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ABSTRACT 

The time series of sensor data for condition monitoring of a 

system is often characterized as very-short, intermittent, 

transient, highly nonlinear and non-stationary random signals, 

which hinders the straightforward pattern analysis. For 

discovering meaningful features from original sensor data, 

we transform continuous time series data into a set of 

contiguous discretized state vectors using a multivariate 

discretization approach. We then search for important 

patterns that are found only in the case of defective systems. 

We discuss how to measure the level of importance of each 

defect pattern and further how to assess the severity degree 

of a defective state. We consider that a defective state is more 

severe if various defect patterns are observed in the state. 

Likewise, if a particular defect pattern describes as many as 

defective states, the pattern will be treated as significant. The 

proposed procedure is applied to detecting defective car door 

trims that have the potential to generate small but irritating 

noises. We analyzed the datasets obtained from two different 

monitoring methods using a typical acoustic sensor array and 

acoustic emission sensors. Defective car door trims were 

efficiently identified with their severity degrees.  

1. INTRODUCTION

Defect detection has been extensively studied in defect 

detection from various industries such as power plants 

(Marhadi & Skrimpas, 2015), (Du et al., 2016), batteries 

(Acuña, Orchard, Silva, & Pérez, 2015), (Yin, Xie, Lam, 

Cheung, & Gao, 2015), and various mechanical parts (Zhang 

& Dong, 2012), (Georgoulas, Karvelis, Loutas, & Stylios, 

2015) (Jaber & Bicker, 2016). Defect detection using time 

series of sensor data is the procedure to investigate whether 

the product is normally operated or not. 

In the literature, statistical distance-based binary 

clustering/classification methods have been extensively used 

for defect detection. Mishra, Vanli, and Park (2015) 

developed a cumulative sum chart using Hotelling’s T2 

statistics for considering correlations among multivariate 

data. This cumulative sum chart provides a higher result in 

detecting relatively small, gradual changes as well as large, 

and sustained behaviors.  

Multiple classification methods also have received much 

attention to investigate defect types which are already known. 

Jaber and Bicker (2016) used Artificial Neural Network 

(ANN) of which input data is standard deviations from 

discrete wavelet analysis of x, y, and z axis movement. ANN 

finally provided detection results as a bearing’s defect 

detection (i.e., healthy or not), and classifying discernible 

detection results into three defect types (i.e., inner race 

bearing defect, 1 and 2 mm hole in outer race defects).  

For more accurate multiple classification, defect information 

from every possible defect phenomenon are necessary to be 

obtained in advance. However, it is not simple since defects 

can arise from unexpected root causes which are not be 

considered at the product’s design stage (Haldar & 

Mahadevan, 1999). Instead of multiple classification on pre-

defined defect types, there are extensive studies devoted to 

defect detection with statistical evidences on defect 

occurrences.  

For example, Chetouani (2014) applied ANN based Bayes 

classifier to detecting and isolating defects compared to 

normal states. He defined a residual between normal and 

defect states of the process as a symptomatic indicator. After 

the residual is calculated by nonlinear auto-regressive model, 

Bayes classifier generates a probability whether it is normally 

operated and it is considered as an evidence of defect 

occurrences at a specific time point.  

In case of Al-Atat, Siegel, and Lee (2011), they constructed 

a classifier which provides the probability of defect 

occurrences based on the modified Euclidean distance 

compare to the normal baseline. They focused on how to 

select most representative data from the whole healthy 

sample data. Another research for predicting the disk drive’s 

defects (Hamerly & Elkan, 2001), a normal model was also 

developed based on Naïve Bayes theory using only normal 

dataset. Like anomaly detection, they defined that as a data 

point is far from the developed normal model, it is more 

likely to be determined as a defect.  
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Like above studies, a dense unimodal distribution (or its 

mean value) is usually employed for representing normal 

states with regard to a specific defect type and experimental 

condition. However, it is not always reasonable to build a 

normal model with unimodality when sensor data are 

scattered and randomly mixed without clear distinction 

between normal or defect states, like in-tolerance defect 

analysis.  

Therefore, we need to propose a statistical evidence on defect 

occurrence which is not fully based on geometric similarity 

measure from a normal state. To do this, in this paper, we first 

extract defect patterns which are only found in defect state, 

then we propose two indicators for analyzing extracted defect 

patterns and defect states with regard to defect occurrences 

and various root causes.  

In particularly, for extracting defect patterns from 

multivariate time series data, our previous method 

(multivariate discretization based pattern extraction) is 

employed because the extraction performance of this method 

was proven when sensor signals are not clearly discernible 

between normal and defect states (Baek & Kim, 2016). In 

addition, symbolic time series data are used to investigate 

significant defect patterns (Georgoulas et al., 2015), (Park & 

Kwon, 2016), (Yiakopoulos, Gryllias, Chioua, Hollender, & 

Antoniadis, 2016), since they usually provide excellent 

performance in preserving signals’ significant features while 

reducing the amount of original dataset. 

This paper is organized as follows. Section 2 details about the 

defect state’s severity degree and the defect pattern’s 

importance level with defect pattern extraction. The proposed 

approach will be experimentally verified and validated using 

two datasets which are collected for in-process Buzz, Squeak, 

and Rattle (BSR) noise detection in Section III. Finally, the 

last section presents summarized results and further 

researches. 

2. DEFECT STATE AND SEVERITY ANALYSIS

2.1. Defect Pattern Extraction from multivariate time 

series data 

Defect pattern extraction will be conducted from original 

time series as a prerequisite for defect state and severity 

analysis. When signals’ change points which are relevant to 

defect occurrences are not significantly investigated, 

statistical-distance based defect detection methods do not 

usually provide quite accurate outcomes. Therefore, for 

searching informative defect pattern, multivariate 

discretization based pattern analysis is adopted from our 

previous study (Baek & Kim, 2016) as Figure 1 is illustrated. 

This analysis approach can be summarized as three main 

steps: (1) label definition, (2) label specification, (3) defect 

pattern extraction. 

Figure 1. Label definition and label specification: (a) original data, (b) Cut-points generation based on estimated 

distribution, and (c) a set of discretized state vectors for each acoustic sensor data collected from pre-defined point 1 and 8. 
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Assume there is a multivariate time series dataset which are 

collected from 1 to n time points and m sensors as m-by-n 

matrix. In order to describe sensor data’s relevant behaviors 

effectively, many features can be utilized for label definition. 

In this study, we choose a feature in time series: a relative 

location of mean value within a time segment. First, we 

estimate histogram of original sensor data as parametric 

probability density function (i.e., estimated distribution) by 

maximum likelihood estimation. Based on discretization 

parameters (i.e., the number of bins and bin width threshold), 

the estimated distribution is divided into a set of contiguous 

bins (e.g., cut-points). This procedure is conducted for each 

individual sensor data, and then a label is defined as bin index 

depending on which bin a mean value within a time segment 

belongs to. Label is represented as 𝑙𝑖𝑗  where i is the number

of sensor and j is the bin index.  

After label definition, we assign a relevant label to each time 

segment to symbolize system’s states. There are two 

approaches to divide a continuous time series into a finite 

number of time segments (i.e., exclusive point and nested 

points), exclusive point is adopted for simple time 

segmentation. We specify a relevant label D(X)ik to each time 

series data Xi,(k-1)*w+1:k*w within a time segment regarding 

predefined label, where w is the length of time segment, and 

k is the number of time segment. Finally, original multivariate 

time series data is converted into discretized multivariate 

time series denoted as following Eq. (2).  

Each column vector is defined as a “discretized state vector”, 

since it can represent the system’s state within a specific time 

segment. Using the information of fault state, we extract 

defect patterns FP which are only discovered during the 

defective systems, not found from normal system, in order to 

prevent annoying false alarms to system. For detail 

explanations about defect pattern extraction, you can refer 

our previous works (Baek & Kim, 2016).  

2.2. The Importance Level of a Defect Pattern 

If a specific defect pattern is discovered in every state, it is 

reasonable to employ it as the strongest reference for defect 

monitoring. On the other hands, if a certain defect pattern is 

extracted from only a fault state, it is not reasonable to 

employ it as a reference defect patterns solely for every defect 

state. But we should not neglect it since defect can occur by 

various root causes and this defect pattern can represent a root 

cause of minor defect. Therefore, it is reasonable to employ a 

set of the whole extracted defect patterns for defect defection, 

but give a commensurate with its frequency of occurrence as 

a weight.  

The importance level of a defect pattern is devised as the 

above weight, in order to estimate the effect of defect patterns 

quantitatively. Algorithm 1 is the procedure to compute the 

importance level for each defect pattern. Because it is 

measured in proportional to the number of defect pattern 

occurrence in every state, the higher value means a particular 

defect pattern is discovered in as many as defect state, it 

consequently can be interpreted as a significant pattern. In 

case of a recurring same defect patterns repetitively in a 

defect state, it is counted as once because they describe same 

defect states. In addition, for effective compression among 

defect pattern, the importance level is also normalized by 

(2) 

𝑤ℎ𝑒𝑟𝑒 𝑠 is the number of time segment, =  ቒ
𝑛

𝑤
ቓ 

𝐃(𝐗) = ൦

𝐷(𝑋)11 𝐷(𝑋)12 ⋯ 𝐷(𝑋)1𝑠

𝐷(𝑋)21 ⋱ ⋱ 𝐷(𝑋)𝑚𝑠

⋮ ⋱ ⋱ ⋮
𝐷(𝑋)𝑚1 𝐷(𝑋)𝑚2 ⋯ 𝐷(𝑋)𝑚𝑠

൪ 

Figure 2. Examples of computing the severity degree of defect states and the importance level of defect pattern: (a) a series of 

disceretized state vectors where the number of sensor is 3 and recording time period it 1 to 33, (b) the procedure for the 

severity degree of each defect state, and (c) the computation of the importance level of each defect pattern. 
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dividing the number of defect pattern occurrences in a set of 

defect states into the total number of defect states.  

Figure 2 illustrates the computing procedure of importance 

level of defect patterns. First defect pattern, [𝑙12 𝑙21 𝑙31],
has the highest importance level (= 1.00) than others, because 

it is found in every defect state. Last two defect patterns have 

the smallest importance level (= 0.25), but the value is larger 

than 0 because a defect pattern should be discovered at least 

one defect state.  

Algorithm 1. Importance level of a defect pattern 

Require: 𝐅𝐏 (a set of defect patterns), 𝐃(𝐗)

(multivariate discretized time series), 𝐅𝒒
𝐏 (a set

of defect patterns during qth defect state), 𝑓𝑠𝑢𝑚

(the number of defect states) 

1: for 𝒓 = 𝟏 ∶ |FP| do

2:    𝑖((𝑭𝑷)𝒓 ) ← 0 // Importance level of rth defect

pattern 

3:   for 𝒒 = 𝟏 ∶ 𝑓𝑠𝑢𝑚 do

5: If (𝐅𝐏)𝐫 ∈ 𝐅𝒒
𝐏

6: 𝑖(𝐅𝒒
𝐏) + + 

7: End if 

8:    End for 

9:    𝑖((𝑭𝑷)𝒓) ← Normalized(𝑖((𝑭𝑷)𝒓), 𝑓𝑠𝑢𝑚)
10: End for 

2.3. The Severity Degree of a Defect state 

Although many defect states are given, each defective system 

will assign different severity level such as critical, major, 

minor, warning, and indeterminate. Assigning severity 

degree is also important for finding optimal maintenance 

action, scheduling repair procedure, and further root cause 

analysis (Goyal & Pabla, 2015). Therefore, we also introduce 

the severity level of a defect state.  

If various defect patterns are discovered from a defect state, 

it is reasonable to consider the target system more hazardous. 

Similarly, if a defect pattern is constantly found during a 

defect state, the defect state can be treated as more severe one. 

Considering both characteristics, the severity degree is 

calculated by dividing the number of occurrence of defect 

patterns in a defect state into the number of discretized state 

vectors in a defect state, and Algorithm 2 explains minutely 

how to measure the severity degree of each defect state. 

For example, as Figure 2 also shows, the length of first defect 

state is quite longer than others, but only one defective pattern, 

[𝑙12 𝑙21 𝑙31]T , is found. On the other hand, the largest

number of defect patterns, 4 patterns (i.e., 

[𝑙13 𝑙21 𝑙32]T,  [𝑙12 𝑙23 𝑙31]T, [𝑙13 𝑙22 𝑙32]T and 

[𝑙12 𝑙21 𝑙31]T), is found from third defect state. According to

the number of defect pattern occurrences in each defect state, 

third state (= 0.80) gets a higher severity degree than first (= 

0.17) state. In case of first and second state, an identical 

defect pattern  [𝑙12 𝑙21 𝑙31]T ,  is only extracted

respectively. Since the defect pattern occurs three times 

consecutively at second state, whereas it appears once at first 

state, the severity of second state (= 0.60) is much higher than 

first one. From now, discretized state vector is written as last 

number of each element ([𝑙12 𝑙21 𝑙31]T is written as [2 1 1])

Algorithm 2. Severity degree of a defect state 

Require: 𝐅𝐏 (a set of defect patterns), 𝐃(𝐗)
(multivariate discretized time series), 𝐅𝐭𝐢𝐦𝐞

(the information of defect states’ length), 𝑓𝑠𝑢𝑚

(the number of defect states) 

1: for 𝒒 = 𝟏 ∶ 𝑓𝑠𝑢𝑚 do

2:    𝐅𝒒
𝐏 ← dsv_in_a_fault_state(𝐃(𝐗), 𝐅𝐭𝐢𝐦𝐞

𝒒
) // 

separate discretized state vector in a 

specific defect state from multivariate 

discretized time series 

3: 𝑠(𝑭𝒒
𝑷) ← 0 // Severity degree of qth defect states

4:  for 𝒓 = 𝟏 ∶ |𝐅𝒒
𝐏| do

5: If (𝐅𝒒
𝐏)

𝐫
∈ 𝐅𝐏 // (𝐅𝒒

𝐏)
𝐫
 is rth defect

pattern in 𝐅𝐪
𝐏

6: 𝑠(𝐅𝒒
𝐏) + + 

7:   End if 

8:    End for 

9:    𝑠(𝑭𝒒
𝑷) ← Normalized(𝑠(𝑭𝒒

𝑷), |𝐅𝒒
𝐏|)

10: End for 

3. EXPERIMENTAL RESULTS

The introduced analysis is conducted to detect defective car 

trims which have the potential to generate negligibly weak 

noise, but noticeably annoying noise (Cook & Ali, 2012). It 

is defined as Buzz, Squeak, and Rattle (BSR) noise and it 

usually caused by the unexpected contacts between car parts 

because of incomplete assembly or poor geometrical design 

according to Chen and Trapp (2012). These noises are 

characterized by intermittent, very short and small change, 

and non-stationary random signals. Therefore, we apply the 

proposed approach to two different monitoring datasets, for 

in-process BSR-noise detection, and conduct further defect 

states’ severity degree and defect patterns’ importance level. 

3.1. Dataset Collected from a Typical Acoustic Sensor 

Array (Data set #1: Acoustic Sensor Array) 

The entire sensor signals are collected from the experimental 

system which Baek et al. (2017) developed for the in-process 
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BSR-noise detection adopted from general fixed noise 

evaluation test as Figure 3. A pneumatic pusher applied 

pressure to a car door trim lying on the system, and 13 

acoustic signals are recorded by microphones. 9 sensors are 

mounted inside of the system for the sake of inside noise, 

whereas 4 sensors are located at four outside of the system to 

obtain outside environmental noises such as shop floor noises. 

If the pusher gives pressure to the target car door trim and a 

noticeable sound occurs that are loud enough to experimental 

hear, then the target is treated as defect state. On the other 

hands, the dataset for the door trim is considered as normal 

state. From when the pusher’s pressurization begins, Sensor 

signals are recording for about 2 second at a sampling rate of 

32,768 Hz. Total 60 normal states and 40 defect states are 

obtained respectively. Since sound signal oscillates up and 

down quite symmetrically, it is not easy to catch the change 

of mean value in original signals. Thus, absolute values of 

original sensor signals are applied to defect pattern extraction. 

According to Figure 4, there are various sensor signals’ 

behaviors from normal states. Whereas weak stationary 

signals are discovered from 11th car door trim, impulsive 

changes which are like defect states are also found from 14th 

car door trim. In case of defect sates, there are different 

background noise level between 21st and 39th car door trims. 

That is, the assumption, “The far the statistical or geometrical 

distance from the normal states, the more likely it is 

considered as a defect state” is not always reasonable in this 

dataset #1.  

As Table 1 is described, total 47 defect patterns are extracted 

from 40 defect states, the set of defect patterns can explain 

every defect state. On the other hands, four discretized state 

Table 1. Summary of a set of extracted defect patterns and 

their importance level from data set #1 

#. Defect pattern 

[A corresponding 

discretized state vector] 

#. Discernible 

defect state 

Importance 

level 

Defect pattern 1 

[4 3 3 4 4 3 4 3 4 4 4 4 4] 

20, 22, 24, 27, 

28, 29, 30, 32, 

35, 38 

0.25 

Defect pattern 2 

[4 3 4 4 4 3 4 4 4 4 4 4 4] 
19, 23, 31, 36 0.10 

Defect pattern 3 

[4 3 4 4 4 4 4 4 4 4 4 4 4] 
9, 12 0.05 

Defect pattern 4 

[4 3 4 4 4 4 4 4 3 4 2 2 4] 
28, 35 0.05 

Defect pattern 46 

[3 2 2 3 3 3 4 3 4 4 3 4 4] 
6 0.03 

Defect pattern 47 

[3 2 2 3 3 2 4 3 4 4 3 4 4] 
2 0.03 

vectors, which represents normal states (i.e., normal patterns), 

are extracted. It is interpreted that signals during normal 

states are relatively stationary than those during defect states. 

Important levels of defect patterns are measured from 0.03 to 

0.25. The strongest defect pattern can describe 10 defect 

states, whereas 33 weakest defect patterns are discovered at 

only one defect state. As Table 1 shows, relatively lower 

importance levels of all extracted patterns can be interpreted 

as consisting of root causes that have minor effects, not a 

single major root cause. That is, many defect patterns have 

been extracted means there are various root causes of BSR 

defect states. In fact, even a single BSR noise can be caused 

by various causes in a car door trim, because a certain part is 

attached to several parts, it can suffer multiple collisions. 

Also, the more we conduct experiment to the target, the more 

aging occur, thus it is also possible that every defect pattern 

can indicate different root causes.  

Several defect and normal patterns are illustrated as Figure 5, 

to investigate their difference in terms of signal’s behaviors. 

We can know, from Table 1 and Figure 5, that the Euclidian 

distance between a specific defect pattern and normal 

patterns is not accurately corresponding to importance level 

of the defect pattern. For example, defect pattern 47 is more 

far (=3.87) from the mean of normal patterns than defect 

pattern 1 (=1.16), but the importance levels of two defect 

patterns are vice versa (i.e., 0.03 for defect pattern 47 whereas 

0.25 for defection pattern 1). 

In case of severity degree of defect states, as Table 2 shows, 

maximum severity degree is 0.2 and assigned to 31 defect 

states. Remaining 9 defect states have 0.1 severity degree. 
Figure 3. In-process BSR-noise detection system which 

constructed by Baek, Kim, and Ceglarek (2017) 
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Figure 4. Acoustic sensor signals monitored at three positions from normal(blue) and defective (red) states: (a) at the inside 

bottom right corner (b) at the inside top center corner, and (c) at the left outside of the system. 
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Table 2. Severity analysis of defect states for dataset #1. 

#. defect state Severity degree 

State 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15, 19, 20, 22, 23, 

24, 27, 28, 29, 30, 31, 32, 34, 35, 

36, 37, 40 

0.20 

State 16, 17, 18, 21, 25, 26, 33, 

37, 39 
0.10 

Since a BSR noise occurs only a specific short time period 

during recording time, not in an entire defect state, a lot of 

normal and defect patterns are mixed in a defect state. 

Therefore, all defect states show similar severity degree 

(from 0.1 to 0.2), since all defect states are collected from a 

single car door trim. 

3.2. Dataset Collected from Acoustic Emission Sensors 

(Data set #2: Acoustic Emission Sensor) 

According to Qu, Bechhoefer, He, and Zhu (2013), vibration-

based signals, such as accelerometer or microphone, have a 

difficulty to detect incipient anomaly with low frequency 

range. They suggested acoustic emission sensor signals 

which has a strength to investigate various cracks and 

closures, since it is used to measure the behaviors under 

internal stress (Niknam, Thomas, Hines, & Sawhney, 2013). 

In consideration of these characteristics, the environment 

setup for data collection is designed as follow; a target car 

door trim is laid on the test bench, and 4 acoustic emission 

sensors are attached on the target. Background noise is 

always played toward the target. 

Defect was artificially caused by unscrewing a specific screw, 

because incomplete fastener assembly is one of major BSR 

root causes (Chen & Trapp, 2012). Then collected raw signals, 

at a sampling rate 100Hz, are converted into time-based 

features (i.e., Average Signal Level (ASL), Root Mean 

Square (RMS), and absolute energy) to monitor defect states. 

That is, three signals from a sensor is obtained and the total 

number of monitored signal is 12 per a state. 24 normal states 

and 24 defect states from two type of car door trims and four 

unscrewing points are finally analyzed.  

Despite the environmental noises, acoustic emission signals 

(Figure 6) shows quite clear behaviors than conventional 

sound signals (Figure 4). Every signal changes as if there 

seems to be a regular cycle, and behaviors of three signals are 

dynamic and nonstationary regardless of normal and defect 

states. That is, it is not straightforward to develop a statistical 

control limit for classifying normal and defect states.  

As a result, 31 defect patterns are extracted, and a set of 

extracted defect patterns make every defect state discernible. 

That is, any defect state of dataset #2 is explained by a set of 

Table 3. Summary of a set of extracted defect patterns and 

their importance level from data set #2 

#. Defect pattern 

[A corresponding 

discretized state vector] 

#. Discernible 

defect state 

Importance 

level 

Defect pattern 1 

[4 4 3 4 4 3 4 4 4 4 4 1] 

3, 11, 12, 20, 

21 
0.21 

Defect pattern 2 

[4 4 3 4 4 2 4 4 4 4 4 1] 
1, 2, 4, 6, 14 0.21 

Defect pattern 3 

[4 4 2 4 4 2 4 4 4 4 4 1] 
5, 13, 15 0.13 

Defect pattern 4 

[4 6 4 6 6 4 6 4 4 6 6 4] 
23, 24 0.08 

Defect pattern 30 

[2 3 1 4 4 3 4 4 4 4 4 4] 
13 0.04 

Defect pattern 31 

[2 3 1 4 4 2 4 4 4 4 4 4] 
13 0.04 

Figure 5. Examples of 6 defect and 4 normal patterns which 

are described as a shape of discretized state vector from 

dataset #1: a darker color means a value corresponding to 

each sensor is larger. 
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Figure 6. Three signals from acoustic emission sensor at 3rd point from normal(blue) and defective (red) states: (a) Root 

mean square, (b) Average signal level, and (c) absolute energy.  
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defect patterns. In case of normal states, 44 discretized state 

vectors are extracted. That is, sensor signals’ shows time-

variant and non-stationary behaviors in both normal and 

defect states, as Figure 7 is illustrated.  

There are also powerful two defect patterns which has higher 

importance level (=0.21) than others (See Table 3). They are 

discovered in 5 defect state respectively. In addition to the 

small number of defect pattern than that of normal pattern, 

the set of extracted defect pattern shows relatively small. It is 

also investigated a mean and a maximum value of Euclidean 

distance between patterns in either normal (=4.18 and 9.00) 

and defect states (=4.47 and 8.49) respectively. Since the 

Euclidean distance between mean the values of normal and 

defect patterns (=1.34) is even smaller than maximum 

distances of each pattern group, that is many normal patterns 

appear in defect states.  

In Table 4, Among 24 defect states, two states show much 

higher severity degrees (=0.63, and 0.57 respectively), and 

thus they are interpreted as more broken car door trim. On the 

other hands, the state 1 is considered as most powerless defect 

state (=0.08). Artificial defect generation, by four different 

unscrewing points and at two different car door trim, makes 

relatively large difference in severity degree.  

Table 4. Severity analysis of defect states for dataset #2. 

#. defect state Severity degree 

State 21 0.63 

State 7 0.57 

State 13, 16, 17, 18, 23 0.38 

State 10, 11, 12, 22, 24 0.29 

State 14 0.25 

State 3, 20 0.20 

State 6 0.18 

State 4, 5, 8, 15, 19 0.13 

State 2, 9 0.11 

State 1 0.08 

4. CONCLUSION

For effective defect detection, we analyze defect state in 

terms of state’s severity. The severity degree of a defect states 

is computed by how many defect pattern makes a defect state 

discernible considering diverse broken degree of each defect 

states. That is, the more defect patterns are found, the more 

severe the defect state is determined as. Defect pattern is 

defined as the discretized state vectors which is found only in 

defect states, not in normal state. Discretized state vector is 

extracted from multivariate time series of sensor data by the 

previous proposed multivariate discretization method. 

Regarding various root causes, every extracted defect pattern 

is employed, and thus we estimate an importance level of 

each defect pattern in proportional to their occurrence in all 

defect states. If the defect pattern is discovered from as many 

as defect states, it has high availability to explain many defect 

states, finally it is interpreted as an informative indicator for 

defects. 

In order to demonstrate the effectiveness of the proposed 

defect state and defect pattern analysis, two datasets are 

analyzed to detect defective car door trims which generate 

BSR-noises. The proposed method successfully discovered a 

set of defect patterns for each data sets which can be 

employed as references for defect detection of BSR-noises. 

Defect states’ severity and defect patterns’ importance are 

calculated, and they will be further used as the estimator of 

probability of defect occurrences for online detection. 

There are several further studies for improving this works: 1) 

to investigate relationships among severity degree, 

importance level, and physical root causes of defects , 2) to 

develop a similarity measure with regard of characteristics of 

discretized state vectors for online monitoring, and 3) to 

discuss on relationships between the two proposed indicators 

Figure 7. Examples of 6 defect and 4 normal patterns which 

are described as a shape of discretized state vector from 

dataset#2: a darker color means a value corresponding to 

each sensor is larger. 
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and the performance of sensor data in identical detection 

problem, for example which sensor data are more suitable for 

in-process BSR-noise detection either traditional microphone 

sensor array or acoustic emission sensor.  
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