirical SCC initiation models are generally 

adopted for this purpose (Amzallag, Hong et al. 1999, Garud 

2009, Erickson, Ammirato et al. 2011). 

However, most SCC experiments showed non-negligible 

scatter with respect to cracking time (Troyer, Fyfitch et al. 

August 9-13, 2015), although all of the experimental 

conditions (e.g., temperature, tensile stress, etc.) were strictly 

controlled. Therefore, a probabilistic model was frequently 

used as an SCC initiation model to quantitatively consider the 

time scatter. Particularly, the Weibull distribution (Weibull 

1951), which can generally consider the effect of the time-

dependent degradation of a material, is widely accepted as a 

probabilistic model of SCC initiation time (Hwang, Kwon et 

al. 2001, Eason 2005, Erickson, Ammirato et al. 2011). 

To obtain the model parameters of SCC initiation (i.e., 

Weibull parameters in this case), a cracking test must be 

performed. The typical procedure of a cracking test involves 

an interval-censored reliability test. This implies that several 

stressed specimens (e.g., U-bend or constant tensile stress 

specimens) are exposed to a corrosive environment and 

censored at every scheduled time. Following the test, the 

testing results can be used to estimate the Weibull parameters 

typically using the maximum likelihood estimation (MLE) 

(McCool 2012). It is expected that the reliability of the 

estimated Weibull parameters would increase with an 

increase in the number of test specimens and a smaller length 

of the censoring interval (LCI). However, there is no theory 

yet available to calculate the exact estimation uncertainties 

for the estimated Weibull parameters with interval-censored 

data (McCool 2012). Therefore, in this study, the effects of 

some key experimental conditions on estimation 

uncertainties of Weibull parameters were investigated 

through the Monte Carlo simulation.  

2. SIMULATION APPROACH

The cumulative distribution function (CDF) of the two-

parameter Weibull distribution is frequently used as a 

cracking probability function and given by: 

𝐹(𝑡; 𝛽, 𝜂) = 1 − 𝑒𝑥𝑝 [− (
𝑡

𝜂
)

𝛽

], (1) 

where 𝑡 ≥ 0  denotes time, β > 0  denotes the shape 

parameter and η > 0  denotes the scale parameter of the 

Weibull distribution. 
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As previously mentioned, maximum likelihood estimation 

(MLE) is usually used to estimate the Weibull parameters 

from the given test data for its good estimation efficiency 

(Genschel and Meeker 2010, Park and Bahn 2016). The 

likelihood function for the interval-censored case is given by: 

𝐿(𝛽, 𝜂)

=  ∏[1 − 𝐹(𝑠𝑖; 𝛽, 𝜂)] ∙ ∏[𝐹(𝑐𝑗𝑈
; 𝛽, 𝜂) − 𝐹(𝑐𝑗𝐿

; 𝛽, 𝜂)]

𝐶

𝑗=1

𝑆

𝑖=1

(2) 

where S is the number of suspended specimens, 𝑠𝑖 is the last

censoring time of ith suspended specimen, C is the number of 

interval-censored cracked specimens, and 𝑐𝑗𝑈
 and 𝑐𝑗𝐿

 are the

upper and lower bound times, respectively, of the censoring 

interval for the jth cracking. The sum of S and C is equal to 

the total number of specimens N. We used a numerical 

approach for MLE. In this case, the MATLAB (MathWorks, 

Ver. R2015b) offers the numerical nonlinear simultaneous 

equation solver fsolve. 

Experimental factors (e.g., number of specimens) can affect 

the uncertainties of Weibull estimators. The experimental 

factors considered in the simulation study include (1) true 

Weibull parameters; (2) the number of specimens; (3) end 

cracking fractions (ECF); and (4) length of censoring interval 

(LCI). Table 1 shows the simulation range of the study. A 

total of 900(=1×3×10×3×10) experimental cases were 

considered, and 20,000 random iterations were performed for 

each experimental case. 

Table 1. Range of the simulation study. 

True Weibull 

Parameters 
Number of 

Specimens 
ECF 

LCI (% of 

𝜂𝑡𝑟𝑢𝑒)
𝜂𝑡𝑟𝑢𝑒

(Dim.less 

Time) 
𝛽𝑡𝑟𝑢𝑒

100 2 5 0.6 5 

- 3 10 0.8 10 

- 4 15 1.0 15 

- - 20 - 20

- - 25 - 25

- - 30 - 30

- - 35 - 35

- - 40 - 40

- - 45 - 45

- - 50 - 50

3. RESULTS AND DISCUSSION

From the random simulation results, the 5th, 50th and 95th 

percentiles (�̂�5%, �̂�50%, �̂�95%;  �̂�5%,  �̂�50%, �̂�95%) of 20,000

replicates of Weibull estimates could be derived for each case. 

The selected median estimates (i.e., �̂�50%, �̂�50% ) were

converted to the relative error (RE50%) to represent the bias

of estimators, which is defined as follows: 

RE50%(�̂�) = RE(�̂�50%) =
�̂�50% − 𝛽𝑡𝑟𝑢𝑒

𝛽𝑡𝑟𝑢𝑒

, (3) 

RE50%(�̂�) = RE(�̂�50%) =
�̂�50% − 𝜂𝑡𝑟𝑢𝑒

𝜂𝑡𝑟𝑢𝑒

In order to quantify the dispersion of estimators, a relative 

length of a 90% confidence interval (RLCI90%) was utilized,

which is defined as follows: 

RLCI90%(β̂) = RE(β̂95%) − RE(β̂5%),

 RLCI90%(η̂) = RE(η̂95%) − RE(η̂5%).
(4) 

Figure 1. Effects of the number of specimens on (a) RE(�̂�) 

and (b) RE(�̂�) (𝛽𝑡𝑟𝑢𝑒: 3; LCI: 20 % of 𝜂𝑡𝑟𝑢𝑒; ECF: 1.0).

As an example, Fig. 1 shows the effect of the number of 

specimens on estimation uncertainties when the other 

experimental factors are fixed at the certain values. It is well 

represented that as the number of specimens is large, 

estimators becomes reliable (i.e., little bias and short length 

of confidence interval). For estimating the shape parameter 𝛽, 

it is likely that the shape parameters are overestimated when 

the number of specimens is relatively low 

(i.e.,  RE50%(�̂�𝑀𝐿𝐸) > 0 ). For the scale parameter 𝜂

estimation, the bias is barely noticeable even when the 

number of specimens is low (i.e., SE50%(�̂�MLE) ≈ 0). It is

shown that the relative length of 90% confidence interval for 

scale parameters (i.e., RLCI90%(�̂�𝑀𝐿𝐸)) are much lower than

that of the shape parameter 𝛽 (i.e., RLCI90%(�̂�𝑀𝐿𝐸)).
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Figure 2. Effects of the number of specimens and LCI on (a) 

RE50%(β̂MLE)  and (b) RE50%(η̂MLE)  when ECF = 1.0,

βtrue = 3, and ECF = 1.0 (Park, Park et al. 2017).

Figure 2 shows the contour plots of RE50%(�̂�𝑀𝐿𝐸)  and

RE50%(�̂�𝑀𝐿𝐸) , indicating a relative bias in the Weibull

estimators. It was likely that β̂MLE showed a tendency to be 

overestimated irrespective of the value of LCI. The unusual 

result that occurred in the long LCI region may not be reliable 

due to the low convergence ratio (Park, Park et al. 2017). 

Meanwhile, the value of RE50%(η̂MLE) was almost zero in

every experimental condition. 

Figure 4 shows the contour plots of RLCI90%(β̂MLE) . As

expected, the dispersion in β̂ was large when the number of 

specimens was relatively small. In contrast, the effect of LCI 

was not noticeable. Additionally, some critical regions were 

observed, in which very wide RLCI90%(β̂)  were produced

(Park and Bahn 2016). The gradients of RLCI90%(β̂) were

very high around the critical region. It is likely that this 

critical region was an inherent behavior of estimation 

uncertainty because another estimation method, which has a 

unity convergence ratio for the same experimental condition, 

also showed the critical region (Park, Park et al. 2017). 

Experimenters should plan the crack initiation testing so that 

they can avoid this critical region. When compared to the case 

of RLCI90%(β̂MLE), the overall value of RLCI90%(η̂MLE) was

quite small. This indicates that the estimated scale parameter 

is more reliable than the shape parameter under the same 

experimental conditions 

Figure 3. Effects of the number of specimens and LCI on (a) 

RLCI90%(β̂MLE)  and (b) RLCI90%(η̂MLE)  when ECF = 1.0,

βtrue = 3, and ECF = 1.0 (Park, Park et al. 2017).

4. CONCLUSION

The main goal of this study is to provide quantitative 

estimation uncertainties for experimenters developing a 

Weibull distribution model via cracking tests. The MLE 

method was performed with respect to the Weibull estimation. 

Monte Carlo simulations were used in order to quantify 

uncertainties estimators in various experimental conditions 

by considering the effects of: (1) true Weibull parameters; (2) 

the number of specimens; (3) end cracking fractions; and (4) 

length of censoring interval. The following conclusions were 

drawn from the study: 

 In most cases, β̂MLE  showed a tendency to be

overestimated and dispersed when the number of

specimens was small and the value of ECF was low. The

value of LCI does not much affect bias of β̂MLE. It was
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shown that there were critical regions, in which the 

dispersions were extremely large. Thus, experimenters 

should avoid this critical region. 

 η̂MLE showed almost zero bias in all simulation ranges.

In most cases, the LCI did not affect the estimation

uncertainty of η̂. The overall bias and dispersion of η̂

were much lower than those of β̂ in the simulation study

range. Therefore, the estimated scale parameter would be

more reliable than the estimated shape parameter from

the cracking tests. It was also shown that increasing the

number of specimen would be more efficient to reduce

the uncertainty of estimators than the more frequent

censoring.
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